2003 Colloquium on Differential Equations and Applications, Maracaibo, Venezuela. *Electronic Journal of Differential Equations*, Conference 13, 2005, pp. 29-34. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

CRITICAL POINTS OF THE STEADY STATE OF A FOKKER-PLANCK EQUATION

JORGE GUÍÑEZ, ROBERT QUINTERO, ANGEL D. RUEDA

ABSTRACT. In this paper we consider a set of vector fields over the torus for which we can associate a positive function v_{ϵ} which define for some of them in a solution of the Fokker-Planck equation with ϵ diffusion:

$$\epsilon \Delta v_{\epsilon} - \operatorname{div}(v_{\epsilon} X) = 0$$

Within this class of vector fields we prove that X is a gradient vector field if and only if at least one of the critical points of v_{ϵ} is a stationary point of X, for an $\epsilon > 0$. In particular we show a vector field which is stable in the sense of Zeeman but structurally unstable in the Andronov-Pontriaguin sense. A generalization of some results to other kind of compact manifolds is made.

1. Vector fields in covering spaces

Let $\pi : \widetilde{M} \to M$ be a covering space of a Riemannian and oriented manifold M. In \widetilde{M} there exists one and only one Riemannian structure such that

$$d\pi_y: T_y(M) \to T_{\pi(y)}(M)$$

is an isometry for all $y \in \widetilde{M}$. Then it is able to associate to every C^r vector field X in M, another C^r vector field \widetilde{X} in \widetilde{M} in the following way:

$$X(y) = (d(\pi)(y))^{-1}(X(\pi(y))).$$

It is easy to verify the following theorem:

Theorem 1.1.

$$(\widetilde{X} + Y) = \widetilde{X} + \widetilde{Y}m \tag{1.1}$$

$$\nabla f = \nabla (\pi \circ f) \tag{1.2}$$

$$\operatorname{div}(X(y) = \operatorname{div}(X)(\pi(y)) \tag{1.3}$$

Definition A vector field X is called almost gradient respect to the projection π , if and only if \widetilde{X} is a gradient in M. This set will be denoted by $V_{ag}(\pi)$. Particular we can write

$$\operatorname{grad}(M) = V_{ag}(1_M)$$

²⁰⁰⁰ Mathematics Subject Classification. 58J60, 37C20.

Key words and phrases. Almost gradient vector fields.

 $[\]bigodot 2005$ Texas State University - San Marcos.

Supported by CONDES University of Zulia.

There are non trivial projections for which is true the preceding statement, so we have the following theorem.

Theorem 1.2. If $\pi : \widetilde{M} \to M$ is a finite covering and M is compact, then V_{ag} is the set of gradient vector fields in M.

Proof. Let X be a vector field in M and let

$$X = \nabla f + W$$

be its Hodge's decomposition. If \widetilde{X} is gradient, then there exists a C^{∞} function g such that:

$$\nabla g = X = \nabla (f \circ \pi) + W.$$

Then by Theorem 1.1 it follows that \widetilde{W} is a gradient vector field in \widetilde{M} and we can write $\widetilde{W} = \nabla h$. Finally from Theorem 1.1 we get, $\operatorname{div}(\widetilde{W}) = \operatorname{div}(W) \circ \pi = 0$. Thus $\nabla h = 0$ and by compactness of \widetilde{M} it follows h to be a constant. So W = 0 and W = 0.

2. Vector Fields in T_n

Let $\pi : \mathbb{R}^n \to T_n = \mathbb{R}^n / \mathbb{Z}^n$ be the universal covering space of the torus T_n . So there exists a Riemannian structure in T_n such that $\widetilde{T}_n = \mathbb{R}^n$, where \mathbb{R}^n is considered with the usual Riemannian structure. It is easy to realize that $V_{ag}(\pi)$ is different from $\operatorname{grad}(M)$. More precisely we have the following statement.

Theorem 2.1. $X \in V_{ag}(\pi)$ if and only if X is in the form $X = \nabla f + \lambda$, where $\lambda \in \mathbb{R}^n$.

Proof. Let $X = \nabla f + W$ be the Hodge's decomposition of X. Then $\widetilde{X} \in V_{ag}(\pi)$ implies

$$\widetilde{X} = \nabla g,$$

but

$$\widetilde{X} = \widetilde{\nabla f} + \widetilde{W} = \nabla (f \circ \pi) + \widetilde{W}$$

and $\widetilde{W} = \nabla h$ with $h = g - f \circ \pi$. By the periodicity of \widetilde{W} it follows that $\|\widetilde{W}\| \leq K$. Then

$$|h(x)| \le K ||x|| \quad \forall x \in \mathbb{R}^n.$$
(2.1)

Because W has divergence zero so it does \widetilde{W} , and h is an harmonic function in whole \mathbb{R}^n . From the estimate (4) h is a linear function; i.e.,

$$h(x) = a + \lambda \cdot x \tag{2.2}$$

with $\lambda \in \mathbb{R}^n$ so $\nabla h = \widetilde{W} = \lambda$, consequently $W = \lambda$.

3. The function v_{ϵ}

For the rest of this article, we consider X in T_n to be of the form $X = \nabla f + \lambda$. Let us consider

$$v_{\epsilon}(x) = \int_{T_n} \exp\left(\frac{h(x,z)}{\epsilon}\right) dz$$
(3.1)

where

$$g(x) = f(x) + \lambda \cdot x, \qquad (3.2)$$

$$h(x,z) = g(x) - g(x+z)$$
(3.3)

30

EJDE/CONF/13

Lemma 3.1. X is a gradient if $\lambda = 0$ and we have

$$v_{\epsilon} = L(\epsilon) \exp(f/\epsilon)$$

Proof. If $\lambda = 0$, we have

$$v_{\epsilon} = \exp(\frac{f}{\epsilon}) \int_{T_n} \exp(\frac{-f(x+z)}{\epsilon}) dz = \exp(\frac{f}{\epsilon}) \int_{T_n} \exp(\frac{-f(z)}{\epsilon}) dz \,.$$

Definition. X will be called without coupling, if

$$((i \neq j) \text{ and } (\frac{\partial X_i}{\partial x_j} \neq 0)) \Rightarrow \lambda_i = 0.$$

Theorem 3.2. Let X be a vector field without coupling. Then v_{ϵ} is a solution of the Fokker-Planck equation

$$\epsilon \Delta v - \operatorname{div}(vX) = 0. \tag{3.4}$$

Proof. Let I be the set of indices for which $\lambda_i \neq 0$. Then the *i*-component of the vector field X is

$$X_i = f_i'(x_i) + \lambda_i$$

with f_i a function in the variable x_i . Therefore, $X = \nabla f + \lambda$ with

$$f = \sum (f_i(x_i)) + p(x)$$

where p(x) is a periodic function and

$$\frac{\partial}{\partial x_i}(p(x)) = 0, \quad i \in I.$$

Then

$$h(x,z) = \sum_{i \in I} h_i(x_i, z_i) + p(x) - p(x+z).$$

Because X is without coupling, applying Lemma 3.1 to ∇p ,

$$v_{\epsilon} = \int_{T_n} \exp\left(\frac{h(x,z)}{\epsilon}\right) dz = K\left(\prod_{i \in I} v_{\epsilon}^i(x_i)\right) \exp\left(\frac{p(x)}{\epsilon}\right),\tag{3.5}$$

where

$$v_{\epsilon}^{i}(x_{i}) = \int_{0}^{1} \exp\left(\frac{h_{i}(x_{i}, z_{i})}{\epsilon}\right) dz_{i}$$

is associated with the vector field $\nabla f_i + \lambda_i$. If $i \in I$ it follows that

$$\epsilon(\nabla v_{\epsilon})_{i} = (X_{i}(x_{i})v_{\epsilon}^{i} - \epsilon R_{i}) \prod_{k \in (I - \{i\})} v_{\epsilon}^{k} \exp\left(\frac{p(x)}{\epsilon}\right)$$

where

$$R_{i} = \int_{0}^{1} \frac{X_{i}(x_{i}+z_{i})}{\epsilon} \exp\left(\frac{f_{i}(x_{i}) - f(x_{i}+z_{i}) - \lambda_{i}z_{i}}{\epsilon}\right) dz_{i} - \exp\left(-\frac{-\lambda_{i}}{\epsilon}\right) + 1.$$

For $i \notin I$,

$$(\epsilon \nabla v_{\epsilon})_i = (\nabla p(x))_i v_{\epsilon} = X_i v_{\epsilon}$$

thus v_{ϵ} is solution of (3.4).

4. Dynamics and Steady State

We begin this section with some definitions:

Definition Let X be a vector field in T_n and let $u_{\epsilon} = \sum_{0}^{\infty} \frac{F_i}{\epsilon^i}$ be a series with a positive ratio of convergence. Suppose that u, is a solution of (3.4). We will denote:

$$C_{\epsilon} = \{ x \in M : \nabla u_{\epsilon} = 0 \}$$

$$(4.1)$$

$$E(X) = \{x \in M : X(x) = 0\}$$
(4.2)

$$D(X) = \{x \in M : \det\left(\frac{\partial X_i}{\partial x_j}\right) = 0\}$$

$$(4.3)$$

In [1] and [2], we have such series on T_n and S_n .

Theorem 4.1. Consider $X \in V_{ag}(T_n)$ such that

- (i) There exists a convergent series $u_{\epsilon} = \sum_{i=0}^{\infty} \frac{F_i}{\epsilon^i}$ solving (3.4) for $\frac{1}{\epsilon} \leq r, r > 0$ (ii) There exists an infinity set $S \subset [r_1, r], r1 > 0$ and a point x in T_n such that

$$x \in C_{\epsilon} \cap E(X) \quad \forall \frac{1}{\epsilon} \in S$$
 (4.4)

Then X is a gradient vector field.

Proof. Because $X \in V_{ag}(T_n)$, by Theorem 2.1 we can write

$$X = \nabla f + \lambda \,, \tag{4.5}$$

$$\nabla u_{\epsilon} = 0 = \sum_{i=0}^{\infty} \nabla F_i(x) \left(\frac{1}{\epsilon}\right)^i \quad \forall \epsilon \in S.$$
(4.6)

Then $\nabla F_i(x) = 0$, for every *i*. In particular $\nabla F_1(x) = \nabla f(x) = 0$ and by (15) $\lambda = 0.$

Theorem 4.2. Let X be a vector field without coupling. Then the following statements are equivalent.

- (i) There exists ϵ such that $C_{\epsilon} \cap E(X) \neq \emptyset$
- (ii) For all ϵ , $C_{\epsilon} \cap E(X) \neq \emptyset$

(iii) X is gradient.

Proof. For $x \in C_{\epsilon} \cap E(X)$ and $i \in I$ we have a contradiction:

$$0 = (v_{\epsilon}^{i})'(x) = e^{\frac{\lambda_{i}}{\epsilon}} - 1 + \frac{\lambda_{i}}{\epsilon} v_{\epsilon}(x).$$

wich completes the proof.

Remark. The main idea here is that for non-gradient cases critical points of a steady state are different from stationary points of the vector field. This fact enable us to find a vector field X with an associated u_{ϵ} which has not generated critical points, even when X has degenerated stationary points.

Lemma 4.3. Let's suppose that $X = \nabla f + \lambda$ is without coupling and let I_+ be the set of index such that $\lambda_i > 0$ and let I_- be the set of index such that $\lambda_i < 0$. Then

$$C_{\epsilon} \subset \cap_{i \in I_+} X_i^{-1}((0, +\infty)) \cap_{i \in I_-} X_i^{-1}((-\infty, 0))$$

EJDE/CONF/13

Proof. For a such f we can write

$$f = \sum (f_i(x_i)) + p(x)$$

where p(x) is not depending of x_i for $i \in I = I_- \cup I_+$ and

$$v_{\epsilon} = K\left(\prod_{i \in I} v_{\epsilon}^{i}(x_{i})\right) \exp\left(\frac{p(x)}{\epsilon}\right)$$
(4.7)

where

$$v_{\epsilon}^{i} = \int_{0}^{1} \exp\left(\frac{f_{i}(x_{i}) - f(x_{i} + z_{i}) - \lambda_{i} z_{i}}{\epsilon}\right) dz_{i}$$

$$(4.8)$$

So for every $i \in I$, we have

$$\frac{\partial v_{\epsilon}}{\partial x_{i}} = \left(\frac{X_{i}(x_{i})v_{\epsilon}^{i}}{\epsilon} - R_{i}\right) \prod_{k \in (I-\{i\})} v_{\epsilon}^{k} \exp\left(\frac{p(x)}{\epsilon}\right), \tag{4.9}$$

where $R_i = -\exp(-\lambda_i/\epsilon) + 1$. So if $x \in C_{\epsilon}$,

$$\frac{X_i(x_i)}{\epsilon}v_{\epsilon}^i = -\exp\left(-\frac{\lambda_i}{\epsilon}\right) + 1, \quad i \in I$$
(4.10)

Then for $i \in I_+$ we have $X_i(x_i) > 0$ and for $i \in I_-$ we have $X_i(x_i) < 0$.

Lemma 4.4. Under the hypothesis of Lemma 4.3, the set of degenerated critical points of u_{ϵ} is a subset of

$$D_1(X) = \bigcup_{i \in I_+} [D(X_i) \cap (X_i^{-1}(0, +\infty))] \cup_{i \in I_-} [D(X_i) \cap (X_i^{-1}(-\infty, 0))] \cup D(\nabla_p)$$

Here $x \in D(X_i)$, means $X'(x_i) = 0$ and $x \in D(\nabla_p)$ means $\det(\frac{\partial^2 p}{\partial x_i x_j}) = 0.$

Proof. With the notation of Lemma 4.3 and by (4.9) and (4.10), for every $x \in C_{\epsilon}$,

$$\frac{\partial^2 u_{\epsilon}}{\partial x_i^2}(x) = X'(x_i)u_{\epsilon}, \quad i \in I$$
(4.11)

$$\frac{\partial^2 u_{\epsilon}}{\partial x_i \partial x_j}(x) = 0, \quad i, j \in I, i \neq j$$
(4.12)

$$\frac{\partial^2 u_{\epsilon}}{\partial x_i \partial x_j}(x) = \frac{\partial^2 p}{\partial x_i \partial x_j}(x) u_{\epsilon}, \quad i, j \in I'$$
(4.13)

where $I' = \{1, 2, ..., n\} - I$. So

$$\det\left(\frac{\partial^2 u_{\epsilon}}{\partial x_i \partial x_j}(x)\right) = \left(\prod_{i \in I} X'_i(x_i)\right) \left(\det\left(\frac{\partial^2 p}{\partial x_i \partial x_j}(x)\right)_{j, i \in I'}\right) (u_{\epsilon}(x))^n \tag{4.14}$$

If x is a degenerated critical point of u_{ϵ} , by Lemma 4.3, we get $x \in D_1(X)$. \Box

Theorem 4.5. Let $X = \nabla f + \lambda$ be a vector field without coupling and suppose

$$I_{+} = \{i : \lambda_{i} > 0\}, \quad I_{-} = \{i : \lambda_{i} < 0\}, \quad I = I_{+} \cup I_{-}, \quad k = \operatorname{card}(I)$$

Let also suppose:

- (i) For every $i \in I_+$ the set $D_1(X_i) = D(X_i) \cap X_i^{-1}(0, +\infty)$ is finite and for $x_i \in D_1(X_i)$ there exits $z_i \in (0, 1)$ such that $f(x_i) f(x_i + z_i) \lambda_i z_i > 0$.
- (ii) For $i \in I_-$ the set $D_1(X_i) = D(X_i) \cap X_i^{-1}(-\infty, 0)$ is finite and for every $z_i \in (0,1)$ we have $f(x_i) f(x_i + z_i) \lambda_i z_i \leq 0$.
- (iii) Considering p as a function in T_{n-k} do not has critical points which are degenerated.

33

Then there exists $\epsilon_0 > 0$ such that u_{ϵ} does not have degenerated critical points for $0 < \epsilon < \epsilon_0$.

Proof. Suppose there exists a sequence of values ϵ_n with $\epsilon_n > 0$ and $\lim_{n\to\infty} \epsilon_n = 0$ and a sequence of point x_n in such way that x_n is a critical degenerated point of u_{ϵ_n} . Then by the proceeding Lemma and under conditions (i), (ii) and (iii) we can find a sequence of (ϵ_{n_k}) such that $\lim_{k\to\infty} x_{n_k} = x$ with $x_i \in D_1(X_i)$ for some index $i \in I$. Clearly $(x_{n_k})_i = x_i$ for $k > k_0$ because $D_1(X_i)$ is finite set. Then for that index i, it follows:

$$X_i(x_i)u_{\epsilon_{n_k}}^i(x_i) = \epsilon_{n_k} \left(-\exp\left(\frac{\lambda_i}{\epsilon_{n_k}}\right) + 1\right)$$
(4.15)

then for (i) or (ii) we have a contradiction when $k \to \infty$.

$$X(x) = \begin{cases} \alpha \exp\left(-\frac{1}{\sin(2\pi x)}\right) & 0 \le x \le 1/2, \\ -\beta \exp\left(-\frac{1}{\sin(2\pi x)}\right) & 1/2 \le x \le 1 \end{cases}$$

It is a C^{∞} vector field on T_1 . We put

$$H = \int_0^{1/2} \exp\left(-\frac{1}{sen2\pi x}\right),$$
$$X = \nabla f + \lambda,$$
$$h(x, z) = f(x_i) - f(x+z) - \lambda z$$
$$= \int_0^x X(t)dt - \int_0^{x+z} X(t)dt$$

Then we have

$$h(1/4, 3/4) = (\beta - \frac{\alpha}{2})H, \quad \lambda = (\alpha - \beta)H$$

Then if $\alpha > \beta > \frac{\alpha}{2}$, $\lambda = (\alpha - \beta) > 0$, $D_1(X) = \{1/4\}$ and by theorem 4.5, we have $\epsilon_0 > 0$ such that u_{ϵ} does not have degenerated critical points. In this case, v_{ϵ} is a Morse function for $\epsilon < \epsilon_0$ and X is Zeeman Stable vector field [3].

References

- J. Guíñez, R. Quintero, A. D. Rueda; Calculating steady state for a Fokker-Planck equation. Act. Math. Hungar. 91 (2001), No. 4, 311-323.
- [2] J. Guíñez and A. D. Rueda; Steady state for a Fokker-Planck equation on S_n . Act. Math. Hungar. Vol. 94 (2002), No. 3, 211-221.
- [3] E. C. Zeeman; Stability of dinamical systems, Nonlinearity, Vol. 1 (1988), No. 1, 115–155.

Centro de Investigación de Matemática Aplicada (C.I.M.A.), Facultad de Ingeniería, Universidad del Zulia, Apartado 10482, Maracaibo, Venezuela

E-mail address, J. Guíñez: jguinez@luz.edu.ve

E-mail address, R. Quintero: rquintero@luz.edu.ve

E-mail address, A. D. Rueda: ad-rueda@cantv.net

$$\square$$