2005-Oujda International Conference on Nonlinear Analysis.
Electronic Journal of Differential Equations, Conference 14, 2006, pp. 149-153.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

MULTIPLICITY RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS

SAMIRA BENMOULOUD, MOSTAFA KHIDDI, SIMOHAMMED SBAI

Abstract. Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 3$, and $p=\frac{2 N}{N-2}$ the limiting Sobolev exponent. We show that for $f \in H_{0}^{1}(\Omega)^{*}$, satisfying suitable conditions, the nonlinear elliptic problem

$$
\begin{gathered}
-\Delta u=|u|^{p-2} u+f \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

has at least three solutions in $H_{0}^{1}(\Omega)$.

1. Introduction

It is well known [6, Theorems 1 and 2] that for $f \neq 0$ and $\|f\|$ sufficiently small, the problem

$$
\begin{gather*}
-\Delta u=|u|^{p-2} u+f \quad \text { on } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

has at least two distinct solutions \mathbf{u}_{0} and \mathbf{u}_{1} which are critical points of the functional

$$
I(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{1}{p} \int_{\Omega}|u|^{p}-\int_{\Omega} f u
$$

such that $I\left(\mathbf{u}_{1}\right)>I\left(\mathbf{u}_{0}\right)$. In this note we suppose $f \geq 0$ and satisfies

$$
\begin{equation*}
\|f\|<\frac{\alpha}{N} S^{\frac{N}{4}} \tag{1.2}
\end{equation*}
$$

where

$$
\frac{1}{2}<\alpha<\left(\frac{N-2}{N+2}\right)^{\frac{N+2}{4}}, \quad \text { and } \quad S=\inf _{u \in H_{0}^{1}(\Omega)\|u\|_{p}=1}\|\nabla u\|_{2}^{2}
$$

which corresponds to the best constant for the Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$. We determine a special ω_{ε}, from the extremal functions for the Sobolev inequality in \mathbb{R}^{N}, and consider Γ the class of continuous paths joining 0 to ω_{ε}.
Proposition 1.1. Let

$$
c=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} I(\gamma(t))
$$

2000 Mathematics Subject Classification. 35J20, 35J65.
Key words and phrases. Semilinear elliptic equations; critical Sobolev exponent.
(C)2006 Texas State University - San Marcos.

Published September 20, 2006.

Then there is a sequence $\left(u_{j}\right) \subset H_{0}^{1}(\Omega)$ such that

$$
\begin{gathered}
I\left(u_{j}\right) \rightarrow c \\
I^{\prime}\left(u_{j}\right) \rightarrow 0 \quad \text { in }\left(H_{0}^{1}(\Omega)\right)^{*} \\
I\left(\boldsymbol{u}_{0}\right)<I\left(\boldsymbol{u}_{1}\right)<c
\end{gathered}
$$

Let \mathbf{u} denotes the weak limit in $H_{0}^{1}(\Omega)$ of (a subsequence of) $\left(u_{n}\right)$, our principal result is as follows.
Theorem 1.2. Let $f \in H_{0}^{1}(\Omega)^{*}, f \geq 0$ satisfies 1.2 . Then either
(1) $I(\boldsymbol{u})=c$ and Problem 1.1) has at least three solutions. Or
(2) $I(\boldsymbol{u}) \leq c-\frac{1}{N} S^{N / 2}$.

Note that the existence results of biharmonic analogue of Problem 1.1) have been studied in [2], so a result similar to that of Theorem 1.2 may be established for the bilaplacian operator.

2. The proof of Proposition 1.1

We start with a variant of the mountain pass theorem of Ambrosetti-Rabinowitz without the Palais-Smale condition
Theorem 2.1. Let E be a real Banach space and $I \in C^{1}(E, \mathbb{R})$. Suppose there exists a neighborhood U of 0 in E and a constant $\rho>0$ such that
(H1) $I(u) \geq \rho$, for all $u \in \partial U$.
(H2) $I(0)<\rho$ and, $I(v)<\rho$ for some $v \in E \backslash U$.
Let

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t))
$$

where

$$
\Gamma=\{\gamma:[0,1] \rightarrow E, \text { is continuous, } \gamma(0)=0, \gamma(1)=v\}
$$

Then there is a sequence $\left(u_{n}\right)$ in E such that

$$
\begin{gathered}
I\left(u_{n}\right) \rightarrow c \\
I^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } E^{*}
\end{gathered}
$$

On $H_{0}^{1}(\Omega)$ we define a variational functional $I: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ for problem (1.1), by

$$
I(u)=\frac{1}{2}\|\nabla u\|_{2}^{2}-\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} f u .
$$

Clearly I is C^{1} on E and $I(0)=0$. We shall verify the assumptions of Theorem 2.1
Verification of (H1). Let $r \in] 0, \alpha S^{N / 4}\left[\right.$ and $\left.u \in H_{0}^{1}(\Omega)\right)$ be such that $\|\nabla u\|_{2}=r$. We have

$$
I(u) \geq \frac{1}{2} r^{2}-\frac{1}{p} r^{p} S^{-p / 2}-\|f\| r
$$

Letting $r \rightarrow \alpha S^{N / 4}$, we obtain

$$
I(u) \geq \frac{1}{2} \alpha^{2} S^{N / 2}-\frac{1}{p} \alpha^{p} S^{N / 2}-\frac{1}{4 N} \alpha^{2} S^{N / 2}
$$

Set

$$
\rho=\frac{\alpha^{p} S^{N / 2}}{2 N}
$$

hence $I(u)>\rho$ for all $u \in \partial B(0, r)$.

Verification of (H2). Assume $0 \in \Omega$ and let $\phi \in \mathcal{C}_{0}^{\infty}(\Omega)$ be a fixed function such that $\phi \equiv 1$ for x in some neighborhood of 0 . For $\varepsilon>0$, define

$$
u_{\epsilon}(x)=\frac{\phi(x)}{\left(\epsilon+|x|^{2}\right)^{\frac{N-2}{2}}}, \quad v_{\epsilon}(x)=\frac{u_{\epsilon(x)}}{\left\|u_{\epsilon}\right\|_{p}} .
$$

Hence, from 4],

$$
\begin{equation*}
\left\|\nabla v_{\epsilon}\right\|_{2}^{2}=S+O\left(\epsilon^{\frac{N-2}{2}}\right) \tag{2.1}
\end{equation*}
$$

For every $\mu \neq 0$, 6, Lemma 2.1], gives a real $t^{+}>0$ such that

$$
\begin{equation*}
t^{+}>\left(\frac{\left\|\nabla \mu v_{\epsilon}\right\|_{2}^{2}}{(p-1)\left\|\mu v_{\epsilon}\right\|_{p}^{p}}\right)^{\frac{1}{p-2}}=\frac{1}{\mu}\left(\frac{N-2}{N+2}\right)^{\frac{N-2}{4}}\left\|\nabla v_{\epsilon}\right\|_{2}^{\frac{N-2}{2}} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{+}<\frac{1}{\mu}\left\|\nabla v_{\epsilon}\right\|_{2}^{\frac{N-2}{2}} \tag{2.3}
\end{equation*}
$$

Set $\omega_{\epsilon}=t^{+} \mu v_{\epsilon}$. We have

$$
\left\|\nabla \omega_{\epsilon}\right\|_{2}=t^{+} \mu\left\|\nabla v_{\epsilon}\right\|_{2}>\left(\frac{N-2}{N+2}\right)^{\frac{N-2}{4}}\left\|\nabla v_{\epsilon}\right\|_{2}^{\frac{N}{2}}>\left(\frac{N-2}{N+2}\right)^{\frac{N-2}{4}} S^{\frac{N}{4}}>\alpha S^{\frac{N}{4}}>r
$$

On the other hand, from (2.2) and (2.3), we get

$$
\begin{aligned}
I\left(\omega_{\epsilon}\right) & <\frac{1}{2}\left(t^{+}\right)^{2}\left\|\nabla \omega_{\epsilon}\right\|_{2}^{2}-\frac{1}{p}\left(t^{+}\right)^{p} \\
& <\frac{1}{2 \mu^{2}}\left\|\nabla v_{\epsilon}\right\|_{2}^{N}-\frac{1}{\mu^{p}} \frac{1}{p}\left(\frac{N-2}{N+2}\right)^{\frac{p(N-2)}{4}}\left\|\nabla v_{\epsilon}\right\|_{2}^{N} .
\end{aligned}
$$

Using (2.1), we deduce

$$
I\left(\omega_{\epsilon}\right)<\left(\frac{1}{2 \mu^{2}}-\frac{1}{\mu^{p}} \frac{N-2}{N+2}\left(\frac{N-2}{N+2}\right)^{\frac{N}{2}}\right)\left(S+O\left(\epsilon^{\frac{N-2}{2}}\right)\right)^{N / 2}<\frac{\epsilon_{0}^{p} S^{N / 2}}{2 N}
$$

for μ large enough. Then $c \geq \rho>I\left(\omega_{\epsilon}\right)$. Recall that $\omega_{\epsilon} \in \Lambda^{-}$([6] Lemma 2.1] with

$$
\Lambda^{-}=\left\{u \in H_{0}^{1}(\Omega) /<I^{\prime}(u), u>=0,\|\nabla u\|_{2}^{2}-(p-1)\|u\|_{p}^{p}<0\right\}
$$

and that $\inf _{\Lambda^{-}} I$ is attained by \mathbf{u}_{1} [6, Theorem 2]. We conclude that

$$
c \geq \rho>I\left(\omega_{\epsilon}\right) \geq I\left(\mathbf{u}_{1}\right)>I\left(\mathbf{u}_{0}\right)
$$

3. Proof of the Theorem 1.2

Applying Proposition 1.1 we obtain a sequence $\left(u_{j}\right) \subset H_{0}^{1}(\Omega)$ such that

$$
\begin{gather*}
I\left(u_{j}\right) \rightarrow c \tag{3.1}\\
I^{\prime}\left(u_{j}\right) \rightarrow 0 \quad \text { in } H_{0}^{1}(\Omega)^{*} \tag{3.2}
\end{gather*}
$$

This implies that $\left\|\nabla u_{j}\right\|_{2}$ is uniformly bounded. Hence for a subsequence of u_{j}, still denoted by u_{j}, we can find $\mathbf{u} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{gathered}
u_{j} \rightarrow \mathbf{u} \quad \text { weakly in } H_{0}^{1}(\Omega) \\
u_{j} \rightarrow \mathbf{u} \quad \text { strongly in } L^{q}, q<p \\
u_{j} \rightarrow \mathbf{u} \text { a.e. on } \Omega
\end{gathered}
$$

From (3.2), we deduce that \mathbf{u} is a (weak) solution of Problem (1.1). In particular u satisfies

$$
\begin{equation*}
\|\mathbf{u}\|_{2}^{2}-\|\mathbf{u}\|_{p}^{p}=\int f \mathbf{u} \tag{3.3}
\end{equation*}
$$

Let $u_{j}=\mathbf{u}+v_{j}$, where $v_{j} \rightarrow 0$ weakly in $H_{0}^{1}(\Omega)$ and $v_{j} \rightarrow 0$ a.e on Ω. We have

$$
\left\|\nabla u_{j}\right\|_{2}^{2}=\|\nabla \mathbf{u}\|_{2}^{2}+\left\|\nabla v_{j}\right\|_{2}^{2}+\circ(1)
$$

and by (3.1),

$$
I(\mathbf{u})+\frac{1}{2}\left\|\nabla v_{j}\right\|_{2}^{2}-\frac{1}{p}\left\|v_{j}\right\|_{p}^{p}=c+o(1)
$$

thanks to Brezis-Lieb Lemma [5]. By (3.2) and (3.3), $\left\|\nabla v_{j}\right\|_{2}^{2}-\left\|v_{j}\right\|_{p}^{p}=o(1)$, which gives

$$
I(\mathbf{u})+\frac{1}{N}\left\|\nabla v_{j}\right\|_{2}^{2}=c+o(1)
$$

Set $l=\lim _{j \rightarrow+\infty}\left\|\nabla v_{j}\right\|_{2}^{2}$, then $\lim _{j \rightarrow+\infty}\left\|v_{j}\right\|_{p}^{p}=l$. Using Sobolev inequality one see that $l \geq S l^{2 / p}$. Then $l=0$, or $l \geq S^{\frac{N}{2}}$. We get, either

$$
I(\mathbf{u})=c
$$

and since

$$
I(\mathbf{u})>I\left(\mathbf{u}_{1}\right)>I\left(\mathbf{u}_{0}\right)
$$

\mathbf{u} is a solution of Problem (1.1) distinct from \mathbf{u}_{o} and \mathbf{u}_{1}, or

$$
I(\mathbf{u}) \leq c-\frac{1}{N} S^{\frac{N}{2}}
$$

Remark 3.1. One can show that $c<\frac{1}{N} S^{\frac{N}{2}}$, consequently $I(\mathbf{u})<0$ in the second case

4. Semilinear biharmonic equation

In 2], Benmouloud considered the problem

$$
\begin{gathered}
\Delta^{2} u=|u|^{p-2} u+f \quad \text { in } \Omega \\
\Delta u=u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where Ω is a bonded domain in $\mathbb{R}^{N}, N \geq 5 p=\frac{2 N}{N-4}$ and Δ^{2} denotes the biharmonic operator. She proved that for $f \in H^{-1}$ subject to a suitable condition, this problem has at least two distinct solutions in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. The existence of on solution follows from the mountain-pass theorem, with Palais-Smale condition, and a second is obtained by a constrained minimization (see also [3]).

It follows from this study that an analog result of Theorem 1.2 may be established by a similar argument with suitable smallness condition on f.

References

[1] A. Ambrosetti, P. Rabinowitz; Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal, Vol. 11, 1973, pp. 349-381.
[2] S. Benmouloud, Existence de solutions pour un problme biharmonuque non homogne avec exposant critique de Sobolev. Bull. Belg. Math. Soc. 8 (2001), 555-565
[3] S. Benmouloud, M. Sbai; A perturbed biharmonic minimization problem with critical exponent à paraitre dans le volume 7 de Math-Recherche et applications.
[4] H. Brezis, L. Niremberg; Positive Solutions of NonLinear Elliptic Equations Involving Critical Sobolev Exponents, comm. Pure. Appl. Math 36(1983), 437-477.
[5] H. Brezis, E. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Sco. 88 pp. 486-490 (1983).
[6] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré, Vol. 9, no. 3, 1992, p. 281-304.

Samira Benmouloud
E.G.A.L, Dépt. Maths, Fac. Sciences, Université Ibn Tofail, BP. 133, Kénitra, Maroc

E-mail address: ben.sam@netcourrier.com
Mostafa Khiddi
E.G.A.L, Dépt. Maths, Fac. Sciences, Université Ibn Tofail, BP. 133, Kénitra, Maroc Simohammed Sbai
E.G.A.L, Dépt. Maths, Fac. Sciences, Université Ibn Tofail, BP. 133, Kénitra, Maroc E-mail address: sbaisimo@netcourrier.com

