Jan Brezina, Elisabetta Chiodaroli, Ondrej Kreml
Abstract:
In this note we partially extend the recent nonuniqueness results on
admissible weak solutions to the Riemann problem for the 2D compressible
isentropic Euler equations. We prove non-uniqueness of admissible weak
solutions that start from the Riemann initial data allowing a contact
discontinuity to emerge.
Submitted July 10, 2017. Published April 19, 2018.
Math Subject Classifications: 35L65, 35L45, 35Q35, 76N10.
Key Words: Isentropic Euler equations; non-uniqueness; Riemann problem;
admissible weak solutions; contact discontinuity.
Show me the PDF file (235 KB), TEX file for this article.
Jan Brezina Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo, 152-8550, Japan email: brezina@math.titech.ac.jp | |
Elisabetta Chiodaroli Dipartimento di Matematica Universita di Pisa Via F. Buonarroti 1/c, 56127 Pisa, Italy email: elisabetta.chiodaroli@unipi.it | |
Ondrej Kreml Institute of Mathematics Czech Academy of Sciences Zitna 25, Prague 1, 115 67, Czech Republic email: kreml@math.cas.cz |
Return to the EJDE web page