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EXACT ASYMPTOTIC BEHAVIOR OF THE POSITIVE
SOLUTIONS FOR SOME SINGULAR DIRICHLET PROBLEMS

ON THE HALF LINE

HABIB MÂAGLI, RAMZI ALSAEDI, NOUREDDINE ZEDDINI

Abstract. In this article, we give an exact behavior at infinity of the unique
solution to the following singular boundary value problem

−
1

A
(Au′)′ = q(t)g(u), t ∈ (0,∞),

u > 0, lim
t→0

A(t)u′(t) = 0, lim
t→∞

u(t) = 0.

Here A is a nonnegative continuous function on [0,∞), positive and differen-

tiable on (0,∞) such that

lim
t→∞

tA′(t)

A(t)
= α > 1, g ∈ C1((0,∞), (0,∞))

is non-increasing on (0,∞) with limt→0 g′(t)
R t
0

ds
g(s)

= −Cg ≤ 0 and the

function q is a nonnegative continuous, satisfying

0 < a1 = lim inf
t→∞

q(t)

h(t)
≤ lim sup

t→∞

q(t)

h(t)
= a2 <∞,

where h(t) = ct−λ exp(
R t
1
y(s)
s
ds), λ ≥ 2, c > 0 and y is continuous on [1,∞)

such that limt→∞ y(t) = 0.

1. Introduction

In this article, we give the exact asymptotic behavior at infinity of the unique
positive solution to the singular problem

1
A

(Au′)′ = −q(t)g(u) , t ∈ (0,∞),

u > 0 , in (0,∞)

lim
t→0+

A(t)u′(t) = 0, lim
t→∞

u(t) = 0,

(1.1)

where the functions A, q and g satisfy the following assumptions.
(H1) A is a continuous function on [0,∞), positive and differentiable on (0,∞)

such that

lim
t→∞

t A′(t)
A(t)

= α > 1.
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(H2) q is a nonnegative continuous function on (0,∞) satisfying

0 < a1 = lim inf
t→∞

tλq(t)
L(t)

≤ lim sup
t→∞

tλ q(t)
L(t)

= a2 <∞,

where λ ≥ 2 and L ∈ K (see (1.3) below), such that
∫∞
1
s1−λ L(s) ds <∞.

(H3) The function g : (0,∞) → (0,∞) is nonincreasing, continuously differen-
tiable such that

lim
t→0+

g′(t)
∫ t

0

1
g(s)

ds = −Cg with Cg ≥ 0.

(H4) α+ 1− λ+ (λ− 2)Cg > 0.
Using that g is non-increasing, for t > 0, we obtain

0 < g(t)
∫ t

0

1
g(s)

ds ≤ t.

This implies limt→0 g(t)
∫ t
0

1
g(s) ds = 0. Now, since for t > 0,∫ t

0

g′(s)
∫ s

0

1
g(r)

dr ds = g(t)
∫ t

0

1
g(s)

ds− t,

we obtain

lim
t→0

g(t)
t

∫ t

0

1
g(s)

ds = 1− Cg. (1.2)

This implies that 0 ≤ Cg ≤ 1. The functions t−1 log(1 + t), log(log(e + 1
t )),

t−ν log(1 + 1
t ), exp{(log(1 + 1

t ))
ν}, ν ∈ (0, 1) satisfy the assumption (H3), as well

as the function

t2e1/t , if 0 < t <
1
2
,

1
4
e2 , if t ≥ 1

2
.

Singular nonlinear boundary value problems appear in a variety of applications
and often only positive solutions are important. When A(t) = 1, problems of type
(1.1) with various boundary conditions arise in the study of boundary layer equa-
tions for the class of pseudoplastic fluids and have been studied for both bounded
and unbounded intervals of R (see [6, 11, 16, 22, 23, 29]) and the references therein.
When A(t) = tn−1 (n ≥ 1), the operator u→ 1

A (Au′)′ appears as the radial part of
the laplace operator ∆ (see [10, 30]). Other results of existence and uniqueness of
positive solutions were obtained by Agarwal and O’Regan in [1] on the interval (0, 1)
and in the case where A is continuous on [0, 1], positive and differentiable on (0, 1)
and satisfying an integrability condition. In general the exact asymptotic behavior
of the unique positive solution of (1.1) is extremely complex when the coefficients
are in general continuous functions, even though upper and lower bounds for this
solution are often given (see [1, 4, 10, 15]). Recent research (see [2, 8, 16]) show
that these problems should be studied in the case of Karamata regularly varying
functions. This approach was initiated by Avakumovic [3] and followed by Maric
and Tomic (see [20, 21]). Our aim in this paper is to give a contribution to the
qualitative analysis of problem (1.1) by giving the exact asymptotic behavior at
infinity of the unique positive solution under the previous assumptions on A, q and
g. We note that the existence and uniqueness of such a solution are established by
Mâagli and Masmoudi in [17]. For related results, we refer to Barile and Salvatore
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[5], Cencelj, Repovš, and Virk [7], Ghergu and Rădulescu [13, 14, 15, 16], Rădulescu
and Repovš [24, 25], Repovš [26, 27].

To state our results, we denote by K the set of Karamata functions L defined on
[1,∞) by

L(t) := c exp
(∫ t

1

y(s)
s
ds
)
, (1.3)

where c > 0 and y ∈ C([1,∞)) such that limt→∞ y(t) = 0.

Remark 1.1. It is clear that a function L is in K if and only if L is a positive
function in C1([1,∞)) such that

lim
t→∞

t L′(t)
L(t)

= 0. (1.4)

Throughout this paper, we denote by ψg the unique solution of the equation∫ ψg(t)

0

ds

g(s)
= t , for t ∈ [0,∞), (1.5)

and we mention that
lim
t→0

tg′(ψg(t)) = −Cg. (1.6)

Theorem 1.2. Assume (H1)–(H4). Then problem (1.1) has a unique solution
u ∈ C2((0,∞)) ∩ C([0,∞)) satisfying

(i) If λ > 2,( ξ1
λ− 2

)1−Cg
≤ lim inf

t→∞

u(x)
ψg(t2−λ L(t))

≤ lim sup
t→∞

u(x)
ψg(t2−λ L(t))

≤
( ξ2
λ− 2

)1−Cg
,

where ξi = ai
α+1−λ+(λ−2)Cg

for i ∈ {1 2}.
(ii) If λ = 2,

ξ1
1−Cg ≤ lim inf

t→∞

u(t)

ψg(
∫∞
t

L(s)
s ds)

≤ lim sup
t→∞

u(t)

ψg(
∫∞
t

L(s)
s ds)

≤ ξ21−Cg

An immediate consequence of Theorem 1.2 is the following result.

Corollary 1.3. Let u be the unique solution of (1.1). Then, we have the following
exact asymptotic behavior:
(a) When Cg = 1, we have

(i) limt→∞
u(t)

ψg(t2−λ L(t))
= 1 if λ > 2;

(ii) limt→∞
u(t)

ψg(
R∞
t

L(s)
s ds)

= 1 if λ = 2.

(b) When Cg < 1 and a1 = a2 = a0, we have

(i) limt→∞
u(t)

ψg(t2−λ L(t))
= ( a0

(λ−2)(α+1−λ+(λ−2)Cg)
)1−Cg if λ > 2;

(ii) limt→∞
u(t)

ψg(
R∞
t

L(s)
s ds)

= ( a0
α−1 )1−Cg if λ = 2.

Remark 1.4. In the hypothesis (H3), we do not need the monotonicity of the
function g on (0,∞), but only the fact that g is non-increasing in a neighborhood
of zero.
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Example 1.5. Let g be the function

g(t) =

{
t2e1/t , if 0 < t < 1

2 ,
1
4e

2 , if t ≥ 1
2 .

and let q be a nonnegative function in (0,∞) such that

lim
t→∞

q(t)
h(t)

= b0 ∈ (0,∞),

where h(t) = t−λL(t), λ ≥ 2 and L ∈ K such that
∫∞
1
s1−λ L(s) ds <∞. Then, we

have Cg = 1 and ψg(ξ) = −1
log(ξ) for ξ ∈ (0, e−2). Let u be the unique solution of

(1.1), then we have the following exact behavior:

(i) limt→∞ u(t) log
(

1
t2−λ L(t)

)
= 1 if λ > 2;

(ii) limt→∞ u(t) log
(

1R∞
t

L(s)
s ds

)
= 1 if λ = 2.

To establish our second result, we consider the special case where g(t) = t−γ

with γ ≥ 0, and λ = α + 1 + γ(α − 1). Note that in this case Cg = γ
γ+1 and

(α + 1 − λ) + (λ − 2)Cg = 0. We assume that A and q satisfy the following
hypotheses:

(H5) A is a continuous function on (0,∞) such that A(t) = tαB(t) with α > 1
and tνB′(t)

B(t) is bounded for t large and ν ∈ (0, 1).
(H6) q is a nonnegative continuous function in (0,∞) and satisfies

0 < a1 = lim inf
t→∞

q(t)
tγ−1−α(γ+1)L(t)

≤ lim sup
t→∞

q(t)
tγ−1−α(γ+1)L(t)

= a2 <∞,

where L ∈ K with
∫∞
1

L(s)
s ds =∞.

Theorem 1.6. Assume (H5), (H6) are satisfied. Then the Dirichlet problem

− 1
A

(Au′)′ = q(t)u−γ , t ∈ (0,∞),

lim
t→0+

A(t)u′(t) = 0, lim
t→∞

u(t) = 0,
(1.7)

has a unique solution u ∈ C([0,∞)) ∩ C2((0,∞)), satisfying( (γ + 1)a1

α− 1

) 1
1+γ ≤ lim inf

t→∞

u(t)

t1−α
( ∫ t

1
L(s)
s ds

) 1
1+γ

≤ lim sup
t→∞

u(t)

t1−α
( ∫ t

1
L(s)
s ds

) 1
1+γ

≤ (
(γ + 1)a2

α− 1
)

1
1+γ ,

In particular if a1 = a2, then

lim
t→∞

u(t)

t1−α
( ∫ t

1
L(s)
s ds

) 1
1+γ

=
( (γ + 1)a1

α− 1

) 1
1+γ

.
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2. On the Karamata class

To make the paper self-contained, we begin this section by recapitulating some
properties of Karamata regular variation theory. The following result is due to
[19, 28].

Lemma 2.1. (i) Let L ∈ K and ε > 0, then

lim
t→∞

t−εL(t) = 0.

(ii) Let L1, L2 ∈ K and p ∈ R. Then L1 + L2 ∈ K, L1L2 ∈ K and Lp1 ∈ K .

Applying Karamata’s theorem (see [19, 28]), we get the following result.

Lemma 2.2. Let γ ∈ R, L be a function in K defined on [1,∞). We have
(i) If γ < −1, then

∫∞
1
sγL(s)ds converges. Moreover∫ ∞

t

sγL(s)ds ∼t→∞ −
t1+γL(t)
γ + 1

.

(ii) If γ > −1, then
∫∞
1
sγL(s)ds diverges. Moreover∫ t

1

sγL(s)ds ∼t→∞
t1+γL(t)
γ + 1

.

Lemma 2.3 ([8, 18]). Let L ∈ K be defined on [1,∞). Then

lim
t→∞

L(t)∫ t
1
L(s)
s ds

= 0. (2.1)

If further
∫∞
1

L(s)
s ds converges, then

lim
t→∞

L(t)∫∞
t

L(s)
s ds

= 0. (2.2)

Remark 2.4. Let L ∈ K, then using Remark 1.1 and (2.1), we deduce that

t→
∫ t

1

L(s)
s

ds ∈ K.

If further
∫∞
1

L(s)
s ds converges, then t→

∫∞
t

L(s)
s ds ∈ K.

Definition 2.5. A positive measurable function k is called normalized regularly
varying at infinity with index ρ ∈ R and we write k ∈ NRV Iρ if k(s) = sρL(s) for
s ∈ [1,∞) with L ∈ K.

Using the definition of the class K and the above Lemmas we obtain the following
lemma.

Lemma 2.6 ([2]). (i) If k ∈ NRV Iρ, then limt→∞
k(ξt)
k(t) = ξρ, uniformly for

ξ ∈ [c1, c2] ⊂ (0,∞).
(ii) A positive measurable function k belongs to the class NRV Iρ if and only if

limt→∞
tk′(t)
k(t) = ρ.

(iii) Let L ∈ K and assume that
∫∞
1
s1−λ L(s) ds < ∞. Then the function

θ(t) =
∫∞
t
s1−λ L(s) ds belongs to NRV I(2−λ).

(iv) The function ψg ◦ θ ∈ NRV I(2−λ)(1−Cg).
(v) Let m1, m2 be positive functions on (0,∞) such that limt→∞m1(t) =

limt→∞m2(t) = 0 and limt→∞
m1(t)
m2(t)

= 1. Then limt→∞
ψg(m1(t))
ψg(m2(t))

= 1.
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3. Proofs of Theorems 1.2 and 1.6

In the sequel, we denote by

v0(t) =
∫ ∞
t

1
A(s)

ds for t ∈ (0,∞).

Since the function A satisfies (H1), then using Definition 2.5 and assertion (ii) of
Lemma 2.6, we deduce that there exists L0 ∈ K such that A(t) = tα L0(t), for
t > 1. Hence, using Lemma 2.1, we deduce that 1/A is integrable near infinity. So
the function v0 is well defined, and by Lemma 2.2 we have

v0(t) =
∫ ∞
t

1
A(s)

ds ∼ t1−α

(α− 1)L0(t)
as t→∞. (3.1)

In the sequel, we denote also by LAu := 1
A (Au′)′ = u′′ + A′

A u
′ and we remark that

LAv0 = 0.

Proof of Theorem 1.2. Let ε ∈ (0, a1/2). Put

ξi =
ai

(α+ 1− λ) + (λ− 2)Cg
for i ∈ {1, 2},

τ1 = ξ1 − ε ξ1a1
and τ2 = ξ2 + ε ξ2a2

. Clearly, we have ξ1
2 < τ1 < τ2 < 3

2ξ2. Let
θ(t) =

∫∞
t
s1−λ L(s) ds and put

ωi(t) = ψg

(
τi

∫ ∞
t

s1−λ L(s) ds
)

= ψg(τi θ(t)), for t > 0.

By a simple calculus, for i ∈ {1, 2} we obtain

LAωi(t) + q(t)g(ωi(t))

= g(ωi(t))t−λ L(t))
[
τi(τit2−λL(t)g′(ωi(t)) + (λ− 2)Cg)

− τi
( t A′(t)
A(t)

− α+
t L′(t)
L(t)

)
− τi((α+ 1− λ+ (λ− 2)Cg) + ai

+
( q(t)
t−λ L(t)

− ai
)]
.

So, for the fixed ε > 0, there exists Mε > 1 such that for t > Mε and i ∈ {1, 2}, we
have

τi
∣∣ t A′(t)
A(t)

− α+
t L′(t)
L(t)

∣∣ ≤ 3
2
ξ2

(∣∣ t A′(t)
A(t)

− α
∣∣+
∣∣ t L′(t)
L(t)

∣∣) ≤ ε

4
,

a1 −
ε

2
≤ a(t)
t−µ L(t)

≤ a2 +
ε

2

|τi(τi t2−λ L(t)g′(ωi(t)) + (λ− 2)Cg)| ≤
3
2
ξ2|τi t2−λ L(t)g′(ωi(t)) + (λ− 2)Cg| ≤

ε

4
.

Indeed, the last inequality follows from (1.6) and the fact that from Lemmas 2.2
and 2.3, we have

lim
t→∞

t2−λ L(t)∫∞
t
s1−λ L(s) ds

= 2− λ,

for all λ ≥ 2. This implies that for each t > Mε, we have

LAω1(t)+ q(t)g(ω1(t)) ≥ g(ω1(t))t−λL(t)[−ε+a1− τ1((α+1−λ)+(λ−2)Cg)] = 0
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and

LAω2(t) + q(t)g(ω2(t)) ≤ g(ω2(t))t−λ L(t)[ε+ a2− τ2((α+ 1−λ) + (λ− 2)Cg)] = 0.

Let u ∈ C2((0,∞)) ∩ C([0,∞)) be the unique solution of (1.1) (see [17]). Then,
there exists B > 0 such that

ω1(Mε)−B v0(Mε) ≤ u(Mε) ≤ ω2(Mε) +B v0(Mε) . (3.2)

We claim that

ω1(t)−B v0(t) ≤ u(t) ≤ ω2(t) +B v0(t) for all t > Mε. (3.3)

Assume for instance that the right inequality of (3.3) is not true. Then the function
h(t) = u(t)− ω2(t)−B v0(t) for t > Mε is not negative. Consequently, there exists
t1 > Mε such that h(t1) = maxMε≤t<∞ h(t) > 0. Since h is continuous on [Mε,∞),
h(Mε) ≤ 0 and limt→∞ h(t) = 0, then h′(t1) = 0 and h(t) > 0 for t ∈ (t1− δ, t1 + δ)
for some δ > 0, sufficiently small. Namely u(t) > ω2(t)+B v0(t) for t ∈ (t1−δ, t1+δ).
Since g is non-increasing on (0,∞), then

1
A(t)

(A(t)h′(t))′ = −q(t)g(u(t))− 1
A(t)

(A(t)ω′2(t))′ ≥ q(t)(g(ω2(t))− g(u(t))) ≥ 0,

for t ∈ (t1 − δ, t1 + δ). Which implies h′(t) ≤ h′(t1) = 0 for t ∈ (t1 − δ, t1) and
h′(t) ≥ h′(t1) = 0 for t ∈ (t1, t1 + δ). This implies that h has a local minimum at
t1. Which contradicts the fact that h a global maximum at t1 on [Mε,∞). This
proves that

u(t) ≤ ω2(t) +B v0(t) for all t > Mε.

Similarly, we show that

ω1(t)−B v0(t) ≤ u(t) for all t > Mε.

This proves (3.3).
Now, since ψg ◦ θ ∈ NRV I(2−λ)(1−Cg), there exists L̂ ∈ K such that ψg ◦ θ =

t(2−λ)(1−Cg) L̂(t) for t ∈ [1,∞). Moreover since (α − 1) − (λ − 2)(1 − Cg) > 0, it
follows by Lemma 2.1 that

lim
t→∞

t1−α

t(2−λ)(1−Cg)L̂(t)
= 0.

This implies that

lim
t→∞

t1−α

ψg(τi
∫∞
t
s1−λL(s) ds)

= lim
t→∞

t1−α

ψg(τiθ(t))
= lim
t→∞

ψg(θ(t))
ψg(τiθ(t))

t1−α

ψg(θ(t))
= 0

uniformly in τi ∈ [ ξ12 ,
3
2ξ2] ⊂ (0,∞). This together with (3.1) implies

lim
t→∞

v0(t)
ψg(τ1θ(t))

= lim
t→∞

v0(t)
ψg(τ2θ(t))

= 0.

So, we obtain

lim sup
t→∞

u(t)
ω2(t)

≤ 1 ≤ lim inf
t→∞

u(t)
ω1(t)

.

Using this fact and assertions (i) and (iv) of Lemma 2.6, we deduce that

lim inf
t→∞

u(t)
ψg(θ(t))

= lim inf
t→∞

u(t)
ω1(t)

ω1(t)
ψg(θ(t))

≥ lim
t→∞

ψg(τ1θ(t))
ψg(θ(t))

= τ1
1−Cg .
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By letting ε approach zero, we obtain

ξ1
1−Cg ≤ lim inf

t→∞

u(t)
ψg(θ(t))

.

Similarly, we obtain

lim sup
t→∞

u(t)
ψg(θ(t))

≤ ξ21−Cg .

This proves in particular the exact behavior at infinity in the case λ = 2. Now,
for λ > 2, we have by Lemma 2.2 that θ(t) ∼t→∞ t2−λ

λ−2L(t). Hence it follows by
assertions (i), (iv) and (v) of Lemma 2.6 that for λ > 2, we have

lim
t→∞

ψg(θ(t))
ψg((t)2−λL(t))

= lim
t→∞

ψg(θ(t))
ψg((λ− 2)θ(t))

ψg((λ− 2)θ(t))
ψg((t)2−λL(t))

=
1

(λ− 2)1−Cg
.

This achieves the proof of the Theorem. �

Proof of Theorem 1.6. We recall that g(t) = t−γ , λ = α+1+(α−1)γ and Cg = γ
1+γ .

Let ε ∈ (0, a1
2 ) and put τ1 = (γ + 1)(a1 − ε) and τ2 = (γ + 1)(a2 + ε). Put

k(t) =
∫ t
1
L(s)
s ds and

ωi(t) =
(

(1 + γ)τi
∫ ∞
t

s1−λ k(s) ds
) 1

1+γ
for i ∈ {1, 2},

where L is the function given in hypothesis (H6). Then, by a simple computation,
we have

LAωi(t) + q(t)g(ωi(t))

= g(ωi(t))t−λ L(t)
[
τi

( k(t)
L(t)

(τit2−λk(t)g′(ωi) + (λ− 1− α))− γ

γ + 1

)
− τi

k(t)
L(t)

( t A′(t)
A(t)

− α
)

+
γ

γ + 1
τi − τi + ai +

( q(t)
t−λ L(t)

− ai
)]

= g(ωi(t))t−λ L(t)
[
τi

( k(t)
L(t)

(τit2−λk(t)g′(ωi) + (α− 1)γ)− γ

γ + 1

)
− τi

k(t)
L(t)

tB′(t)
B(t)

− τi
γ + 1

+ ai +
( q(t)
t−λ L(t)

− ai
)]
.

Since g(t) = t−γ and λ = α+ 1 + (α− 1)γ, integrating by parts, we obtain

τit
2−λk(t)g′(ωi(t)) + (α− 1)γ

= −γτi t2−λk(t)(ωi(t))−(1+γ) + (α− 1)γ

= γ
(

(α− 1)− t2−αk(t)
(γ + 1)

∫∞
t
s1−λk(s) ds

)
= γ

( (α− 1)(1 + γ)
∫∞
t
s1−λk(s)ds− t2−λk(t)

(1 + γ)
∫∞
t
s1−λk(s)ds

)
=

γ

γ + 1

∫∞
t
s1−λL(s) ds∫∞

t
s1−λk(s)ds

.

This gives
k(t)
L(t)

(τit2−λk(t)g′(ωi(t)) + (α− 1)γ)− γ

γ + 1
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=
γ

γ + 1

[∫∞
t
s1−λL(s) ds
t2−λ L(t)

t2−λ k(t)∫∞
t
s1−λk(s)ds

− 1
]
.

This together with Lemma 2.2 and the fact that k and L are in K, implies

lim
t→∞

k(t)
L(t)

(τit2−λk(t)g′(ωi(t)) + (α− 1)γ)− γ

γ + 1
= 0.

Now since tν B′(t)
B(t) is bounded for t large and by Lemma 2.1, we have k

L ∈ K and

limt→∞
t1−ν k(t)
L(t) = 0, we deduce that

lim
t→∞

k(t)
L(t)

( tB′(t)
B(t)

)
= lim
t→∞

t1−ν k(t)
L(t)

( tν B′(t)
B(t)

)
= 0.

So, for the fixed ε > 0, there exists Mε > 1 such that for t ≥Mε, we have

LAω2(t) + q(t)g(ω2(t)) ≤ g(ω2(t))t−λL(t)
[ε

3
+
ε

3
− τ2
γ + 1

+ a2 +
ε

3

]
= 0,

LAω1(t) + q(t)g(ω1(t)) ≥ g(ω1(t))t−µ L(t)[−ε
3
− ε

3
− τ1
γ + 1

+ a1 −
ε

3

]
= 0.

Let u ∈ C([0,∞)) ∩ C2((0,∞)) be the unique solution of (1.7). As in the proof of
Theorem 1.2, we choose C > 0 such that

ω1(t)− Cv0(t) ≤ u(t) ≤ ω2(t) + Cv0(t) for t ≥Mε.

Moreover, thanks to (H6), we have limt→∞ k(t) = ∞. So, using Lemma 2.2, we
obtain

lim
t→∞

1

tα−1
(

(1 + γ)τ1
∫∞
t
s1−λ k(s) ds

) 1
1+γ

= lim
t→∞

1

tα−1
(
t(2−λ) τ1 k(t)

α−1

) 1
1+γ

= lim
t→∞

( α− 1
τ1 k(t)

) 1
1+γ

= 0.

This and (3.1) gives limt→∞
v0(t)
ω1(t)

= 0. Similarly, we obtain limt→∞
v0(t)
ω2(t)

= 0. So
we have

lim sup
t→∞

u(t)
ω2(t)

≤ 1 ≤ lim inf
t→∞

u(t)
ω1(t)

.

This implies that

lim inf
t→∞

u(t)(
(1 + γ)

∫∞
t
s1−λ k(s) ds

) 1
1+γ
≥ τ

1
1+γ
1 .

Now, as ε tends to zero, we obtain

lim inf
t→∞

u(t)(
(1 + γ)

∫∞
t
s1−λ k(s) ds

) 1
1+γ
≥ ((γ + 1)a1)

1
1+γ .

Similarly, we obtain

lim sup
t→∞

u(t)(
(1 + γ)

∫∞
t
s1−λ k(s) ds

) 1
1+γ
≤ ((γ + 1)a2)

1
1+γ .
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Now, since (γ+1)
∫∞
t
s1−λ k(s) ds ∼t→∞ t2−λ k(t)

α−1 = t(1−α)(γ+1)

α

∫ t
1
L(s)
s ds, we deduce

that ( (γ + 1)a1

α− 1

) 1
1+γ ≤ lim inf

t→∞

u(t)

t1−α
( ∫ t

1
L(s)
s ds

) 1
1+γ

≤ lim sup
t→∞

u(t)

t1−α
( ∫ t

1
L(s)
s ds

) 1
1+γ

≤ (
(γ + 1)a2

α
)

1
1+γ .

In particular, if a1 = a2, we obtain

lim
t→∞

u(t)

t1−α
( ∫ t

1
L(s)
s ds

) 1
1+γ

=
( (γ + 1)a1

α− 1

) 1
1+γ

.

�

4. Applications

Application 1. We consider the Dirichlet problem

− 1
A

(Au′)′ +
β

u
(u′)2 = q(t)g(u) , t ∈ (0,∞),

u > 0 , in (0,∞) ,

lim
t→0+

A(t)u′(t) = 0 lim
t→∞

u(t) = 0,

(4.1)

where β < 1 and limt→∞
q(t)

t−λ L(t)
= a0 > 0 with λ ≥ 2 and L ∈ K with∫∞

1
s1−λ L(s) ds <∞.

We assume that A satisfies (H1) and g satisfies the following hypotheses:
(A1) The function t→ t−β g(t) is non-increasing from (0,∞) into (0,∞).
(A2) limt→0 g

′(t)
∫ t
0

1
g(s) ds = −Cg with max(0, β

β−1 ) ≤ Cg ≤ 1.
(A3) (α− 1)− (λ− 2)(1− β)(1− Cg) > 0

Note that for γ > 0 and −γ < β < 1, the function g(t) = t−γ satisfies (A1) and
(A2). Put u = v

1
1−β . Then v satisfies

− 1
A

(Av′)′ = (1− β)q(t)g(v
1

1−β )v
−β
1−β , t ∈ (0,∞),

v > 0 , in (0,∞) ,

lim
t→0+

A(t)v′(t) = 0, lim
t→∞

v(t) = 0,

(4.2)

The function f(r) = (1− β)g(r
1

1−β )r−
β

1−β is non-increasing on (0,∞) and a simple
computation shows that ψg = (ψf )

1
1−β and

lim
r→0

f ′(r)
∫ r

0

1
f(s)

ds = (1− β)(1− Cg)− 1 =: −Cf , with 0 ≤ Cf ≤ 1.

Applying Corollary 1.3 to problem (4.2), we deduce that there exists a unique
solution v to (4.2) such that
(a) When Cf = 1, we have

(i) limt→∞
v(t)

ψf (t2−λL(t))
= 1 if λ > 2;



EJDE-2016/49 EXACT ASYMPTOTIC BEHAVIOR 11

(ii) limt→∞
v(t)

ψf

( R∞
t

L(s)
s ds

) = 1 if λ = 2;

(b) When Cf < 1, we have:

(i) limt→∞
v(t)

ψf (t2−λ L(t))
= [ a0

α+1−λ+(λ−2)Cf
]1−Cf if 2 < λ < 2 + α−1

(1−β)(1−cg) ;

(ii) limt→∞
v(t)

ψf (
R∞
t

L(s)
s ds)

= [ a0
α−1 ]1−Cf if λ = 2.

This implies that problem (4.1) has a solution u ∈ C([0,∞))∩C2((0,∞)) satisfying
the following exact behavior
(a) When Cg = 1, we have:

(i) if λ > 2, then

lim
t→∞

u(t)
ψg(t2−λ L(t))

= 1;

(ii) if λ = 2, then

lim
t→∞

u(t)

ψg(
∫∞
t

L(s)
s ds)

= 1;

(b) If max(0, β
β−1 ) ≤ Cg < 1, then:

(i) if 2 < λ < 2 + α−1
(1−β)(1−Cg) , then

lim
t→∞

u(t)
ψg(t2−λ L(t))

= [
a0

α− 1− (λ− 2)(1− β)(1− Cg)
]1−Cg

(ii) if λ = 2, then

lim
|x|→∞

u(t)

ψg(
∫∞
t

L(s)
s ds)

= [
a0

α− 1
]1−Cg .

Application 2. In this subsection, we assume that the function A satisfy the
following hypothesis

(A4) A is a continuous function on [0,∞), positive and differentiable on (0,∞)
such that 1

A is integrable near 0 and limt→∞
t A′(t)
A(t) = σ ∈ R− {1}.

We are interested in the exact behavior at infinity of the unique positive solution
of the problem

1
A(t)

(A(t)u′(t))′ = −p(t)u−γ , t ∈ (0,∞),

u > 0 , in (0,∞) ,

u(0) = 0 , lim
t→∞

u(t)
ρ(t)

= 0 ,

(4.3)

where γ > 0 and ρ(t) =
∫ t
0

ds
A(s) . Let u(t) = ρ(t) v(t) and B(t) = A(t)ρ2(t) for

t ∈ [0,∞). Then u is a positive solution of (4.3) if and only if v is a positive
solution of the problem

1
B(t)

(B(t)v′(t))′ = − p(t)
(ρ(t))γ+1

v−γ , t ∈ (0,∞),

v > 0 , in (0,∞) ,

lim
t→0+

B(t)v′(t) = 0 , lim
t→∞

v(t) = 0 .

(4.4)
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First, we claim that if A satisfies (A4), then

lim
t→∞

tB′(t)
B(t)

= 1 + |σ − 1| > 1. (4.5)

Since t B′(t)
B(t) = t A′(t)

A(t) + 2t
A(t) ρ(t) and by Definition 2.5 and assertion (ii) of Lemma

2.6, we have A(t) = tσL0(t) for t ≥ a > 1 with L0 ∈ K, then we deduce from
Lemma 2.2 that
• For σ < 1, we have ρ(∞) =∞ and so

ρ(t) =
∫ a

0

ds

A(s)
+
∫ t

a

1
sσ L0(s)

ds ∼ 1
1− σ

t1−σ

L0(t)
as t→∞.

So
2t

A(t) ρ(t)
∼ (1− σ)

L0(t)
t1−σ

2t
tσL0(t)

= 2(1− σ) as t→∞.

Consequently in this case we have

lim
t→∞

tB′(t)
B(t)

= σ + 2(1− σ) = 2− σ = 1 + |σ − 1|.

• For σ > 1, we have ρ(∞) =
∫∞
0

ds
A(s) ds <∞. So

2t
A(t) ρ(t)

∼ 2t
tσL0(t)ρ(∞)

→ 0 as t→∞.

In this case we have

lim
t→∞

tB′(t)
B(t)

= σ = 1 + |σ − 1|.

This proves (4.5). Taking into account this fact, we assume that the function p
satisfies the following hypotheses

(A5) p is a nonnegative continuous function (0,∞) satisfying

0 < a0 = lim
t→∞

tλ p(t)
L(t)(ρ(t))γ+1

<∞ ,

where λ ≥ 2 and L ∈ K such that
∫∞
1
s1−λ L(s) ds <∞.

(A6) 2 + |σ − 1| − λ+ (λ− 2) γ
γ+1 > 0.

Assume that A and p satisfy (A4)–(A6) and let v be the unique positive solution
of problem (4.4). Then v has the following exact behavior at infinity

(i) if λ > 2, then

lim
t→∞

v(t)

[(γ + 1)t2−λL(t)]
1

1+γ
=
[ a0

(λ− 2)(2 + |σ − 1| − λ+ (λ− 2) γ
γ+1 )

] 1
1+γ

.

(ii) if λ = 2, then

lim
t→∞

v(t)

[(γ + 1)
∫∞
t

L(s)
s ds]

1
1+γ

= [
a0

|σ − 1|

] 1
1+γ

Consequently, the unique positive solution u of problem (4.3) has the following
exact behavior at infinity

(i) if λ > 2, then

lim
t→∞

u(t)

ρ(t)[(γ + 1)t2−λ L(t)]
1

1+γ
=
[ a0

(λ− 2)(2 + |σ − 1| − λ+ (λ− 2) γ
γ+1 )

] 1
1+γ

.
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ii) if λ = 2, then

lim
t→∞

u(t)

ρ(t)[(γ + 1)
∫∞
t

L(s)
s ds]

1
1+γ

=
[ a0

|σ − 1|

] 1
1+γ
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[17] H. Mâagli, S. Masmoudi; Sur les solutions d’un operateur différentiel singulier semi-
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