Youssef Akdim, Jaouad Bennouna, Mounir Mekkour
Abstract:
In this article, we study the problem
![$$\displaylines{
\frac{\partial}{\partial t} b(x, u)-\hbox{div}(a(x,t,u,D u))
+H(x,t,u,Du) = f\quad \hbox{in } \Omega\times ]0,T[,\cr
b(x,u)(t=0)=b(x,u_0)\quad\hbox{in } \Omega,\cr
u=0\quad\hbox{in } \partial\Omega\times ]0,T[
}$$](gifs/aa.gif)
in the framework of weighted Sobolev spaces, with
unbounded function on u. The main contribution of our work is to
prove the existence of a renormalized solution without the sign
condition and the coercivity condition on
. The
critical growth condition on
is with respect to
Du and no growth condition with respect to u.
The second term f belongs to
, and
.
Submitted June 28, 2010. Published January 4, 2011.
Math Subject Classifications: A7A15, A6A32, 47D20.
Key Words: Weighted Sobolev spaces; truncations;
time-regularization; renormalized solutions.
Show me the PDF file (341 KB), TEX file, and other files for this article.
![]() |
Youssef Akdim Département de Mathématiques Faculté des Sciences Dhar-Mahraz, Fès, Morocco email: akdimyoussef@yahoo.fr |
|---|---|
![]() |
Jaouad Bennouna Département de Mathématiques Faculté des Sciences Dhar-Mahraz, Fès, Morocco email: jbennouna@hotmail.com |
![]() |
Mounir Mekkour Département de Mathématiques Faculté des Sciences Dhar-Mahraz, Fès, Morocco email: mekkour.mounir@yahoo.fr |
Return to the EJDE web page