Electron. J. Diff. Equ., Vol. 2016 (2016), No. 117, pp. 1-10.

Existence and asymptotic behavior of global regular solutions for a 3-D Kazhikhov-Smagulov model with Korteweg stress

Meriem Ezzoug, Ezzeddine Zahrouni

Abstract:
In this article, we consider a 3-D multiphasic incompressible fluid model, called the Kazhikhov-Smagulov model, with a specific Korteweg stress tensor. We prove the existence of a global unique regular solution to the Kazhikhov-Smagulov-Korteweg model provided that initial data and external force are sufficiently small. Furthermore, in the absence of external forcing, the solution decays exponentially in time to the equilibrium solution.

Submitted March 9, 2016. Published May 10, 2016.
Math Subject Classifications: 35Q30, 76D03, 35B40.
Key Words: Kazhikhov-Smagulov-Korteweg model; global solution; uniqueness; asymptotic behavior.

Show me the PDF file (232 KB), TEX file for this article.

Meriem Ezzoug
Unité de recherche: Multifractals et Ondelettes
FSM, University of Monastir
5019 Monastir, Tunisia
email: meriemezzoug@yahoo.fr
Ezzeddine Zahrouni
Unité de recherche: Multifractals et Ondelettes
FSM, University of Monastir
5019 Monastir, Tunisia.
email: ezzeddine.zahrouni@fsm.rnu.tn

Return to the EJDE web page