2005-Oujda International Conference on Nonlinear Analysis, Oujda, Morocco.
Electron. J. Diff. Eqns., Conference 14 (2006), pp. 149-153.

Multiplicity results for nonlinear elliptic equations

Samira Benmouloud, Mostafa Khiddi, Simohammed Sbai

Abstract:
Let $\Omega$ be a bounded domain in $\mathbb{R}^{N}$, $N\geq 3$, and $p=\frac{2N}{N-2}$ the limiting Sobolev exponent. We show that for $f\in H^1_0(\Omega)^\ast$, satisfying suitable conditions, the nonlinear elliptic problem
$$\displaylines{
 -\Delta u =|u |^{ p-2 }u +f \quad \hbox{in } \Omega   \cr
 u=0 \quad \hbox{on } \partial\Omega
 }$$
has at least three solutions in $H_{0}^{1}(\Omega)$.

Published September 20, 2006.
Math Subject Classifications: 35J20, 35J65.
Key Words: Semilinear elliptic equations; critical Sobolev exponent.

Show me the PDF file (183K), TEX file, and other files for this article.

Samira Benmouloud
E.G.A.L, Dépt. Maths, Fac. Sciences
Université Ibn Tofail, BP. 133, Kénitra, Maroc
email: ben.sam@netcourrier.com
  Mostafa Khiddi
E.G.A.L, Dépt. Maths, Fac. Sciences
Université Ibn Tofail, BP. 133, Kénitra, Maroc
Simohammed Sbai
E.G.A.L, Dépt. Maths, Fac. Sciences
Université Ibn Tofail, BP. 133, Kénitra, Maroc
email: sbaisimo@netcourrier.com

Return to the table of contents for this conference.
Return to the EJDE web page