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SOLVABILITY OF DEGENERATED PARABOLIC EQUATIONS
WITHOUT SIGN CONDITION AND THREE UNBOUNDED

NONLINEARITIES

YOUSSEF AKDIM, JAOUAD BENNOUNA, MOUNIR MEKKOUR

Abstract. In this article, we study the problem

∂

∂t
b(x, u)− div(a(x, t, u, Du)) + H(x, t, u, Du) = f in Ω×]0, T [,

b(x, u)(t = 0) = b(x, u0) in Ω,

u = 0 in ∂Ω×]0, T [

in the framework of weighted Sobolev spaces, with b(x, u) unbounded function
on u. The main contribution of our work is to prove the existence of a renor-
malized solution without the sign condition and the coercivity condition on
H(x, t, u, Du). The critical growth condition on H is with respect to Du and
no growth condition with respect to u. The second term f belongs to L1(Q),
and b(x, u0) ∈ L1(Ω).

1. Introduction

Let Ω be a bounded open set of RN , p be a real number such that 2 < p < ∞,
Q = Ω × [0, T ] and w = {wi(x) : 0 ≤ i ≤ N} be a vector of weight functions
(i.e., every component wi(x) is a measurable almost everywhere strictly positive
function on Ω), satisfying some integrability conditions (see Section 2). And let
Au = −div(a(x, t, u,Du)) be a Leray-Lions operator defined from the weighted
Sobolev space Lp(0, T ;W 1,p

0 (Ω, w)) into its dual Lp′(0, T ;W−1,p′(Ω, w∗)).
Now, we consider the degenerated parabolic problem associated for the differen-

tial equation
∂b(x, u)
∂t

+Au+H(x, t, u,Du) = f in Q,

u = 0 on ∂Ω×]0, T [,

b(x, u)(t = 0) = b(x, u0) on Ω

(1.1)

where b(x, u) is a unbounded function on u, H is a nonlinear lower order term.
Problem (1.1) is studied in [2] with f ∈ Lp′(0, T ;W−1,p′(Ω, w∗)) and under the
strong hypothesis relatively to H, more precisely they supposed that b(x, u) = u
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and the nonlinearity H satisfying the sign condition

H(x, t, s, ξ)s ≥ 0 (1.2)

and the growth condition of the form

|H(x, t, s, ξ)| ≤ b(s)
( N∑

i=1

wi(x)|ξi|p + c(x, t)
)
. (1.3)

In the case where the second membre f ∈ L1(Q) , (1.1) is studied in [3].
It is our purpose to prove the existence of renormalized solution for (1.1) in the

setting of the weighted Sobolev space without the sign condition (1.2), and without
the following coercivity condition

|H(x, t, s, ξ)| ≥ β

N∑
i=1

wi(x)|ξi|p for|s| ≥ γ, (1.4)

our growth condition on H is simpler than (1.3) it is a growth with respect to
Du and no growth condition with respect to u (see assumption (H3) below), the
second term f belongs to L1(Q). Note that our paper generalizes [2, 3]. The case
H(x, t, u,Du) = div(φ(u)) is studied by Redwane in the classical Sobolev spaces
W 1,p(Ω) and in Orlicz spaces; see [15, 16].

The notion of renormalized solution was introduced by Diperna and Lions [8] in
their study of the Boltzmann equation. This notion was then adapted to an elliptic
version of (1.1) by Boccardo et al [5] when the right hand side is in W−1,p

′

(Ω),
by Rakotoson [14] when the right hand side is in L1(Ω), and finally by Dal Maso,
Murat, Orsina and Prignet [7] for the case of right hand side is general measure
data.

Our article can be see as a continuation of [4] in the case where b(x, u) = u,
a(x, t, s, ξ) is independent of s and H = 0. The plan of the article is as follows. In
Section 2 we give some preliminaries and the definition of weighted Sobolev spaces.
In Section 3 we make precise all the assumptions on b, a,H, f, b(x, u0). In section 4
we give some technical results. In Section 5 we give the definition of a renormalized
solution of (1.1) and we establish the existence of such a solution (Theorem 5.3).
Section 6 is devoted to an example which illustrates our abstract result, and finally
an appendix in section 7.

2. Preliminaries

Let Ω be a bounded open set of RN , p be a real number such that 2 < p < ∞
and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions; i.e., every component
wi(x) is a measurable function which is strictly positive a.e. in Ω. Further, we
suppose in all our considerations that , there exits

r0 > max(N, p) such that w
−r0

r0−p

i ∈ L1
loc(Ω), (2.1)

wi ∈ L1
loc(Ω), (2.2)

w
−1

p−1
i ∈ L1

loc(Ω), (2.3)
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for any 0 ≤ i ≤ N . We denote by W 1,p(Ω, w) the space of real-valued functions
u ∈ Lp(Ω, w0) such that the derivatives in the sense of distributions fulfill

∂u

∂xi
∈ Lp(Ω, wi) for i = 1, . . . , N.

Which is a Banach space under the norm

‖u‖1,p,w =
[ ∫

Ω

|u(x)|pw0(x) dx+
N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
]1/p

. (2.4)

Condition (2.2) implies that C∞0 (Ω) is a space of W 1,p(Ω, w) and consequently, we
can introduce the subspace V = W 1,p

0 (Ω, w) of W 1,p(Ω, w) as the closure of C∞0 (Ω)
with respect to the norm (2.4). Moreover, condition (2.3) implies that W 1,p(Ω, w)
as well as W 1,p

0 (Ω, w) are reflexive Banach spaces.
We recall that the dual space of weighted Sobolev spacesW 1,p

0 (Ω, w) is equivalent
to W−1,p′(Ω, w∗), where w∗ = {w∗i = w1−p′

i , i = 0, . . . , N} and where p′ is the
conjugate of p; i.e., p′ = p

p−1 , (see [11]).

3. Basic assumptions

Assumption (H1). For 2 ≤ p <∞, we assume that the expression

‖|u|‖V =
( N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

(3.1)

is a norm defined on V which is equivalent to the norm (2.4), and there exists a
weight function σ on Ω such that,

σ ∈ L1(Ω) and σ−1 ∈ L1(Ω).

We assume also the Hardy inequality,( ∫
Ω

|u(x)|pσ dx
)1/q

≤ c
( N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

, (3.2)

holds for every u ∈ V with a constant c > 0 independent of u, and moreover, the
imbedding

W 1,p(Ω, w) ↪→↪→ Lp(Ω, σ), (3.3)
expressed by the inequality (3.2) is compact. Notice that (V, ‖| · |‖V ) is a uniformly
convex (and thus reflexive) Banach space.

Remark 3.1. If we assume that w0(x) ≡ 1 and in addition the integrability con-
dition: There exists ν ∈]N

p ,+∞ [∩[ 1
p−1 ,+∞[ such that

w−ν
i ∈ L1(Ω) and w

N
N−1
i ∈ L1

loc(Ω) for all i = 1, . . . , N. (3.4)

Notice that the assumptions (2.2) and (3.4) imply

‖|u‖| =
( N∑

i=1

∫
Ω

| ∂u
∂xi

|pwi(x) dx
)1/p

, (3.5)

which is a norm defined on W 1,p
0 (Ω, w) and its equivalent to (2.4) and that, the

imbedding
W 1,p

0 (Ω, w) ↪→ Lp(Ω), (3.6)
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is compact for all 1 ≤ q ≤ p∗1 if pν < N(ν + 1) and for all q ≥ 1 if pν ≥ N(ν + 1)
where p1 = pν

ν+1 and p∗1 is the Sobolev conjugate of p1; see [10, pp 30-31].

Assumption (H2).

b : Ω× R → R is a Carathéodory function. (3.7)

such that for every x ∈ Ω, b(x, .) is a strictly increasing C1-function with b(x, 0) = 0.
Next, for any k > 0, there exists λk > 0 and functions Ak ∈ L1(Ω) and Bk ∈ Lp(Ω)
such that

λk ≤
∂b(x, s)
∂s

≤ Ak(x) and
∣∣∣Dx

(∂b(x, s)
∂s

)∣∣∣ ≤ Bk(x) (3.8)

for almost every x ∈ Ω, for every s such that |s| ≤ k , we denote by Dx

(∂b(x,s)
∂s

)
the gradient of ∂b(x,s)

∂s defined in the sense of distributions. For i = 1, . . . , N ,

|ai(x, t, s, ξ)| ≤ βw
1/p
i (x)[k(x, t) + σ1/p′ |s|q/p′ +

N∑
j=1

w
1/p′

j (x)|ξj |p−1], (3.9)

for a.e. (x, t) ∈ Q,all (s, ξ) ∈ R × RN , some function k(x, t) ∈ Lp′(Q) and β > 0.
Here σ and q are as in (H1).

[a(x, t, s, ξ)− a(x, t, s, η)](ξ − η) > 0 for all (ξ, η) ∈ RN × RN , (3.10)

a(x, t, s, ξ).ξ ≥ α

N∑
i=1

wi|ξi|p, (3.11)

Where α is a strictly positive constant.

Assumption (H3). Furthermore, let H(x, t, s, ξ) : Ω× [0, T ]×R×RN → R be a
Carathéodory function such that for a.e (x, t) ∈ Q and for all s ∈ R, ξ ∈ RN , the
growth condition

|H(x, t, s, ξ)| ≤ γ(x, t) + g(s)
N∑

i=1

wi(x)|ξi|p (3.12)

is satisfied, where g : R → R+ is a continuous positive positive function that belongs
to L1(R), while γ(x, t) belongs to L1(Q).

We recall that, for k > 1 and s in R, the truncation is defined as

Tk(s) =

{
s if |s| ≤ k

k s
|s| if |s| > k.

4. Some technical results

Characterization of the time mollification of a function u. To deal with
time derivative, we introduce a time mollification of a function u belonging to a
some weighted Lebesgue space. Thus we define for all µ ≥ 0 and all (x, t) ∈ Q,

uµ = µ

∫ t

∞
ũ(x, s) exp(µ(s− t))ds

where ũ(x, s) = u(x, s)χ(0,T )(s).



EJDE-2011/03 RENORMALIZED SOLUTIONS 5

Proposition 4.1 ([2]). (1) If u ∈ Lp(Q,wi) then uµ is measurable in Q and
∂uµ

∂t = µ(u− uµ) and,
‖uµ‖Lp(Q,wi) ≤ ‖u‖Lp(Q,wi).

(2) If u ∈W 1,p
0 (Q,w), then uµ → u in W 1,p

0 (Q,w) as µ→∞.
(3) If un → u in W 1,p

0 (Q,w), then (un)µ → uµ in W 1,p
0 (Q,w).

Some weighted embedding and compactness results. In this section we es-
tablish some embedding and compactness results in weighted Sobolev spaces, some
trace results, Aubin’s and Simon’s results [17]. Let V = W 1,p

0 (Ω, w), H = L2(Ω, σ)
and let V ∗ = W−1,p′ , with (2 ≤ p < ∞). Let X = Lp(0, T ;W 1,p

0 (Ω, w)). The
dual space of X is X∗ = Lp′(0, T, V ∗) where 1

p + 1
p′ = 1 and denoting the space

W 1
p (0, T, V,H) = {v ∈ X : v′ ∈ X∗} endowed with the norm

‖u‖W 1
p

= ‖u‖X + ‖u′‖X∗ ,

which is a Banach space. Here u′ stands for the generalized derivative of u; i.e.,∫ T

0

u′(t)ϕ(t)dt = −
∫ T

0

u(t)ϕ′(t)dt for all ϕ ∈ C∞0 (0, T ).

Lemma 4.2 ([18]). (1) The evolution triple V ⊆ H ⊆ V ∗ is satisfied.
(2) The imbedding W 1

p (0, T, V,H) ⊆ C(0, T,H) is continuous.
(3) The imbedding W 1

p (0, T, V,H) ⊆ Lp(Q, σ) is compact.

Lemma 4.3 ([2]). Let g ∈ Lr(Q, γ) and let gn ∈ Lr(Q, γ), with ‖gn‖Lr(Q,γ) ≤ C,
1 < r <∞. If gn(x) → g(x) a.e in Q, then gn ⇀ g in Lr(Q, γ) where n→∞.

Lemma 4.4 ([2]). Assume that
∂vn

∂t
= αn + βn in D′(Q)

where αn and βn are bounded respectively in X∗ and in L1(Q). If vn is bounded in
Lp(0, T ;W 1,p

0 (Ω, w)), then vn → u in Lp
loc(Q, σ). Further vn → v strongly in L1(Q)

where n→∞.

Lemma 4.5 ([2]). Assume that (H1) and (H2) are satisfied and let (un) be a
sequence in Lp(0, T ;W 1,p

0 (Ω, w)) such that un ⇀ u weakly in Lp(0, T ;W 1,p
0 (Ω, w))

and ∫
Q

[a(x, t, un, Dun)− a(x, t, u,Du)][Dun −Du] dx dt→ 0. (4.1)

Then, un → u in Lp(0, T ;W 1,p
0 (Ω, w)).

Definition 4.6. A monotone map T : D(T ) → X∗ is called maximal monotone if
its graph

G(T ) = {(u, T (u)) ∈ X ×X∗ for all u ∈ D(T )}
is not a proper subset of any monotone set in X×X∗. Let us consider the operator
∂
∂t which induces a linear map L from the subset D(L) = {v ∈ X : v′ ∈ X∗, v(0) =
0} of X into X∗ by

〈Lu, v〉X =
∫ T

0

〈u′(t), v(t)V dt〉 u ∈ D(L), v ∈ X

Lemma 4.7 ([18]). L is a closed linear maximal monotone map.
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In our study we deal with mappings of the form F = L + S where L is a given
linear densely defined maximal monotone map from D(L) ⊂ X to X∗ and S is a
bounded demicontinuous map of monotone type from X to X∗.

Definition 4.8. A mapping S is called pseudo-monotone with un ⇀ u, Lun ⇀ Lu
and limn→∞ sup〈S(un), un − u〉 ≤ 0, we have

lim
n→∞

sup〈S(un), un − u〉 = 0

and S(un) ⇀ S(u) as n→∞.

5. Main results

Consider the problem

b(x, u0) ∈ L1(Ω), f ∈ L1(Q)

∂b(x, u)
∂t

− div(a(x, t, u,Du)) +H(x, t, u,Du) = f in Q

u = 0 on ∂Ω×]0, T [,

b(x, u)(t = 0) = b(x, u0) on Ω.

(5.1)

Definition 5.1. Let f ∈ L1(Q) and b(x, u0) ∈ L1(Ω). A real-valued function u
defined on Q is a renormalized solution of problem 5.1 if

Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω, w)) for all k ≥ 0 and b(x, u) ∈ L∞(0, T ;L1(Ω)); , (5.2)∫

{m≤|u|≤m+1}
a(x, t, u,Du)Dudxdt→ 0 as m→ +∞; (5.3)

∂BS(x, u)
∂t

− div (S′(u)a(x, t, u,Du))

+ S′′(u)a(x, t, u,Du)Du+H(x, t, u,Du)S′(u)

= fS′(u) in D′(Q);

(5.4)

for all functions S ∈W 2,∞(R) which is piecewise C1 and such that S′ has a compact
support in R, where BS(x, z) =

∫ z

0
∂b(x,r)

∂r S′(r)dr and

BS(x, u)(t = 0) = BS(x, u0) in Ω. (5.5)

Remark 5.2. Equation (5.4) is formally obtained through pointwise multiplication
of (5.1) by S′(u). However, while a(x, t, u,Du) and H(x, t, u,Du) does not in
general make sense in (5.1), all the terms in (5.1) have a meaning in D′(Q).
Indeed, if M is such that suppS′ ⊂ [−M,M ], the following identifications are made
in (5.4):

• S(u) belongs to L∞(Q) since S is a bounded function.
• S′(u)a(x, t, u,Du) identifies with S′(u)a(x, t, TM (u), DTM (u)) a.e. in Q.

Since |TM (u)| ≤ M a.e. in Q and S′(u) ∈ L∞(Q), we obtain from (3.9)
and (5.2) that

S′(u)a(x, t, TM (u), DTM (u)) ∈
N∏

i=1

Lp′(Q,w∗i )

• S′′(u)a(x, t, u,Du)Du identifies with S′′(u)a(x, t, TM (u), DTM (u))DTM (u)
and

S′′(u)a(x, t, TM (u), DTM (u))DTM (u) ∈ L1(Q).
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• S′(u)H(x, t, u,Du) identifies with S′(u)H(x, t, TM (u), DTM (u)) a.e in Q.
Since |TM (u)| ≤M a.e in Q and S′(u) ∈ L∞(Q), we obtain from (3.9) and
(3.12) that

S′(u)H(x, t, TM (u), DTM (u)) ∈ L1(Q) .

• S′(u)f belongs to L1(Q).
The above considerations show that (5.4) holds in D′(Q) and that

∂BS(x, u)
∂t

∈ Lp′(0, T ;W−1, p′(Ω, w∗i )) + L1(Q).

Due to the properties of S and (5.4), ∂S(u)
∂t ∈ Lp′(0, T ;W−1, p′(Ω, w∗i )) + L1(Q),

which implies that S(u) ∈ C0([0, T ];L1(Ω)) so that the initial condition (5.5) makes
sense, since, due to the properties of S (increasing) and (6.1), we have∣∣BS(x, r)−BS(x, r′)

∣∣ ≤ Ak(x)
∣∣S(r)− S(r′)

∣∣ for all r, r′ ∈ R. (5.6)

Theorem 5.3. Let f ∈ L1(Q) and b(x, u0) ∈ L1(Ω). Assume that (H1)–(H3) hold.
Then, there exists at least one renormalized solution u of problem (5.1) (in the
sense of Definition 5.1).

The proof of this theorem is done in four steps.

Step 1: Approximate problem and a priori estimates. For n > 0, let us
define the following approximation of b,H, f and u0;

bn(x, r) = b(x, Tn(r)) +
1
n
r for n > 0, (5.7)

In view of (5.7), bn is a Carathéodory function and satisfies (6.1), there exist λn > 0
and functions An ∈ L1(Ω) and Bn ∈ Lp(Ω) such that

λn ≤
∂bn(x, s)

∂s
≤ An(x) and

∣∣Dx

(∂bn(x, s)
∂s

)∣∣ ≤ Bn(x)

a.e. in Ω, s ∈ R.

Hn(x, t, s, ξ) =
H(x, t, s, ξ)

1 + 1
n |H(x, t, s, ξ)|

χΩn .

Note that Ωn is a sequence of compacts covering the bounded open set Ω and χΩn

is its characteristic function.

fn ∈ Lp′(Q), and fn → f a.e. in Q and strongly in L1(Q) as n→ +∞,
(5.8)

u0n ∈ D(Ω), ‖bn(x, u0n)‖L1 ≤ ‖b(x, u0)‖L1 , (5.9)

bn(x, u0n) → b(x, u0) a.e. in Ω and strongly in L1(Ω). (5.10)

Let us now consider the approximate problem:

∂bn(x, un)
∂t

− div(a(x, t, un, Dun)) +Hn(x, t, un, Dun) = fn in D′(Q),

un = 0 in (0, T )× ∂Ω,

bn(x, un(t = 0)) = bn(x, u0n).

(5.11)

Note that Hn(x, t, s, ξ) satisfies the following conditions

|Hn(x, t, s, ξ)| ≤ H(x, t, s, ξ) and |Hn(x, t, s, ξ)| ≤ n.
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For all u, v ∈ Lp(0, T ;W 1,p
0 (Ω, w)),∣∣ ∫

Q

Hn(x, t, u,Du)v dx dt
∣∣

≤
( ∫

Q

|Hn(x, t, u,Du)|q
′
σ−

q′
q dx dt

)1/q′( ∫
Q

|v|qσ dx dt
)1/q

≤ n

∫ T

0

( ∫
Ωn

σ1−q′dx
)1/q′

dt‖v‖Lq(Q,σ)

≤ Cn‖v‖Lp(0,T ;W 1,p
0 (Ω,w)).

Moreover, since fn ∈ Lp′(0, T ;W−1,p′(Ω, w∗)), proving existence of a weak solution
un ∈ Lp(0, T ;W 1,p

0 (Ω, w)) of (5.11) is an easy task (see e.g. [13],[2]).
Let ϕ ∈ Lp(0, T ;W 1,p

0 (Ω, w)) ∩ L∞(Q) with ϕ > 0, choosing v = exp(G(un))ϕ
as test function in 5.11 where G(s) =

∫ s

0
g(r)
α dr (the function g appears in (3.12)).

We have∫
Q

∂bn(x, un)
∂t

exp(G(un))ϕdx dt+
∫

Q

a(x, t, un, Dun)D(exp(G(un))ϕ) dx dt

=
∫

Q

Hn(x, t, un, Dun) exp(G(un))ϕdx dt+
∫

Q

fn exp(G(un))ϕdx dt.

In view of (3.12), we obtain∫
Q

∂bn(x, un)
∂t

exp(G(un))ϕdx dt

+
∫

Q

a(x, t, un, Dun)Dun
g(un)
α

exp(G(un))ϕdx dt

+
∫

Q

a(x, t, un, Dun) exp(G(un))Dϕdxdt

≤
∫

Q

γ(x, t) exp(G(un))ϕdx dt+
∫

Q

g(un)
N∑

i=1

∣∣∂un

∂xi

∣∣wi exp(G(un))ϕdxdt

+
∫

Q

fn exp(G(un))ϕdx dt.

By (3.11), we obtain∫
Q

∂bn(x, un)
∂t

exp(G(un))ϕdx dt+
∫

Q

a(x, t, un, Dun) exp(G(un))Dϕdxdt

≤
∫

Q

γ(x, t) exp(G(un))ϕdx dt+
∫

Q

fn exp(G(un))ϕdx dt,

(5.12)
for all ϕ ∈ Lp(0, T ;W 1,p

0 (Ω, w)) ∩ L∞(Q), ϕ > 0. On the other hand, taking v =
exp(−G(un))ϕ as test function in (5.11) we deduce, as in (5.12), that∫

Q

∂bn(x, un)
∂t

exp(−G(un))ϕdx dt+
∫

Q

a(x, t, un, Dun) exp(−G(un))Dϕdxdt

+
∫

Q

γ(x, t) exp(−G(un))ϕdx dt
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≥
∫

Q

fn exp(−G(un))ϕdx dt, (5.13)

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω, w)) ∩ L∞(Q), ϕ > 0. Let ϕ = Tk(un)+χ(0,τ), for every

τ ∈ [0, T ], in (5.12) we have,∫
Ω

Bn
k (x, un(τ)) exp(G(un))dx+

∫
Qτ

a(x, t, un, Dun) exp(G(un))DTk(un)+ dx dt

≤
∫

Qτ

γ(x, t) exp(G(un))Tk(un)+ dx dt+
∫

Qτ

fn exp(G(un))Tk(un)+ dx dt

+
∫

Ω

Bn
k (x, u0n)dx,

(5.14)
where Bn

k (x, r) =
∫ r

0
Tk(s)+ ∂bn(x,s)

∂s ds. Due to this definition, we have

0 ≤
∫

Ω

Bn
k (x, u0n)dx ≤ k

∫
Ω

|bn(x, u0n)|dx ≤ k‖b(x, u0)‖L1(Ω). (5.15)

Using this inequality, Bn
k (x, un) ≥ 0 and G(un) ≤ ‖g‖L1(R)

α , we deduce∫
Qτ

a(x, t, un, DTk(un)+)DTk(un)+ exp(G(un)) dx dt

≤ k exp
(‖g‖L1(R)

α

)(
‖u0n‖L1(Ω) + ‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n)‖L1(Ω)

)
≤ c1k.

Thanks to (3.11), we have

α

∫
Qτ

N∑
i=1

wi(x)
∣∣∂Tk(un)+

∂xi

∣∣p exp(G(un)) dx dt ≤ c1k. (5.16)

We deduce that

α

∫
Q

N∑
i=1

wi(x)
∣∣∂Tk(un)+

∂xi

∣∣p dx dt ≤ c1k. (5.17)

Similarly to (5.17), we take ϕ = Tk(un)−χ(0,τ) in (5.13) we deduce that

α

∫
Q

N∑
i=1

wi(x)
∣∣∂Tk(un)−

∂xi

∣∣p dx dt ≤ c2k (5.18)

where c2 is a positive constant. Combining (5.17) and (5.18) we conclude that

‖Tk(un)‖p

Lp(0,T ;W 1,p
0 (Ω,w))

≤ ck. (5.19)

We deduce from the above inequality, (5.14) and (5.15), that∫
Ω

Bn
k (x, un)dx ≤ k(‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω)) ≡ Ck. (5.20)

Then, Tk(un) is bounded in Lp(0, T ;W 1,p
0 (Ω, w)), and Tk(un) ⇀ vk in the space

Lp(0, T ;W 1,p
0 (Ω, w)), and by the compact imbedding (3.6) gives

Tk(un) → vk strongly in Lp(Q, σ) and a.e. in Q.

Let k > 0 be large enough and BR be a ball of Ω, we have

kmeas({|un| > k} ∩BR × [0, T ])
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=
∫ T

0

∫
{|un|>k}∩BR

|Tk(un)| dx dt

≤
∫ T

0

∫
BR

|Tk(un)| dx dt

≤
( ∫

Q

|Tk(un)|pσ dx dt
)1/p( ∫ T

0

∫
BR

σ1−p′ dx dt
)1/p′

≤ TcR

( ∫
Q

N∑
i=1

wi(x)
∣∣∂Tk(un)

∂xi

∣∣∣p dx dt)1/p

≤ ck1/p,

which implies

meas({|un| > k} ∩BR × [0, T ]) ≤ c1

k1− 1
p

, ∀k ≥ 1.

So, we have
lim

k→+∞
(meas({|un| > k} ∩BR × [0, T ])) = 0.

Now we turn to prove the almost every convergence of un and bn(x, un). Consider
now a function non decreasing gk ∈ C2(R) such that gk(s) = s for |s| ≤ k

2 and
gk(s) = k for |s| ≥ k. Multiplying the approximate equation by g′k(bn(x, un)), we
obtain

∂gk(bn(x, un))
∂t

− div(a(x, t, un, Dun)g′k(bn(x, un)))

+ a(x, t, un, Dun)g′′k (bn(x, un))Dx

(∂bn(x, un)
∂s

)
Dun

+Hn(x, t, un, Dun)g′k(bn(x, un))

= fng
′
k(bn(x, un))

(5.21)

in the sense of distributions, which implies that

gk(bn(x, un)) is bounded in Lp(0, T ;W 1,p
0 (Ω, w)), (5.22)

∂gk(bn(x, un))
∂t

is bounded in X∗ + L1(Q), (5.23)

independent of n as long as k < n. Due to Definition (3.7) and (5.7) of bn, it is
clear that

{|bn(x, un)| ≤ k} ⊂ {|un| ≤ k∗}
as long as k < n and k∗ is a constant independent of n. As a first consequence we
have

Dgk(bn(x, un)) = g′k(x, bn(un))Dx

(∂bn(x, Tk∗(un))
∂s

)
DTk∗(un) a.e in Q (5.24)

as long as k < n. Secondly, the following estimate holds∥∥g′k(bn(x, un))Dx

(∂bn(x, Tk∗(un))
∂s

)∥∥
L∞(Q)

≤ ‖g′k‖L∞(Q)

(
max
|r|≤k∗

(
Dx

(∂bn(x, s)
∂s

))
+ 1

)
.
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As a consequence of (5.19), (5.24) we then obtain (5.22). To show that (5.23) holds,
due to (5.21) we obtain

∂gk(bn(x, un))
∂t

= div(a(x, t, un, Dun)g′k(bn(x, un)))

− a(x, t, un, Dun)g′′k (bn(un))Dx

(∂bn(x, un)
∂s

)
+Hn(x, t, un, Dun)g′k(bn(x, un)) + fng

′
k(bn(x, un)).

(5.25)

Since support of g′k and support of g′′k are both included in [−k, k], un may be
replaced by Tk∗(un) in each of these terms. As a consequence, each term on the
right-hand side of (5.25) is bounded either in Lp′(0, T ;W−1,p′(Ω, w∗)) or in L1(Q).
Hence lemma 4.4 allows us to conclude that gk(bn(x, un)) is compact in Lp

loc(Q, σ).
Thus, for a subsequence, it also converges in measure and almost every where in
Q, due to the choice of gk, we conclude that for each k, the sequence Tk(bn(x, un))
converges almost everywhere in Q (since we have, for every λ > 0,)

meas({
∣∣bn(x, un)− bm(x, um)

∣∣ > λ} ∩BR × [0, T ])

≤ meas({|bn(x, un)| > k} ∩BR × [0, T ]) + meas({|bm(x, um)| > k} ∩BR × [0, T ])

+ meas({
∣∣gk(bn(x, un))− gk(bm(x, um))

∣∣ > λ}).

Let ε > 0, then there exist k(ε) > 0 such that

meas({
∣∣bn(x, un)− bm(x, um)

∣∣ > λ} ∩BR × [0, T ]) ≤ ε

for all n,m ≥ n0(k(ε), λ,R). This proves that (bn(x, un)) is a Cauchy sequence
in measure in BR × [0, T ], thus converges almost everywhere to some measurable
function v. Then for a subsequence denoted again un,

un → u a.e. in Q, (5.26)

bn(x, un) → b(x, u) a.e. in Q. (5.27)

We can deduce from (5.19) that

Tk(un) ⇀ Tk(u) weakly in Lp(0, T ;W 1,p
0 (Ω, w)) (5.28)

and then, the compact imbedding (3.3) gives

Tk(un) → Tk(u) strongly in Lq(Q, σ) and a.e. in Q.

Which implies, by using (3.9), for all k > 0 that there exists a function hk ∈∏N
i=1 L

p′(Q,w∗i ), such that

a(x, t, Tk(un), DTk(un)) ⇀ hk weakly in
N∏

i=1

Lp′(Q,w∗i ). (5.29)

We now establish that b(x, u) belongs to L∞(0, T ;L1(Ω)). Using (5.26) and
passing to the limit-inf in (5.20) as n tends to +∞, we obtain that

1
k

∫
Ω

Bk(x, u)(τ)dx ≤ [‖f‖L1(Q) + ‖u0‖L1(Ω)] ≡ C,

for almost any τ in (0, T ). Due to the definition of Bk(x, s) and the fact that
1
kBk(x, u) converges pointwise to b(x, u), as k tends to +∞, shows that b(x, u)
belong to L∞(0, T ;L1(Ω)).
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Lemma 5.4. Let un be a solution of the approximate problem (5.11). Then

lim
m→∞

lim sup
n→∞

∫
{m≤|un|≤m+1}

a(x, t, un, Dun)Dun dx dt = 0 (5.30)

Proof. Considering the function ϕ = T1(un − Tm(un))− := αm(un) in (5.13) this
function is admissible since ϕ ∈ Lp(0, T ;W 1,p

0 (Ω, w)) and ϕ ≥ 0. Then, we have∫
Q

∂bn(x, un)
∂t

αm(un) dx dt+
∫
{−(m+1)≤un≤−m}

a(x, t, un, Dun)Dunα
′
m(un) dx dt

+
∫

Q

fn exp(−G(un))αm(un) dx dt

≤
∫

Q

γ(x, t) exp(−G(un))αm(un) dx dt.

Which, by setting Bm
n (x, r) =

∫ r

0
∂bn(x,s)

∂s αm(s)ds, gives∫
Ω

Bm
n (x, un)(T )dx+

∫
{−(m+1)≤un≤−m}

a(x, t, un, Dun)Dunα
′
m(un) dx dt

+
∫

Q

fn exp(−G(un))αm(un) dx dt

≤
∫

Q

γ(x, t) exp(−G(un))αm(un) dx dt+
∫

Ω

Bm
n (x, u0n)dx.

Since Bm
n (x, un)(T ) ≥ 0 and by Lebesgue’s theorem, we have

lim
m→∞

lim
n→∞

∫
Q

fn exp(−G(un))αm(un) dx dt = 0. (5.31)

Similarly, since γ ∈ L1(Ω), we obtain

lim
m→∞

lim
n→∞

∫
Q

γ exp(−G(un))αm(un) dx dt = 0. (5.32)

We conclude that

lim
m→∞

lim sup
n→∞

∫
{−(m+1)≤un≤−m}

a(x, t, un, Dun)Dun dx dt = 0. (5.33)

On the other hand, let ϕ = T1(un − Tm(un))+ as test function in (5.12) and
reasoning as in the proof of (5.33) we deduce that

lim
m→∞

lim sup
n→∞

∫
{m)≤un≤m+1}

a(x, t, un, Dun)Dun dx dt = 0. (5.34)

Thus (5.30) follows from (5.33) and (5.34). �

Step 2: Almost everywhere convergence of the gradients. This step is
devoted to introduce for k ≥ 0 fixed a time regularization of the function Tk(u)
in order to perform the monotonicity method. This kind of regularization has
been first introduced by R. Landes (see Lemma 6 and proposition 3, p.230, and
proposition 4, p.231, in[12]).
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Let ψi ∈ D(Ω) be a sequence which converge strongly to u0 in L1(Ω). Set
wi

µ = (Tk(u))µ + e−µtTk(ψi) where (Tk(u))µ is the mollification with respect to
time of Tk(u). Note that wi

µ is a smooth function having the following properties:

∂wi
µ

∂t
= µ(Tk(u)− wi

µ), wi
µ(0) = Tk(ψi),

∣∣wi
µ

∣∣ ≤ k, (5.35)

wi
µ → Tk(u) in Lp(0, T ;W 1,p

0 (Ω, w)), (5.36)

as µ→∞. We introduce the following function of one real:

hm(s) =


1 if |s| ≤ m

0 if |s| ≥ m+ 1
m+ 1− s if m ≤ s ≤ m+ 1
m+ 1 + s if − (m+ 1) ≤ s ≤ −m

where m > k.
Let ϕ = (Tk(un)−wi

µ)+hm(un) ∈ Lp(0, T ;W 1,p
0 (Ω, w))∩L∞(Q) and ϕ ≥ 0, then

we take this function in (5.12), we obtain∫
{Tk(un)−wi

µ≥0}

∂bn(x, un)
∂t

exp(G(un))(Tk(un)− wi
µ)hm(un) dx dt

+
∫
{Tk(un)−wi

µ≥0}
a(x, t, un, Dun)D(Tk(un)− wi

µ)hm(un) dx dt

−
∫
{m≤un≤m+1}

exp(G(un))a(x, t, un, Dun)Dun(Tk(un)− wi
µ)+ dx dt

≤
∫

Q

γ(x, t) exp(G(un))(Tk(un)− wi
µ)+hm(un) dx dt

+
∫

Q

fn exp(G(un))(Tk(un)− wi
µ)+hm(un) dx dt.

(5.37)

Observe that∫
{m≤un≤m+1}

exp(G(un))a(x, t, un, Dun)Dun(Tk(un)− wi
µ)+ dx dt

≤ 2k
∫
{m≤un≤m+1}

a(x, t, un, Dun)Dun dx dt.

Thanks to (5.30) the third integral tend to zero as n and m tend to infinity, and
by Lebesgue’s theorem, we deduce that the right hand side converge to zero as n,
m and µ tend to infinity. Since

(Tk(un)− wi
µ)+hm(un) ⇀ (Tk(u)− wi

µ)+hm(u) weakly* in L∞(Q), as n→∞,

and (Tk(u)− wi
µ)+hm(u) ⇀ 0 weakly* in L∞(Q) as µ→∞.

Let εl(n,m, µ, i) l = 1, . . . , n various functions tend to zero as n, m, i and µ tend
to infinity.

The definition of the sequence wi
µ makes it possible to establish the following

lemma, which will be proved in the Appendix.
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Lemma 5.5. [14] For k ≥ 0 we have

∫
{Tk(un)−wi

µ≥0}

∂bn(x, un)
∂t

exp(G(un))(Tk(un)− wi
µ)hm(un) dx dt ≥ ε(n,m, µ, i)

(5.38)

On the other hand, the second term of left hand side of (5.37) reads as follows

∫
{Tk(un)−wi

µ≥0}
a(x, t, un, Dun)D(Tk(un)− wi

µ)hm(un) dx dt

=
∫
{Tk(un)−wi

µ≥0,|un|≤k}
a(x, t, Tk(un), DTk(un))D(Tk(un)− wi

µ)hm(un) dx dt

−
∫
{Tk(un)−wi

µ≥0,|un|≥k}
a(x, t, un, Dun)Dwi

µhm(un) dx dt.

Since m > k, hm(un) = 0 on {|un| ≥ m+ 1}, One has

∫
{Tk(un)−wi

µ≥0}
a(x, t, un, Dun)D(Tk(un)− wi

µ)hm(un) dx dt

=
∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un), DTk(un))D(Tk(un)− wi

µ)hm(un) dx dt

−
∫
{Tk(un)−wi

µ≥0,|un|≥k}
a(x, t, Tm+1(un), DTm+1(un))Dwi

µhm(un) dx dt

= J1 + J2

(5.39)
In the following we pass to the limit in (5.39): first we let n tend to +∞, then
µ and finally m, tend to +∞. Since a(x, t, Tm+1(un), DTm+1(un)) is bounded in∏N

i=1 L
p′(Q,w∗i ), we have that

a(x, t, Tm+1(un), DTm+1(un))hm(un)χ{|un|>k} → hmhm(u)χ{|u|>k}

strongly in
∏N

i=1 L
p′(Q,w∗i ) as n tends to infinity, it follows that

J2 =
∫
{Tk(un)−wi

µ≥0}
hmDw

i
µhm(u)χ{|u|>k} dx dt+ ε(n)

=
∫
{Tk(un)−wi

µ≥0}
hm(DTk(u)µ − e−µtDTk(ψi))hm(u)χ{|u|>k} dx dt+ ε(n).

By letting µ→ +∞,

J2 =
∫
{Tk(un)−wi

µ≥0}
hmDTk(u) dx dt+ ε(n, µ).
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Using now the term J1 of (5.39) one can easily show that∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un), DTk(un))D(Tk(un)− wi

µ)hm(un) dx dt

=
∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)]hm(un) dx dt

+
∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un), DTk(u))(DTk(un)−DTk(u))hm(un) dx dt

+
∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un), DTk(un))DTk(u)hm(un) dx dt

−
∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un), DTk(un))Dwi

µhm(un) dx dt

= K1 +K2 +K3 +K4.

(5.40)
We shall go to the limit as n and µ→ +∞ in the three integrals of the right-hand
side. Starting with K2, we have by letting n→ +∞,

K2 = ε(n). (5.41)

About K3, we have by letting n→ +∞ and using (5.29),

K3 =
∫
{Tk(un)−wi

µ≥0}
hkDTk(u)hm(u)χ{|u|>k} dx dt+ ε(n)

By letting µ→ +∞,

K3 =
∫
{Tk(un)−wi

µ≥0}
hkDTk(u) dx dt+ ε(n, µ). (5.42)

For K4 we can write

K4 = −
∫
{Tk(un)−wi

µ≥0}
hkDw

i
µhm(u) dx dt+ ε(n),

By letting µ→ +∞,

K4 = −
∫
{Tk(un)−wi

µ≥0}
hkDTk(u) dx dt+ ε(n, µ). (5.43)

We then conclude that∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un), DTk(un))D(Tk(un)− wi

µ)hm(un) dx dt

=
∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)]hm(un) dx dt+ ε(n, µ).



16 Y. AKDIM, J. BENNOUNA, M. MEKKOUR EJDE-2011/03

On the other hand, we have∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)] dx dt

=
∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)]hm(un) dx dt

+
∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un), DTk(un))(DTk(un)−DTk(u))

× (1− hm(un)) dx dt

−
∫
{Tk(un)−wi

µ≥0}
a(x, t, Tk(un), DTk(u))(DTk(un)−DTk(u))

× (1− hm(un)) dx dt.

(5.44)

Since hm(un) = 1 in {|un| ≤ m} and {|un| ≤ k} ⊂ {|un| ≤ m} for m large
enough, we deduce from (5.44) that∫

{Tk(un)−wi
µ≥0}

[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)] dx dt

=
∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)]hm(un) dx dt

+
∫
{Tk(un)−wi

µ≥0,|un|>k}
a(x, t, Tk(un), DTk(u))DTk(u)(1− hm(un)) dx dt.

It is easy to see that the last terms of the last equality tend to zero as n → +∞,
which implies∫

{Tk(un)−wi
µ≥0}

[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)] dx dt

=
∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)]hm(un) dx dt+ ε(n)

Combining (5.38), (5.40), (5.41), (5.42), (5.43) and (5.44), we obtain∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)] dx dt ≤ ε(n, µ,m)
(5.45)

Passing to the limit in (5.45) as n and m tend to infinity, we obtain

lim
n→∞

∫
{Tk(un)−wi

µ≥0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)] dx dt = 0.
(5.46)
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On the other hand, taking ϕ = (Tk(un) − wi
µ)−hm(un) in (5.13), we deduce as in

(5.46) that

lim
n→∞

∫
{Tk(un)−wi

µ≤0}
[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)] dx dt = 0.
(5.47)

Combining (5.46) and (5.47), we conclude

lim
n→∞

∫
Q

[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)] dx dt = 0.
(5.48)

Which, by lemma (4.5), implies

Tk(un) → Tk(u) strongly in Lp(0, T ;W 1,p
0 (Ω, w)) for all k. (5.49)

Now, observe that for every σ > 0,

meas{(x, t) ∈ Ω× [0, T ] : |Dun −Du| > σ}
≤ meas{(x, t) ∈ Ω× [0, T ] : |Dun| > k}

+ meas{(x, t) ∈ Ω× [0, T ] : |u| > k}
+ meas{(x, t) ∈ Ω× [0, T ] :

∣∣DTk(un)−DTk(u)
∣∣ > σ}

then as a consequence of (5.49) we have that Dun converges to Du in measure and
therefore, always reasoning for a subsequence,

Dun → Du a. e. in Q. (5.50)

Which implies

a(x, t, Tk(un), DTk(un)) ⇀ a(x, t, Tk(u), DTk(u)) in
N∏

i=1

Lp′(Q,w∗i ). (5.51)

Step 3: Equi-integrability of the nonlinearity sequence. We shall now prove
that Hn(x, t, un, Dun) → H(x, t, u,Du) strongly in L1(Q) by using Vitali’s theo-
rem. Since Hn(x, t, un, Dun) → H(x, t, u,Du) a.e. in Q, Consider a function
ρh(s) =

∫ s

0
g(ν)χ{ν>h}dν, take ϕ = ρh(un) =

∫ un

0
g(s)χ{s>h}ds as test function in

(5.12), we obtain[ ∫
Ω

Bn
h (x, un)dx

]T

0
+

∫
Q

a(x, t, un, Dun)Dung(un)χ{un>h} dx dt

≤
( ∫ ∞

h

g(s)χ{s>h}ds
)

exp
(‖g‖L1(R)

α

)(
‖γ‖L1(Q) + ‖fn‖L1(Q)

)
,

where Bn
h (x, r) =

∫ r

0
∂bn(x,s)

∂s ρh(s)ds, which implies, since Bn
h (x, r) ≥ 0,∫

Q

a(x, t, un, Dun)Dung(un)χ{un>h} dx dt

≤
( ∫ ∞

h

g(s)ds
)

exp
(‖g‖L1(R)

α

) (
‖γ‖L1(Q) + ‖fn‖L1(Q)

)
+

∫
Ω

Bn
h (x, u0n)dx.
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Using (3.11), we have∫
{un>h}

g(un)
N∑

i=1

wi

∣∣∂un

∂xi

∣∣p dx dt ≤ C

∫ ∞

h

g(s) ds.

Since g ∈ L1(R), we have

lim
h→∞

sup
n∈N

∫
{un>h}

g(un)
N∑

i=1

wi

∣∣∂un

∂xi

∣∣p dx dt = 0.

Similarly, let ϕ =
∫ 0

un
g(s)χ{s<−h}ds as a test function in (5.13), we conclude that

lim
h→∞

sup
n∈N

∫
{un<−h}

g(un)
N∑

i=1

wi

∣∣∂un

∂xi

∣∣p dx dt = 0.

Consequently,

lim
h→+∞

sup
n∈N

∫
{|un|>h}

g(un)
N∑

i=1

wi

∣∣∂un

∂xi

∣∣p dx dt = 0,

which, for h large enough, implies∫
Q

g(un)
N∑

i=1

wi

∣∣∂un

∂xi

∣∣p dx dt ≤ ∫
{|un|<h}

g(un)
N∑

i=1

wi

∣∣∂un

∂xi

∣∣p dx dt+ 1

≤
∫

Q

g(Tk(un))
N∑

i=1

wi

∣∣∂Tk(un)
∂xi

∣∣p dx dt+ 1.

Then by (5.49) and Vitali’s theorem, we can deduce that g(un)
∑N

i=1 wi

∣∣∂un

∂xi

∣∣p
converges to g(u)

∑N
i=1 wi

∣∣ ∂u
∂xi

∣∣p strongly in L1(Q). Consequently, using (3.12), we
conclude that

Hn(x, t, un, Dun) → H(x, t, u,Du) strongly in L1(Q). (5.52)

Step 4. In this step we prove that u satisfies (5.3), (5.4) and (5.5).

Lemma 5.6. The limit u of the approximate solution un of (5.11) satisfies

lim
m→+∞

∫
{m≤|u|≤m+1}

a(x, t, u,Du)Dudxdt = 0.

Proof. Note that for any fixed m ≥ 0,∫
{m≤|un|≤m+1}

a(x, t, un, Dun)Dun

=
∫

Q

a(x, t, un, Dun)(DTm+1(un)−DTm(un))

=
∫

Q

a(x, t, Tm+1(un), DTm+1(un))DTm+1(un)

−
∫

Q

a(x, t, Tm(un), DTm(un))DTm(un).
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According to (5.51) and (5.49), one is alloed to pass to the limit as n → +∞ for
fixed m ≥ 0, and to obtain

lim
n→+∞

∫
{m≤|un|≤m+1}

a(x, t, un, Dun)Dun dx dt

=
∫

Q

a(x, t, Tm+1(u), DTm+1(u))DTm+1(u) dx dt

−
∫

Q

a(x, t, Tm(u), DTm(u))DTm(un) dx dt.

=
∫
{m≤|un|≤m+1}

a(x, t, u,Du)Dudxdt.

(5.53)

Taking the limit as m → +∞ in (5.53) and using the estimate (5.30) show that u
satisfies (5.4) and the proof is complete. �

Now, we show that u satisfies (5.4) and (5.5). Let S be a function in W 1,∞(R)
such that S has a compact support. Let M be a positive real number such that
support of (S′) is a subset of [−M,M ]. Pointwise multiplication of the approximate
equation (5.11) by S′(un) leads to

∂Bn
S(x, un)
∂t

− div[S′(un)a(un, Dun)] + S′′(un)a(un, Dun)Dun

+ S′(un)Hn(un, Dun)

= fS′(un) in D′(Q).

(5.54)

Passing to the limit, as n tends to +∞, we have
• Since S is bounded and continuous, un → u a.e. in Q implies that Bn

S(x, un)
converges to BS(x, u) a.e. in Q and L∞ weak-*. Then

∂Bn
S(x, un)
∂t

converges to
∂BS(x, u)

∂t

in D′(Q) as n tends to +∞.
• Since supp(S′) ⊂ [−M,M ], we have for n ≥M ,

S′(un)an(un, Dun) = S′(un)a(TM (un), DTM (un)) a.e. in Q.

The pointwise convergence of untou and (5.51) as n tends to +∞ and the bounded
character of S′ permit us to conclude that

S′(un)an(un, Dun) ⇀ S′(u)a(TM (u), DTM (u)) in
N∏

i=1

Lp′(Q,w∗i ), (5.55)

as n tends to +∞. S′(u)a(TM (u), DTM (u)) has been denoted by S′(u)a(u,Du) in
equation (5.4).
• Regarding the ‘energy’ term, we have

S′′(un)a(un, Dun)Dun = S′′(un)a(TM (un), DTM (un))DTM (un) a.e. in Q.

The pointwise convergence of S′(un)toS′(u) and (5.51) as n tends to +∞ and the
bounded character of S′′ permit us to conclude that

S′′(un)an(un, Dun)Dun ⇀ S′′(u)a(TM (u), DTM (u))DTM (u) weakly in L1(Q).
(5.56)



20 Y. AKDIM, J. BENNOUNA, M. MEKKOUR EJDE-2011/03

Recall that

S′′(u)a(TM (u), DTM (u))DTM (u) = S′′(u)a(u,Du)Du a.e. in Q.

• Since supp(S′) ⊂ [−M,M ], by (5.52), we have

S′(un)Hn(x, t, un, Dun) → S′(u)H(x, t, u,Du) strongly in L1(Q), (5.57)

as n tends to +∞.
• Due to (5.8) and (un → u a.e in Q), we have

S′(un)fn → S′(u)f strongly in L1(Q) as n→ +∞.

As a consequence of the above convergence result, we are in a position to pass to
the limit as n tends to +∞ in equation (5.54) and to conclude that u satisfies (5.4).

It remains to show that BS(x, u) satisfies the initial condition (5.5). To this end,
firstly remark that, S being bounded, Bn

S(x, un) is bounded in L∞(Q). Secondly,
(5.54) and the above considerations on the behavior of the terms of this equation
show that ∂Bn

S (x,un)
∂t is bounded in L1(Q) + Lp′(0, T ;W−1,p′(Ω, w∗)). As a con-

sequence, an Aubin’s type lemma (see, e.g, [17]) implies that Bn
S(x, un) lies in a

compact set of C0([0, T ], L1(Ω)). It follows that on the one hand, Bn
S(x, un)(t =

0) = Bn
S(x, un

0 ) converges to BS(x, u)(t = 0) strongly in L1(Ω). On the other hand,
the smoothness of S implies that

BS(x, u)(t = 0) = BS(x, u0) in Ω.

As a conclusion, steps 1–5 complete the proof of theorem 5.3.

6. Example

Let us consider the special case

b(x, r) = σ(x)|s|q(x)−2s,

and q : Ω →]1,+∞[ with q(x) ≤ −|x|2 + 2. Then b : Ω×R → R is a Carathéodory
function, Such that for every x ∈ Ω, b(x, .) is a strictly increasing C1-function with
b(x, 0) = 0. Next, for any k > 0, there exist λk > 0 and functions Ak ∈ L1(Ω) and
Bk ∈ Lp(Ω) such that

λk ≤
∂b(x, s)
∂s

≤ Ak(x),
∣∣Dx

(∂b(x, s)
∂s

)∣∣ ≤ Bk(x), (6.1)

H(x, t, s, ξ) = ρ sin(s) exp(s−2)
N∑

i=1

wi(x)|ξi|p, ρ ∈ R, (6.2)

ai(x, t, s, d) = wi(x)|di|p−1 sgn(di), i = 1, . . . , N, (6.3)

with wi(x), (i = 1, . . . , N), a weight function strictly positive, x ∈ Q. Then, we
can consider the Hardy inequality in the form( ∫

Ω

|u(x)|pσ(x)dx
)1/p

≤ c
( ∫

Ω

|Du(x)|pw(x)dx
)1/p

.

It is easy to show that the ai(t, x, s, d) are Caratheodory functions satisfying the
growth condition (3.9) and the coercivity (3.11). On the order hand the mono-
tonicity condition is verified. In fact,

N∑
i=1

(ai(x, t, d)− a(x, t, d′)) (di − d′i)
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= w(x)
N−1∑
i=1

(
|di|p−1 sgn(di)− |d′i|p−1 sgn(d′i)

)
(di − d′i) > 0,

for almost all x ∈ Ω and for all d, d′ ∈ RN . This last inequality can not be strict,
since for d 6= d′ , since w > 0 a.e. in Ω.

While the Carathéodory functionH(x, t, s, ξ) satisfies the condition (3.12) indeed

|H(x, t, s, ξ)| ≤ |ρ| exp(s−2)
N∑

i=1

wi(x)|ξi|p = g(s)
N∑

i=1

wi(x)|ξi|p

where g(s) = |ρ| exp(s−2 is a function positive continuous which belongs to L1(R).
Note that H(x, t, s, ξ) does not satisfy the sign condition (1.2) and the coercivity
condition (1.4).

In particular, let us use special weight function, w, expressed in terms of the
distance to the bounded ∂Ω. Denote d(x) = dist(x, ∂Ω) and set w(x) = dλ(x),
σ(x) = dµ(x).

Finally, the hypotheses of Theorem 5.3 are satisfied. Therefore, for all f ∈ L1(Q),
the problem

b(x, u) ∈ L∞([0, T ];L1(Ω)); Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω, w)),

lim
m→+∞

∫
{m≤|u|≤m+1}

dλ(x)
N∑

i=1

∣∣ ∂u
∂xi

∣∣p−1 sgn(
∂u

∂xi
)
∂u

∂xi
dx dt = 0;

BS(x, r) =
∫ r

0

∂b(x, σ)
∂σ

S′(σ)dσ,∫
Ω

BS(x, u(T ))ϕ(T )dx−
∫

Q

BS(x, u)
∂ϕ

∂t
dx dt

+
∫

Q

S′(u)dλ(x)
N∑

i=1

∣∣ ∂u
∂xi

∣∣p−1 sgn(
∂u

∂xi
)
∂ϕ

∂xi
dx dt

+
∫

Q

S′′(u)dλ(x)
N∑

i=1

∣∣ ∂u
∂xi

∣∣p−1 sgn(
∂u

∂xi
)
∂u

∂xi
ϕdx dt

+
∫

Q

ρS′(u) sin(u) exp(u−2)
N∑

i=1

wi

∣∣ ∂u
∂xi

∣∣p−1
ϕdx dt

=
∫

Q

fS′(u)ϕdx dt+
∫

Ω

BS(x, u0)ϕ(0)dx,

BS(x, u)(t = 0) = BS(x, u0) in Ω,

for all ϕ ∈ C∞0 (Q) and S ∈ W 1,∞(R) with S′ ∈ C∞0 (R), has at least one renor-
malised solution.
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7. Appendix

Proof of Lemma 5.5. (see also [15]) Integration by parts and the use of the prop-
erties of (w)i

µ yield∫ T

0

∫
{x∈Ω;Tk(un)−wi

µ≥0}

∂bn(x, un)
∂t

hm(un) exp(G(un))(Tk(un)− wi
µ) dx dt

=
∫ T

0

∫
{x∈Ω;Tk(un)−wi

µ≥0}

∂bn(x, un)
∂t

hm(un)Tk(un) exp(G(un)), dx dt

−
∫ T

0

∫
{x∈Ω;Tk(un)−wi

µ≥0}

∂bn(x, un)
∂t

hm(un) exp(G(un))wi
µdxdt

= In
1 + In,µ

2 .

(7.1)

We denote

Bn
m,k(x, r) =

∫ r

0

∂bn(x, s)
∂s

hm(s)Tk(s) exp(G(s))ds,

Bn
m(x, r) =

∫ r

0

∂bn(x, s)
∂s

hm(s) exp(G(s))ds.

By a standard argument we can write the first term on the right-hand side of (7.1)
as

In
1 =

[ ∫
{x∈Ω; Tk(un)−wi

µ≥0}
Bn

m,k(x, un)dx
]T

0

=
∫
{x∈Ω; Tk(un)(T )−wi

µ(T )≥0}
Bn

m,k(x, Tm(un)(T ))dx

−
∫
{x∈Ω; Tk(un)(0)−wi

µ(0)≥0}
Bn

m,k(x, Tm(un)(0))dx.

(7.2)

We observe that

∂bn(x, Tm(un))
∂s

hm(un) =
(
∂bn(x, Tm(un))

∂s
+

1
n

)
hm(un)

for n > m with supphm ⊂ [−m;m]. Passing to the limit in (7.2) as n → +∞, we
deduce that

In
1 =

∫
{x∈Ω; Tk(u)(T )−wi

µ(T )≥0}
Bm,k(x, Tm(u(T )))dx

−
∫
{x∈Ω; Tk(u)(0)−wi

µ(0)≥0}
Bm,k(x, Tm(u0))dx+ ε(n).

(7.3)

where Bm,k(x, r) =
∫ r

0
∂b(x,s)

∂s hm(s)Tk(s) exp(G(s))ds. Passing to the limit in (7.3)
as i→ +∞ and µ→ +∞, we have

In
1 =

∫
Ω

[Bm,k(x, u(T ))−Bm,k(x, u0)]dx+ ε(n, µ, i). (7.4)
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The second term on the right-hand side of (7.1) can be written as

In,µ
2 = −

∫ T

0

∫
{x∈Ω;/Tk(un)−wi

µ≥0}

∂bn(x, un)
∂t

hm(un) exp(G(un))wi
µdxdt

= −

[∫
{x∈Ω; Tk(un)−wi

µ≥0}
Bn

m(x, un)wi
µdx

]T

0∫ T

0

∫
{x∈Ω; Tk(un)−wi

µ≥0}
Bn

m(x, un)
∂wi

µ

∂t
dx dt

= −
∫
{x∈Ω; Tk(un)(T )−wi

µ(T )≥0}
Bn

m(x, Tm(un(T )))wi
µ(T )dx

+
∫
{x∈Ω; Tk(un)(0)−wi

µ(0)≥0}
Bn

m(x, u0n)wi
µ(0)dx

+ µ

∫ T

0

∫
{x∈Ω; Tk(un)−wi

µ≥0}
Bn

m(x, un)(Tk(u)− wi
µ) dx dt.

(7.5)

By passing to the limit as n tends to infinity in (7.5), we obtain

In,µ
2 = −

∫
{x∈Ω; Tk(u)−wi

µ≥0}
[Bm(x, u(T ))wi

µ(T )−Bm(x, u0)wi
µ(0)dx

+ µ

∫
{x∈Ω; Tk(u)−wi

µ≥0}

∫ T

0

Bm(x, u)(Tk(u)− wi
µ) dx dt+ ε(n),

where Bm(x, r) =
∫ r

0
∂b(x,s)

∂s hm(s) exp(G(s))ds. Therefore, passing to the limit, in
i and µ , in the first terms on the right-hand side of the last equality, we deduce
that ∫

{x∈Ω; Tk(u)−wi
µ≥0}

[Bm(x, u(T ))wi
µ(T )−Bm(x, u0)wi

µ(0)dx

=
∫

Ω

[Bm(x, u(T ))(Tk(u(T ))−Bm(x, u0)Tk(u0))dx+ ε(n, µ, i).
(7.6)

The second term on the right-hand side of (7.5) can be rewritten as

µ

∫ T

0

∫
{x∈Ω; Tk(u)−wi

µ≥0}
Bm(x, u)(Tk(u)− wi

µ) dx dt

= µ

∫ T

0

∫
{x∈Ω; Tk(u)−wi

µ≥0}
(Bm(x, u)−Bm(x, Tk(u)))(Tk(u)− wi

µ) dx dt

+ µ

∫ T

0

∫
{x∈Ω; Tk(u)−wi

µ≥0}
(Bm(x, Tk(u))−Bm(x,wi

µ)(Tk(u)− wi
µ) dx dt

+ µ

∫ T

0

∫
{x∈Ω; Tk(u)−wi

µ≥0}
Bm(x,wi

µ)(Tk(u)− wi
µ) dx dt

= J1 + J2 + J3,

(7.7)
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where

J1 = µ

∫ T

0

∫
{x∈Ω; Tk(u)−wi

µ≥0;u>k}
(Bm(x, u)−Bm(x, k))(k − wi

µ) dx dt

+ µ

∫ T

0

∫
{x∈Ω; Tk(u)−wi

µ≥0;u<−k}
(Bm(x, u)−Bm(x,−k))(−k − wi

µ) dx dt

≥ 0.
(7.8)

As Bm(x, z) is non-decreasing for z and −k ≤ wi
µ ≤ k, it follows that

J2 ≥ 0. (7.9)

Moreover,

J3 = µ

∫ T

0

∫
{x∈Ω; Tk(u)−wi

µ≥0}
Bm(x,wi

µ)(Tk(u)− wi
µ) dx dt

=
∫ T

0

∫
{x∈Ω; Tk(u)−wi

µ≥0}
Bm(x,wi

µ)
∂(w)i

µ

∂t
dxdt

=
∫
{x∈Ω; Tk(u)(T )−wi

µ(T )≥0}
B(x,wi

µ(T ))dx

−
∫
{x∈Ω; Tk(u)(0)−wi

µ(0)≥0}
B((x,wi

µ(0))dx,

(7.10)

where B(x, z) =
∫ z

0
Bm(x, r)dr. Also wi

µ → Tk(u) a.e. in Q as i and µ tends to
+∞ and |wi

µ| ≤ k. Then Lebegue’s convergence theorem shows that

J3 =
∫

Ω

(B(x, Tk(u(T )))−B(x, Tk(u0)))dx+ ε(n, µ, i). (7.11)

In view of (7.6)-(7.11), one has

In,µ
2 ≥ −

∫
Ω

[Bm(x, u(T ))Tk(u(T ))−Bm(x, u0)Tk(u0)]dx

+
∫

Ω

(B(x, Tk(u(T )))−B(x, Tk(u0)))dx+ ε(n, µ, i).
(7.12)

As a consequence of (7.1), (7.4) and (7.12), we deduce that∫
{(x,t)∈Ω×(0,T ); Tk(u)−wi

µ≥0}

∂bn(x, un)
∂t

hm(un) exp(G(un))(Tk(un)− wi
µ)dxdt ≥

≥
∫

Ω

[Bm,k(x, u(T ))−Bm,k(x, u0)]dx

−
∫

Ω

[Bm(x, u(T ))Tk(u(T ))−Bm(x, u0)Tk(u0)]dx

+
∫

Ω

(B(x, Tk(u(T )))−B(x, Tk(u0)))dx+ ε(n, µ, i).

(7.13)
Observe that for any z ∈ R and for almost every x ∈ Ω, we have

B(x, Tk(z)) = Bm(x, z)Tk(z)−Bm,k(x, z).
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Indeed,

B(x, Tk(z)) =
∫ Tk(z)

0

Bm(x, r)dr

=
[
r

∫ r

0

∂b(x, σ)
∂σ

hm(σ) exp(G(σ))dσ
]Tk(z)

0

−
∫ Tk(z)

0

r
∂b(x, r)
∂r

hm(r) exp(G(r))dr

= Tk(z)
∫ Tk(z)

0

∂b(x, r)
∂r

hm(r) exp(G(r))dr

−
∫ Tk(z)

0

Tk(r)
∂b(x, r)
∂r

hm(r) exp(G(r))dr

= Tk(z)Bm(x, Tk(z))−Bm,k(x, Tk(z)).

(7.14)

This is due to the fact that for |r| < k, we have

B(x, Tk(r)) = Tk(r)Bm(x, r)−Bm,k(x, r),

and if r > k we have

Bm,k(x, r)

=
∫ k

0

∂b(x, σ)
∂σ

hm(σ)σ exp(G(σ))dσ + k

∫ r

k

∂b(x, σ)
∂σ

hm(σ) exp(G(σ))dσ,

− Tk(r)Bm(x, r)

= −k
∫ k

0

∂b(x, σ)
∂σ

hm(σ) exp(G(σ))dσ − k

∫ r

k

∂b(x, σ)
∂σ

hm(σ) exp(G(σ))dσ,

and

B(x, k) = k

∫ k

0

∂b(x, σ)
∂σ

hm(σ) exp(G(σ))dσ − k

∫ k

0

∂b(x, σ)
∂σ

hm(σ) exp(G(σ))σ dσ.

The case r < −k is similar to the previous one. This conclude the proof. �
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