Electron. J. Differential Equations, Vol. 2017 (2017), No. 105, pp. 1-11.

Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order

Mohamed Jleli, Bessem Samet

Abstract:
We study the nonexistence of nontrivial solutions for the nonlinear elliptic system
$$\displaylines{
 G_{\alpha,\beta,\theta}(u^{p},u^{q}) = v^{r}\cr
 G_{\lambda,\mu,\theta}(v^{s},v^{t}) = u^{m}\cr
 u,v\geq 0,
 }$$
where $0<\alpha,\beta,\lambda,\mu\leq 2$, $\theta\geq 0$, $m>q\geq p\geq 1$, $r>t\geq s\geq 1$, and $G_{\alpha,\beta,\theta}$ is the fractional operator of mixed orders $\alpha,\beta$, defined by
$$
 G_{\alpha,\beta,\theta}(u,v)=(-\Delta_x)^{\alpha/2}u
 +|x|^{2\theta} (-\Delta_y)^{\beta/2}v, \quad \text{in }\mathbb{R}^{N_1}
 \times \mathbb{R}^{N_2}.
 $$
Here, $(-\Delta_x)^{\alpha/2}$, $0<\alpha<2$, is the fractional Laplacian operator of order $\alpha/2$ with respect to the variable $x\in \mathbb{R}^{N_1}$, and $(-\Delta_y)^{\beta/2}$, $0<\beta<2$, is the fractional Laplacian perator of order $\beta/2$ with respect to the variable $y\in \mathbb{R}^{N_2}$. Via a weak formulation approach, sufficient conditions are provided in terms of space dimension and system parameters.

Submitted February 2, 2017. Published April 18, 2017.
Math Subject Classifications: 35B53, 35R11.
Key Words: Liouville-type theorem; nonexistence; fractional Grushin operator.

Show me the PDF file (248 KB), TEX file for this article.

Mohamed Jleli
Department of Mathematics
College of Science, King Saud University
P.O. Box 2455, Riyadh 11451, Saudi Arabia
email: jleli@ksu.edu.sa
Bessem Samet
Department of Mathematics
College of Science, King Saud University
P.O. Box 2455, Riyadh 11451, Saudi Arabia
email: bessem.samet@gmail.com

Return to the EJDE web page