Jorge Guinez, Robert Quintero, Angel D. Rueda
Abstract:
In this paper we consider a set of vector fields over the
torus for which we can associate a positive function
which define for some of them in a solution
of the Fokker-Planck equation with
diffusion:
Within this class of vector fields we prove that
is a gradient vector field if and only if at least one of the
critical points of
is a stationary point of
,
for an
.
In particular we show a vector
field which is stable in the sense of Zeeman but structurally
unstable in the Andronov-Pontriaguin sense. A generalization
of some results to other kind of compact manifolds is made.
Published May 30, 2005.
Math Subject Classifications: 58J60, 37C20.
Key Words: Almost gradient vector fields.
Show me the PDF file (193K), TEX file, and other files for this article.
Jorge Guíñez Centro de Investigación de Matemática Aplicada (C.I.M.A.) Facultad de Ingeniería, Universidad del Zulia Apartado 10482, Maracaibo, Venezuela email: jguinez@luz.edu.ve | |
Robert Quintero Centro de Investigación de Matemática Aplicada (C.I.M.A.) Facultad de Ingeniería, Universidad del Zulia Apartado 10482, Maracaibo, Venezuela email: rquintero@luz.edu.ve | |
Angel D. Rueda Centro de Investigación de Matemática Aplicada (C.I.M.A.) Facultad de Ingeniería, Universidad del Zulia Apartado 10482, Maracaibo, Venezuela email: ad-rueda@cantv.net |
Return to the EJDE web page