Meriem Ezzoug, Ezzeddine Zahrouni
Abstract:
In this article, we consider a 3-D multiphasic incompressible fluid model,
called the Kazhikhov-Smagulov model, with a specific Korteweg stress tensor.
We prove the existence of a global unique regular solution to the
Kazhikhov-Smagulov-Korteweg model provided that initial data and external
force are sufficiently small. Furthermore, in the absence of external forcing,
the solution decays exponentially in time to the equilibrium solution.
Submitted March 9, 2016. Published May 10, 2016.
Math Subject Classifications: 35Q30, 76D03, 35B40.
Key Words: Kazhikhov-Smagulov-Korteweg model; global solution;
uniqueness; asymptotic behavior.
Show me the PDF file (232 KB), TEX file for this article.
Meriem Ezzoug Unité de recherche: Multifractals et Ondelettes FSM, University of Monastir 5019 Monastir, Tunisia email: meriemezzoug@yahoo.fr | |
Ezzeddine Zahrouni Unité de recherche: Multifractals et Ondelettes FSM, University of Monastir 5019 Monastir, Tunisia. email: ezzeddine.zahrouni@fsm.rnu.tn |
Return to the EJDE web page