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CRITICAL POINTS OF THE STEADY STATE OF A
FOKKER-PLANCK EQUATION

JORGE GUÍÑEZ, ROBERT QUINTERO, ANGEL D. RUEDA

Abstract. In this paper we consider a set of vector fields over the torus for
which we can associate a positive function vε which define for some of them in

a solution of the Fokker-Planck equation with ε diffusion:

ε∆vε − div(vεX) = 0 .

Within this class of vector fields we prove that X is a gradient vector field if

and only if at least one of the critical points of vε is a stationary point of X,
for an ε > 0. In particular we show a vector field which is stable in the sense

of Zeeman but structurally unstable in the Andronov-Pontriaguin sense. A

generalization of some results to other kind of compact manifolds is made.

1. Vector fields in covering spaces

Let π : M̃ → M be a covering space of a Riemannian and oriented manifold M.
In M̃ there exists one and only one Riemannian structure such that

dπy : Ty(M̃) → Tπ(y)(M)

is an isometry for all y ∈ M̃ . Then it is able to associate to every Cr vector field
X in M , another Cr vector field X̃ in M̃ in the following way:

X̃(y) = (d(π)(y))−1(X(π(y))).

It is easy to verify the following theorem:

Theorem 1.1.

(X̃ + Y ) = X̃ + Ỹ m (1.1)

∇̃f = ∇(π ◦ f) (1.2)

div(X̃(y) = div(X)(π(y)) (1.3)

Definition A vector field X is called almost gradient respect to the projection π,
if and only if X̃ is a gradient in M . This set will be denoted by Vag(π). Particular
we can write

grad(M) = Vag(1M )
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There are non trivial projections for which is true the preceding statement, so
we have the following theorem.

Theorem 1.2. If π : M̃ → M is a finite covering and M is compact, then Vag is
the set of gradient vector fields in M .

Proof. Let X be a vector field in M and let

X = ∇f + W

be its Hodge’s decomposition. If X̃ is gradient, then there exists a C∞ function g
such that:

∇g = X̃ = ∇(f ◦ π) + W̃ .

Then by Theorem 1.1 it follows that W̃ is a gradient vector field in M̃ and we can
write W̃ = ∇h. Finally from Theorem 1.1 we get, div(W̃ ) = div(W ) ◦ π = 0. Thus
∇h = 0 and by compactness of M̃ it follows h to be a constant. So W = 0 and
W = 0. �

2. Vector Fields in Tn

Let π : Rn → Tn = Rn/Zn be the universal covering space of the torus Tn.
So there exists a Riemannian structure in Tn such that T̃n = Rn, where Rn is
considered with the usual Riemannian structure. It is easy to realize that Vag(π)
is different from grad(M). More precisely we have the following statement.

Theorem 2.1. X ∈ Vag(π) if and only if X is in the form X = ∇f + λ, where
λ ∈ Rn.

Proof. Let X = ∇f + W be the Hodge’s decomposition of X. Then X̃ ∈ Vag(π)
implies

X̃ = ∇g,

but
X̃ = ∇̃f + W̃ = ∇(f ◦ π) + W̃

and W̃ = ∇h with h = g−f ◦π. By the periodicity of W̃ it follows that ‖W̃‖ ≤ K.
Then

|h(x)| ≤ K‖x‖ ∀x ∈ Rn. (2.1)

Because W has divergence zero so it does W̃ , and h is an harmonic function in
whole Rn. From the estimate (4) h is a linear function; i.e.,

h(x) = a + λ · x (2.2)

with λ ∈ Rn so ∇h = W̃ = λ, consequently W = λ. �

3. The function vε

For the rest of this article, we consider X in Tn to be of the form X = ∇f + λ.
Let us consider

vε(x) =
∫

Tn

exp
(h(x, z)

ε

)
dz (3.1)

where

g(x) = f(x) + λ · x , (3.2)

h(x, z) = g(x)− g(x + z) (3.3)
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Lemma 3.1. X is a gradient if λ = 0 and we have

vε = L(ε) exp(f/ε)

Proof. If λ = 0, we have

vε = exp(
f

ε
)
∫

Tn

exp(
−f(x + z)

ε
)dz = exp(

f

ε
)
∫

Tn

exp(
−f(z)

ε
)dz .

�

Definition.X will be called without coupling, if(
(i 6= j) and (

∂Xi

∂xj
6= 0)

)
⇒ λi = 0.

Theorem 3.2. Let X be a vector field without coupling. Then vε is a solution of
the Fokker-Planck equation

ε∆v − div(vX) = 0. (3.4)

Proof. Let I be the set of indices for which λi 6= 0. Then the i-component of the
vector field X is

Xi = f ′i(xi) + λi

with fi a function in the variable xi. Therefore, X = ∇f + λ with

f =
∑

(fi(xi)) + p(x)

where p(x) is a periodic function and

∂

∂xi
(p(x)) = 0, i ∈ I.

Then
h(x, z) =

∑
iεI

hi(xi, zi) + p(x)− p(x + z).

Because X is without coupling, applying Lemma 3.1 to ∇p,

vε =
∫

Tn

exp
(h(x, z)

ε

)
dz = K

( ∏
iεI

vi
ε(xi)

)
exp

(p(x)
ε

)
, (3.5)

where

vi
ε(xi) =

∫ 1

0

exp
(hi(xi, zi)

ε

)
dzi

is associated with the vector field ∇fi + λi. If i ∈ I it follows that

ε(∇vε)i = (Xi(xi)vi
ε − εRi)

∏
kε(I−{i})

vk
ε exp

(p(x)
ε

)
where

Ri =
∫ 1

0

Xi(xi + zi)
ε

exp
(fi(xi)− f(xi + zi)− λizi

ε

)
dzi − exp

(
− −λi

ε

)
+ 1.

For i /∈ I,
(ε∇vε)i = (∇p(x))ivε = Xivε

thus vε is solution of (3.4). �
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4. Dynamics and Steady State

We begin this section with some definitions:
Definition Let X be a vector field in Tn and let uε =

∑∞
0

Fi

εi be a series with a
positive ratio of convergence. Suppose that u, is a solution of (3.4). We will denote:

Cε = {x ∈ M : ∇uε = 0} (4.1)

E(X) = {x ∈ M : X(x) = 0} (4.2)

D(X) = {x ∈ M : det
(∂Xi

∂xj

)
= 0} (4.3)

In [1] and [2], we have such series on Tn and Sn.

Theorem 4.1. Consider X ∈ Vag(Tn) such that

(i) There exists a convergent series uε =
∑∞

i=0
Fi

εi solving (3.4) for 1
ε ≤ r, r > 0

(ii) There exists an infinity set S ⊂ [r1, r], r1 > 0 and a point x in Tn such
that

x ∈ Cε ∩ E(X) ∀1
ε
∈ S (4.4)

Then X is a gradient vector field.

Proof. Because X ∈ Vag(Tn), by Theorem 2.1 we can write

X = ∇f + λ , (4.5)

∇uε = 0 =
∞∑

i=0

∇Fi(x)
(1
ε

)i ∀ε ∈ S. (4.6)

Then ∇Fi(x) = 0, for every i. In particular ∇F1(x) = ∇f(x) = 0 and by (15)
λ = 0. �

Theorem 4.2. Let X be a vector field without coupling. Then the following state-
ments are equivalent.

(i) There exists ε such that Cε ∩ E(X) 6= ∅
(ii) For all ε, Cε ∩ E(X) 6= ∅
(iii) X is gradient.

Proof. For x ∈ Cε ∩ E(X) and i ∈ I we have a contradiction:

0 = (vi
ε)
′(x) = e

λi
ε − 1 +

λi

ε
vε(x) .

wich completes the proof. �

Remark. The main idea here is that for non-gradient cases critical points of
a steady state are different from stationary points of the vector field. This fact
enable us to find a vector field X with an associated uε which has not generated
critical points, even when X has degenerated stationary points.

Lemma 4.3. Let’s suppose that X = ∇f + λ is without coupling and let I+ be the
set of index such that λi > 0 and let I− be the set of index such that λi < 0. Then

Cε ⊂ ∩iεI+X−1
i ((0,+∞)) ∩iεI− X−1

i ((−∞, 0))



EJDE/CONF/13 CRITICAL POINTS OF THE STEADY STATE 33

Proof. For a such f we can write

f =
∑

(fi(xi)) + p(x)

where p(x) is not depending of xi for i ∈ I = I− ∪ I+ and

vε = K
( ∏

iεI

vi
ε(xi)

)
exp

(p(x)
ε

)
(4.7)

where

vi
ε =

∫ 1

0

exp
(fi(xi)− f(xi + zi)− λizi

ε

)
dzi (4.8)

So for every i ∈ I, we have

∂vε

∂xi
=

(Xi(xi)vi
ε

ε
−Ri

) ∏
kε(I−{i})

vk
ε exp

(p(x)
ε

)
, (4.9)

where Ri = − exp(−λi/ε) + 1. So if x ∈ Cε,

Xi(xi)
ε

vi
ε = − exp

(
− λi

ε

)
+ 1, i ∈ I (4.10)

Then for i ∈ I+ we have Xi(xi) > 0 and for i ∈ I− we have Xi(xi) < 0. �

Lemma 4.4. Under the hypothesis of Lemma 4.3, the set of degenerated critical
points of uε is a subset of

D1(X) = ∪iεI+ [D(Xi) ∩ (X−1
i (0,+∞))] ∪iεI− [D(Xi) ∩ (X−1

i (−∞, 0))] ∪D(∇p)

Here x ∈ D(Xi), means X ′(xi) = 0 and x ∈ D(∇p) means det( ∂2p
∂xixj

) = 0.

Proof. With the notation of Lemma 4.3 and by (4.9) and (4.10), for every x ∈ Cε,

∂2uε

∂x2
i

(x) = X ′(xi)uε, i ∈ I (4.11)

∂2uε

∂xi∂xj
(x) = 0, i, j ∈ I, i 6= j (4.12)

∂2uε

∂xi∂xj
(x) =

∂2p

∂xi∂xj
(x)uε, i, j ∈ I ′ (4.13)

where I ′ = {1, 2, . . . , n} − I. So

det
( ∂2uε

∂xi∂xj
(x)

)
=

( ∏
iεI

X ′
i(xi)

)(
det

( ∂2p

∂xi∂xj
(x)

)
j,iεI′

)
(uε(x))n (4.14)

If x is a degenerated critical point of uε, by Lemma 4.3, we get x ∈ D1(X). �

Theorem 4.5. Let X = ∇f + λ be a vector field without coupling and suppose

I+ = {i : λi > 0}, I− = {i : λi < 0}, I = I+ ∪ I−, k = card(I)

Let also suppose:
(i) For every i ∈ I+ the set D1(Xi) = D(Xi) ∩ X−1

i (0,+∞) is finite and for
xi ∈ D1(Xi) there exits zi ∈ (0, 1) such that f(xi)− f(xi + zi)− λizi > 0.

(ii) For i ∈ I− the set D1(Xi) = D(Xi) ∩ X−1
i (−∞, 0) is finite and for every

zi ∈ (0, 1) we have f(xi)− f(xi + zi)− λizi ≤ 0.
(iii) Considering p as a function in Tn−k do not has critical points which are

degenerated.
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Then there exists ε0 > 0 such that uε does not have degenerated critical points for
0 < ε < ε0.

Proof. Suppose there exists a sequence of values εn with εn > 0 and limn→∞ εn = 0
and a sequence of point xn in such way that xn is a critical degenerated point of
uεn

. Then by the proceeding Lemma and under conditions (i), (ii) and (iii) we can
find a sequence of (εnk

) such that limk→∞ xnk
= x with xi ∈ D1(Xi) for some index

i ∈ I. Clearly (xnk
)i = xi for k > k0 because D1(Xi) is finite set. Then for that

index i, it follows:

Xi(xi)ui
εnk

(xi) = εnk

(
− exp

( λi

εnk

)
+ 1

)
(4.15)

then for (i) or (ii) we have a contradiction when k →∞. �

Example. Consider the vector field

X(x) =

{
α exp

(
− 1

sin(2πx)

)
0 ≤ x ≤ 1/2,

−β exp
(
− 1

sin(2πx)

)
1/2 ≤ x ≤ 1

It is a C∞ vector field on T1. We put

H =
∫ 1/2

0

exp
(
− 1

sen2πx

)
,

X = ∇f + λ,

h(x, z) = f(xi)− f(x + z)− λz

=
∫ x

0

X(t)dt−
∫ x+z

0

X(t)dt

Then we have
h(1/4, 3/4) = (β − α

2
)H, λ = (α− β)H

Then if α > β > α
2 , λ = (α− β) > 0, D1(X) = {1/4} and by theorem 4.5, we have

ε0 > 0 such that uε does not have degenerated critical points. In this case, vε is a
Morse function for ε < ε0 and X is Zeeman Stable vector field [3].
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