Electron. J. Diff. Equ., Vol. 2016 (2016), No. 49, pp. 1-14.

Exact asymptotic behavior of the positive solutions for some singular Dirichlet problems on the half line

Habib Maagli, Ramzi Alsaedi, Noureddine Zeddini

Abstract:
In this article, we give an exact behavior at infinity of the unique solution to the following singular boundary value problem
$$\displaylines{
 -\frac{1}{A}(Au')'=q(t)g(u), \quad t \in (0,\infty), \cr
 u>0, \quad \lim_{t\to 0}A(t)u'(t)=0, \quad \lim_{t\to \infty}u(t)=0.
 }$$
Here A is a nonnegative continuous function on $[0,\infty)$, positive and differentiable on $(0,\infty)$ such that
$$
 \lim_{t\to \infty}\frac{tA'(t)}{A(t)}=\alpha>1, \quad
 g \in C^1((0,\infty),(0,\infty))
 $$
is non-increasing on $(0,\infty)$ with $\lim_{t\to 0}g'(t)\int_0^t\frac{ds}{g(s)}=-C_g\leq 0$ and the function q is a nonnegative continuous, satisfying
$$
 0<a_1=\liminf_{t\to \infty}\frac{q(t)}{h(t)}
 \leq \limsup_{t\to \infty}\frac{q(t)}{h(t)}=a_2<\infty,
 $$
where $h(t)=c t^{-\lambda}\exp (\int_{1}^{t }\frac{y(s)}{s}ds)$, $\lambda \geq 2$, $c>0$ and y is continuous on $[ 1,\infty)$ such that $\lim_{t\to \infty}y(t)=0$.

Submitted December 8, 2015. Published February 17, 2016.
Math Subject Classifications: 34B16, 34B18, 34D05.
Key Words: Singular nonlinear boundary value problems; positive solution; exact asymptotic behavior; Karamata regular variation theory.

Show me the PDF file (277 KB), TEX file, and other files for this article.

Habib Mâagli
Department of Mathematics, College of Sciences and Arts
King Abdulaziz University, Rabigh Campus
P.O. Box 344, Rabigh 21911, Saudi Arabia
email: habib.maagli@fst.rnu.tn
Ramzi Alsaedi
Department of Mathematics
Faculty of Sciences, King Abdulaziz University
P.O. Box 80203, Jeddah 21589, Saudi Arabia
email: ramzialsaedi@yahoo.co.uk
Noureddine Zeddini
Department of Mathematics, College of Sciences and Arts
King Abdulaziz University, Rabigh Campus
P.O. Box 344, Rabigh 21911, Saudi Arabia
email: noureddine.zeddini@ipein.rnu.tn

Return to the EJDE web page