Electron. J. Differential Equations, Vol. 2018 (2018), No. 94, pp. 1-11.

Contact discontinuities in multi-dimensional isentropic Euler equations

Jan Brezina, Elisabetta Chiodaroli, Ondrej Kreml

Abstract:
In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.

Submitted July 10, 2017. Published April 19, 2018.
Math Subject Classifications: 35L65, 35L45, 35Q35, 76N10.
Key Words: Isentropic Euler equations; non-uniqueness; Riemann problem; admissible weak solutions; contact discontinuity.

Show me the PDF file (235 KB), TEX file for this article.

Jan Brezina
Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku
Tokyo, 152-8550, Japan
email: brezina@math.titech.ac.jp
Elisabetta Chiodaroli
Dipartimento di Matematica
Universita di Pisa
Via F. Buonarroti 1/c, 56127 Pisa, Italy
email: elisabetta.chiodaroli@unipi.it
Ondrej Kreml
Institute of Mathematics
Czech Academy of Sciences
Zitna 25, Prague 1, 115 67, Czech Republic
email: kreml@math.cas.cz

Return to the EJDE web page