2003 Colloquium on Differential Equations and Applications, Maracaibo, Venezuela. Electronic Journal of Differential Equations, Conference 13, 2005, pp. 29-34. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

CRITICAL POINTS OF THE STEADY STATE OF A FOKKER-PLANCK EQUATION

JORGE GUÍÑEZ, ROBERT QUINTERO, ANGEL D. RUEDA

AbStract. In this paper we consider a set of vector fields over the torus for which we can associate a positive function v_{ϵ} which define for some of them in a solution of the Fokker-Planck equation with ϵ diffusion:

$$
\epsilon \Delta v_{\epsilon}-\operatorname{div}\left(v_{\epsilon} X\right)=0
$$

Within this class of vector fields we prove that X is a gradient vector field if and only if at least one of the critical points of v_{ϵ} is a stationary point of X, for an $\epsilon>0$. In particular we show a vector field which is stable in the sense of Zeeman but structurally unstable in the Andronov-Pontriaguin sense. A generalization of some results to other kind of compact manifolds is made.

1. Vector fields in covering spaces

Let $\pi: \widetilde{M} \rightarrow M$ be a covering space of a Riemannian and oriented manifold M. In \widetilde{M} there exists one and only one Riemannian structure such that

$$
d \pi_{y}: T_{y}(\widetilde{M}) \rightarrow T_{\pi(y)}(M)
$$

is an isometry for all $y \in \widetilde{M}$. Then it is able to associate to every C^{r} vector field X in M, another C^{r} vector field \widetilde{X} in \widetilde{M} in the following way:

$$
\widetilde{X}(y)=(d(\pi)(y))^{-1}(X(\pi(y)))
$$

It is easy to verify the following theorem:

Theorem 1.1.

$$
\begin{gather*}
(\widetilde{X+Y})=\widetilde{X}+\widetilde{Y} m \tag{1.1}\\
\widetilde{\nabla f}=\nabla(\pi \circ f) \tag{1.2}\\
\operatorname{div}(\widetilde{X}(y)=\operatorname{div}(X)(\pi(y)) \tag{1.3}
\end{gather*}
$$

Definition A vector field X is called almost gradient respect to the projection π, if and only if \widetilde{X} is a gradient in M. This set will be denoted by $V_{a g}(\pi)$. Particular we can write

$$
\operatorname{grad}(M)=V_{a g}\left(1_{M}\right)
$$

[^0]There are non trivial projections for which is true the preceding statement, so we have the following theorem.
Theorem 1.2. If $\pi: \widetilde{M} \rightarrow M$ is a finite covering and M is compact, then $V_{a g}$ is the set of gradient vector fields in M.

Proof. Let X be a vector field in M and let

$$
X=\nabla f+W
$$

be its Hodge's decomposition. If \widetilde{X} is gradient, then there exists a C^{∞} function g such that:

$$
\nabla g=\widetilde{X}=\nabla(f \circ \pi)+\widetilde{W}
$$

Then by Theorem 1.1 it follows that \widetilde{W} is a gradient vector field in \widetilde{M} and we can write $\widetilde{W}=\nabla h$. Finally from Theorem 1.1 we get, $\operatorname{div}(\widetilde{W})=\operatorname{div}(W) \circ \pi=0$. Thus $\nabla h=0$ and by compactness of \widetilde{M} it follows h to be a constant. So $W=0$ and $W=0$.

2. Vector Fields in T_{n}

Let $\pi: \mathbb{R}^{n} \rightarrow T_{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ be the universal covering space of the torus T_{n}. So there exists a Riemannian structure in T_{n} such that $\widetilde{T}_{n}=\mathbb{R}^{n}$, where \mathbb{R}^{n} is considered with the usual Riemannian structure. It is easy to realize that $V_{a g}(\pi)$ is different from $\operatorname{grad}(M)$. More precisely we have the following statement.
Theorem 2.1. $X \in V_{a g}(\pi)$ if and only if X is in the form $X=\nabla f+\lambda$, where $\lambda \in \mathbb{R}^{n}$.
Proof. Let $X=\nabla f+W$ be the Hodge's decomposition of X. Then $\widetilde{X} \in V_{a g}(\pi)$ implies

$$
\tilde{X}=\nabla g
$$

but

$$
\widetilde{X}=\widetilde{\nabla f}+\widetilde{W}=\nabla(f \circ \pi)+\widetilde{W}
$$

and $\widetilde{W}=\nabla h$ with $h=g-f \circ \pi$. By the periodicity of \widetilde{W} it follows that $\|\widetilde{W}\| \leq K$. Then

$$
\begin{equation*}
|h(x)| \leq K\|x\| \quad \forall x \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

Because W has divergence zero so it does \widetilde{W}, and h is an harmonic function in whole \mathbb{R}^{n}. From the estimate (4) h is a linear function; i.e.,

$$
\begin{equation*}
h(x)=a+\lambda \cdot x \tag{2.2}
\end{equation*}
$$

with $\lambda \in \mathbb{R}^{n}$ so $\nabla h=\widetilde{W}=\lambda$, consequently $W=\lambda$.

3. The function v_{ϵ}

For the rest of this article, we consider X in T_{n} to be of the form $X=\nabla f+\lambda$. Let us consider

$$
\begin{equation*}
v_{\epsilon}(x)=\int_{T_{n}} \exp \left(\frac{h(x, z)}{\epsilon}\right) d z \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
g(x) & =f(x)+\lambda \cdot x \tag{3.2}\\
h(x, z) & =g(x)-g(x+z) \tag{3.3}
\end{align*}
$$

Lemma 3.1. X is a gradient if $\lambda=0$ and we have

$$
v_{\epsilon}=L(\epsilon) \exp (f / \epsilon)
$$

Proof. If $\lambda=0$, we have

$$
v_{\epsilon}=\exp \left(\frac{f}{\epsilon}\right) \int_{T_{n}} \exp \left(\frac{-f(x+z)}{\epsilon}\right) d z=\exp \left(\frac{f}{\epsilon}\right) \int_{T_{n}} \exp \left(\frac{-f(z)}{\epsilon}\right) d z .
$$

Definition. X will be called without coupling, if

$$
\left((i \neq j) \text { and }\left(\frac{\partial X_{i}}{\partial x_{j}} \neq 0\right)\right) \Rightarrow \lambda_{i}=0
$$

Theorem 3.2. Let X be a vector field without coupling. Then v_{ϵ} is a solution of the Fokker-Planck equation

$$
\begin{equation*}
\epsilon \Delta v-\operatorname{div}(v X)=0 \tag{3.4}
\end{equation*}
$$

Proof. Let I be the set of indices for which $\lambda_{i} \neq 0$. Then the i-component of the vector field X is

$$
X_{i}=f_{i}^{\prime}\left(x_{i}\right)+\lambda_{i}
$$

with f_{i} a function in the variable x_{i}. Therefore, $X=\nabla f+\lambda$ with

$$
f=\sum\left(f_{i}\left(x_{i}\right)\right)+p(x)
$$

where $p(x)$ is a periodic function and

$$
\frac{\partial}{\partial x_{i}}(p(x))=0, \quad i \in I
$$

Then

$$
h(x, z)=\sum_{i \in I} h_{i}\left(x_{i}, z_{i}\right)+p(x)-p(x+z) .
$$

Because X is without coupling, applying Lemma 3.1 to ∇p,

$$
\begin{equation*}
v_{\epsilon}=\int_{T_{n}} \exp \left(\frac{h(x, z)}{\epsilon}\right) d z=K\left(\prod_{i \epsilon I} v_{\epsilon}^{i}\left(x_{i}\right)\right) \exp \left(\frac{p(x)}{\epsilon}\right) \tag{3.5}
\end{equation*}
$$

where

$$
v_{\epsilon}^{i}\left(x_{i}\right)=\int_{0}^{1} \exp \left(\frac{h_{i}\left(x_{i}, z_{i}\right)}{\epsilon}\right) d z_{i}
$$

is associated with the vector field $\nabla f_{i}+\lambda_{i}$. If $i \in I$ it follows that

$$
\epsilon\left(\nabla v_{\epsilon}\right)_{i}=\left(X_{i}\left(x_{i}\right) v_{\epsilon}^{i}-\epsilon R_{i}\right) \prod_{k \epsilon(I-\{i\})} v_{\epsilon}^{k} \exp \left(\frac{p(x)}{\epsilon}\right)
$$

where

$$
R_{i}=\int_{0}^{1} \frac{X_{i}\left(x_{i}+z_{i}\right)}{\epsilon} \exp \left(\frac{f_{i}\left(x_{i}\right)-f\left(x_{i}+z_{i}\right)-\lambda_{i} z_{i}}{\epsilon}\right) d z_{i}-\exp \left(-\frac{-\lambda_{i}}{\epsilon}\right)+1
$$

For $i \notin I$,

$$
\left(\epsilon \nabla v_{\epsilon}\right)_{i}=(\nabla p(x))_{i} v_{\epsilon}=X_{i} v_{\epsilon}
$$

thus v_{ϵ} is solution of (3.4).

4. Dynamics and Steady State

We begin this section with some definitions:
Definition Let X be a vector field in T_{n} and let $u_{\epsilon}=\sum_{0}^{\infty} \frac{F_{i}}{\epsilon^{i}}$ be a series with a positive ratio of convergence. Suppose that u, is a solution of (3.4). We will denote:

$$
\begin{gather*}
C_{\epsilon}=\left\{x \in M: \nabla u_{\epsilon}=0\right\} \tag{4.1}\\
E(X)=\{x \in M: X(x)=0\} \tag{4.2}\\
D(X)=\left\{x \in M: \operatorname{det}\left(\frac{\partial X_{i}}{\partial x_{j}}\right)=0\right\} \tag{4.3}
\end{gather*}
$$

In [1] and [2], we have such series on T_{n} and S_{n}.
Theorem 4.1. Consider $X \in V_{a g}\left(T_{n}\right)$ such that
(i) There exists a convergent series $u_{\epsilon}=\sum_{i=0}^{\infty} \frac{F_{i}}{\epsilon^{i}}$ solving (3.4) for $\frac{1}{\epsilon} \leq r, r>0$
(ii) There exists an infinity set $S \subset\left[r_{1}, r\right], r 1>0$ and a point x in T_{n} such that

$$
\begin{equation*}
x \in C_{\epsilon} \cap E(X) \quad \forall \frac{1}{\epsilon} \in S \tag{4.4}
\end{equation*}
$$

Then X is a gradient vector field.
Proof. Because $X \in V_{a g}\left(T_{n}\right)$, by Theorem 2.1 we can write

$$
\begin{gather*}
X=\nabla f+\lambda \tag{4.5}\\
\nabla u_{\epsilon}=0=\sum_{i=0}^{\infty} \nabla F_{i}(x)\left(\frac{1}{\epsilon}\right)^{i} \quad \forall \epsilon \in S \tag{4.6}
\end{gather*}
$$

Then $\nabla F_{i}(x)=0$, for every i. In particular $\nabla F_{1}(x)=\nabla f(x)=0$ and by (15) $\lambda=0$.

Theorem 4.2. Let X be a vector field without coupling. Then the following statements are equivalent.
(i) There exists ϵ such that $C_{\epsilon} \cap E(X) \neq \emptyset$
(ii) For all $\epsilon, C_{\epsilon} \cap E(X) \neq \emptyset$
(iii) X is gradient.

Proof. For $x \in C_{\epsilon} \cap E(X)$ and $i \in I$ we have a contradiction:

$$
0=\left(v_{\epsilon}^{i}\right)^{\prime}(x)=e^{\frac{\lambda_{i}}{\epsilon}}-1+\frac{\lambda_{i}}{\epsilon} v_{\epsilon}(x)
$$

wich completes the proof.
Remark. The main idea here is that for non-gradient cases critical points of a steady state are different from stationary points of the vector field. This fact enable us to find a vector field X with an associated u_{ϵ} which has not generated critical points, even when X has degenerated stationary points.
Lemma 4.3. Let's suppose that $X=\nabla f+\lambda$ is without coupling and let I_{+}be the set of index such that $\lambda_{i}>0$ and let I_{-}be the set of index such that $\lambda_{i}<0$. Then

$$
C_{\epsilon} \subset \cap_{i \epsilon I_{+}} X_{i}^{-1}((0,+\infty)) \cap_{i \epsilon I_{-}} X_{i}^{-1}((-\infty, 0))
$$

Proof. For a such f we can write

$$
f=\sum\left(f_{i}\left(x_{i}\right)\right)+p(x)
$$

where $p(x)$ is not depending of x_{i} for $i \in I=I_{-} \cup I_{+}$and

$$
\begin{equation*}
v_{\epsilon}=K\left(\prod_{i \epsilon I} v_{\epsilon}^{i}\left(x_{i}\right)\right) \exp \left(\frac{p(x)}{\epsilon}\right) \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{\epsilon}^{i}=\int_{0}^{1} \exp \left(\frac{f_{i}\left(x_{i}\right)-f\left(x_{i}+z_{i}\right)-\lambda_{i} z_{i}}{\epsilon}\right) d z_{i} \tag{4.8}
\end{equation*}
$$

So for every $i \in I$, we have

$$
\begin{equation*}
\frac{\partial v_{\epsilon}}{\partial x_{i}}=\left(\frac{X_{i}\left(x_{i}\right) v_{\epsilon}^{i}}{\epsilon}-R_{i}\right) \prod_{k \epsilon(I-\{i\})} v_{\epsilon}^{k} \exp \left(\frac{p(x)}{\epsilon}\right) \tag{4.9}
\end{equation*}
$$

where $R_{i}=-\exp \left(-\lambda_{i} / \epsilon\right)+1$. So if $x \in C_{\epsilon}$,

$$
\begin{equation*}
\frac{X_{i}\left(x_{i}\right)}{\epsilon} v_{\epsilon}^{i}=-\exp \left(-\frac{\lambda_{i}}{\epsilon}\right)+1, \quad i \in I \tag{4.10}
\end{equation*}
$$

Then for $i \in I_{+}$we have $X_{i}\left(x_{i}\right)>0$ and for $i \in I_{-}$we have $X_{i}\left(x_{i}\right)<0$.
Lemma 4.4. Under the hypothesis of Lemma 4.3, the set of degenerated critical points of u_{ϵ} is a subset of

$$
D_{1}(X)=\cup_{i \epsilon I_{+}}\left[D\left(X_{i}\right) \cap\left(X_{i}^{-1}(0,+\infty)\right)\right] \cup_{i \epsilon I_{-}}\left[D\left(X_{i}\right) \cap\left(X_{i}^{-1}(-\infty, 0)\right)\right] \cup D\left(\nabla_{p}\right)
$$

Here $x \in D\left(X_{i}\right)$, means $X^{\prime}\left(x_{i}\right)=0$ and $x \in D\left(\nabla_{p}\right)$ means $\operatorname{det}\left(\frac{\partial^{2} p}{\partial x_{i} x_{j}}\right)=0$.
Proof. With the notation of Lemma 4.3 and by (4.9) and (4.10), for every $x \in C_{\epsilon}$,

$$
\begin{gather*}
\frac{\partial^{2} u_{\epsilon}}{\partial x_{i}^{2}}(x)=X^{\prime}\left(x_{i}\right) u_{\epsilon}, \quad i \in I \tag{4.11}\\
\frac{\partial^{2} u_{\epsilon}}{\partial x_{i} \partial x_{j}}(x)=0, \quad i, j \in I, i \neq j \tag{4.12}\\
\frac{\partial^{2} u_{\epsilon}}{\partial x_{i} \partial x_{j}}(x)=\frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}(x) u_{\epsilon}, \quad i, j \in I^{\prime} \tag{4.13}
\end{gather*}
$$

where $I^{\prime}=\{1,2, \ldots, n\}-I$. So

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} u_{\epsilon}}{\partial x_{i} \partial x_{j}}(x)\right)=\left(\prod_{i \epsilon I} X_{i}^{\prime}\left(x_{i}\right)\right)\left(\operatorname{det}\left(\frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}(x)\right)_{j, i \epsilon I^{\prime}}\right)\left(u_{\epsilon}(x)\right)^{n} \tag{4.14}
\end{equation*}
$$

If x is a degenerated critical point of u_{ϵ}, by Lemma 4.3, we get $x \in D_{1}(X)$.
Theorem 4.5. Let $X=\nabla f+\lambda$ be a vector field without coupling and suppose

$$
I_{+}=\left\{i: \lambda_{i}>0\right\}, \quad I_{-}=\left\{i: \lambda_{i}<0\right\}, \quad I=I_{+} \cup I_{-}, \quad k=\operatorname{card}(I)
$$

Let also suppose:
(i) For every $i \in I_{+}$the set $D_{1}\left(X_{i}\right)=D\left(X_{i}\right) \cap X_{i}^{-1}(0,+\infty)$ is finite and for $x_{i} \in D_{1}\left(X_{i}\right)$ there exits $z_{i} \in(0,1)$ such that $f\left(x_{i}\right)-f\left(x_{i}+z_{i}\right)-\lambda_{i} z_{i}>0$.
(ii) For $i \in I_{-}$the set $D_{1}\left(X_{i}\right)=D\left(X_{i}\right) \cap X_{i}^{-1}(-\infty, 0)$ is finite and for every $z_{i} \in(0,1)$ we have $f\left(x_{i}\right)-f\left(x_{i}+z_{i}\right)-\lambda_{i} z_{i} \leq 0$.
(iii) Considering p as a function in T_{n-k} do not has critical points which are degenerated.

Then there exists $\epsilon_{0}>0$ such that u_{ϵ} does not have degenerated critical points for $0<\epsilon<\epsilon_{0}$.
Proof. Suppose there exists a sequence of values ϵ_{n} with $\epsilon_{n}>0$ and $\lim _{n \rightarrow \infty} \epsilon_{n}=0$ and a sequence of point x_{n} in such way that x_{n} is a critical degenerated point of $u_{\epsilon_{n}}$. Then by the proceeding Lemma and under conditions (i), (ii) and (iii) we can find a sequence of $\left(\epsilon_{n_{k}}\right)$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$ with $x_{i} \in D_{1}\left(X_{i)}\right.$ for some index $i \in I$. Clearly $\left(x_{n_{k}}\right)_{i}=x_{i}$ for $k>k_{0}$ because $D_{1}\left(X_{i}\right)$ is finite set. Then for that index i, it follows:

$$
\begin{equation*}
X_{i}\left(x_{i}\right) u_{\epsilon_{n_{k}}}^{i}\left(x_{i}\right)=\epsilon_{n_{k}}\left(-\exp \left(\frac{\lambda_{i}}{\epsilon_{n_{k}}}\right)+1\right) \tag{4.15}
\end{equation*}
$$

then for (i) or (ii) we have a contradiction when $k \rightarrow \infty$.
Example. Consider the vector field

$$
X(x)= \begin{cases}\alpha \exp \left(-\frac{1}{\sin (2 \pi x)}\right) & 0 \leq x \leq 1 / 2 \\ -\beta \exp \left(-\frac{1}{\sin (2 \pi x)}\right) & 1 / 2 \leq x \leq 1\end{cases}
$$

It is a C^{∞} vector field on T_{1}. We put

$$
\begin{aligned}
& H= \int_{0}^{1 / 2} \exp \left(-\frac{1}{\operatorname{sen} 2 \pi x}\right), \\
& X=\nabla f+\lambda \\
& h(x, z)= f\left(x_{i}\right)-f(x+z)-\lambda z \\
&= \int_{0}^{x} X(t) d t-\int_{0}^{x+z} X(t) d t
\end{aligned}
$$

Then we have

$$
h(1 / 4,3 / 4)=\left(\beta-\frac{\alpha}{2}\right) H, \quad \lambda=(\alpha-\beta) H
$$

Then if $\alpha>\beta>\frac{\alpha}{2}, \lambda=(\alpha-\beta)>0, D_{1}(X)=\{1 / 4\}$ and by theorem 4.5, we have $\epsilon_{0}>0$ such that u_{ϵ} does not have degenerated critical points. In this case, v_{ϵ} is a Morse function for $\epsilon<\epsilon_{0}$ and X is Zeeman Stable vector field [3].

References

[1] J. Guíñez, R. Quintero, A. D. Rueda; Calculating steady state for a Fokker-Planck equation. Act. Math. Hungar. 91 (2001), No. 4, 311-323.
[2] J. Guíñez and A. D. Rueda; Steady state for a Fokker-Planck equation on S_{n}. Act. Math. Hungar. Vol. 94 (2002), No. 3, 211-221.
[3] E. C. Zeeman; Stability of dinamical systems, Nonlinearity, Vol. 1 (1988), No. 1, 115-155.
Centro de Investigación de Matemática Aplicada (C.I.M.A.), Facultad de Ingeniería, Universidad del Zulia, Apartado 10482, Maracaibo, Venezuela

E-mail address, J. Guíñez: jguinez@luz.edu.ve
E-mail address, R. Quintero: rquintero@luz.edu.ve
E-mail address, A. D. Rueda: ad-rueda@cantv.net

[^0]: 2000 Mathematics Subject Classification. 58J60, 37C20.
 Key words and phrases. Almost gradient vector fields.
 © 2005 Texas State University - San Marcos.
 Supported by CONDES University of Zulia.

