Electronic Journal of Differential Equations, Vol. 2011(2011), No. 03, pp. 1-26. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

SOLVABILITY OF DEGENERATED PARABOLIC EQUATIONS WITHOUT SIGN CONDITION AND THREE UNBOUNDED NONLINEARITIES

YOUSSEF AKDIM, JAOUAD BENNOUNA, MOUNIR MEKKOUR

$$
\begin{aligned}
& \text { AbSTRACT. In this article, we study the problem } \\
& \qquad \begin{aligned}
&\left.\frac{\partial}{\partial t} b(x, u)-\operatorname{div}(a(x, t, u, D u))+H(x, t, u, D u)=f \quad \text { in } \Omega \times\right] 0, T[, \\
& b(x, u)(t=0)=b\left(x, u_{0}\right) \quad \text { in } \Omega, \\
&u=0 \quad \text { in } \partial \Omega \times] 0, T[
\end{aligned}
\end{aligned}
$$

Abstract

in the framework of weighted Sobolev spaces, with $b(x, u)$ unbounded function on u. The main contribution of our work is to prove the existence of a renormalized solution without the sign condition and the coercivity condition on $H(x, t, u, D u)$. The critical growth condition on H is with respect to $D u$ and no growth condition with respect to u. The second term f belongs to $L^{1}(Q)$, and $b\left(x, u_{0}\right) \in L^{1}(\Omega)$.

1. Introduction

Let Ω be a bounded open set of \mathbb{R}^{N}, p be a real number such that $2<p<\infty$, $Q=\Omega \times[0, T]$ and $w=\left\{w_{i}(x): 0 \leq i \leq N\right\}$ be a vector of weight functions (i.e., every component $w_{i}(x)$ is a measurable almost everywhere strictly positive function on Ω), satisfying some integrability conditions (see Section 2). And let $A u=-\operatorname{div}(a(x, t, u, D u))$ be a Leray-Lions operator defined from the weighted Sobolev space $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$ into its dual $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)\right)$.

Now, we consider the degenerated parabolic problem associated for the differential equation

$$
\begin{gather*}
\frac{\partial b(x, u)}{\partial t}+A u+H(x, t, u, D u)=f \quad \text { in } Q \\
u=0 \quad \text { on } \partial \Omega \times] 0, T[\tag{1.1}\\
b(x, u)(t=0)=b\left(x, u_{0}\right) \quad \text { on } \Omega
\end{gather*}
$$

where $b(x, u)$ is a unbounded function on u, H is a nonlinear lower order term. Problem (1.1) is studied in [2] with $f \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)\right)$ and under the strong hypothesis relatively to H, more precisely they supposed that $b(x, u)=u$

[^0]and the nonlinearity H satisfying the sign condition
\[

$$
\begin{equation*}
H(x, t, s, \xi) s \geq 0 \tag{1.2}
\end{equation*}
$$

\]

and the growth condition of the form

$$
\begin{equation*}
|H(x, t, s, \xi)| \leq b(s)\left(\sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p}+c(x, t)\right) \tag{1.3}
\end{equation*}
$$

In the case where the second membre $f \in L^{1}(Q), 1.1$ is studied in 3 .
It is our purpose to prove the existence of renormalized solution for (1.1) in the setting of the weighted Sobolev space without the sign condition $\sqrt{1.2}$, and without the following coercivity condition

$$
\begin{equation*}
|H(x, t, s, \xi)| \geq \beta \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p} \quad \text { for }|s| \geq \gamma \tag{1.4}
\end{equation*}
$$

our growth condition on H is simpler than 1.3 it is a growth with respect to $D u$ and no growth condition with respect to u (see assumption (H3) below), the second term f belongs to $L^{1}(Q)$. Note that our paper generalizes [2, 3]. The case $H(x, t, u, D u)=\operatorname{div}(\phi(u))$ is studied by Redwane in the classical Sobolev spaces $W^{1, p}(\Omega)$ and in Orlicz spaces; see [15, 16].

The notion of renormalized solution was introduced by Diperna and Lions [8] in their study of the Boltzmann equation. This notion was then adapted to an elliptic version of (1.1) by Boccardo et al [5] when the right hand side is in $W^{-1, p^{\prime}}(\Omega)$, by Rakotoson [14] when the right hand side is in $L^{1}(\Omega)$, and finally by Dal Maso, Murat, Orsina and Prignet [7] for the case of right hand side is general measure data.

Our article can be see as a continuation of 4] in the case where $b(x, u)=u$, $a(x, t, s, \xi)$ is independent of s and $H=0$. The plan of the article is as follows. In Section 2 we give some preliminaries and the definition of weighted Sobolev spaces. In Section 3 we make precise all the assumptions on $b, a, H, f, b\left(x, u_{0}\right)$. In section 4 we give some technical results. In Section 5 we give the definition of a renormalized solution of (1.1) and we establish the existence of such a solution (Theorem 5.3). Section 6 is devoted to an example which illustrates our abstract result, and finally an appendix in section 7 .

2. Preliminaries

Let Ω be a bounded open set of \mathbb{R}^{N}, p be a real number such that $2<p<\infty$ and $w=\left\{w_{i}(x), 0 \leq i \leq N\right\}$ be a vector of weight functions; i.e., every component $w_{i}(x)$ is a measurable function which is strictly positive a.e. in Ω. Further, we suppose in all our considerations that, there exits

$$
\begin{gather*}
r_{0}>\max (N, p) \quad \text { such that } w_{i}^{\frac{-r_{0}}{r_{0}-p}} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.1}\\
w_{i} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.2}\\
w_{i}^{\frac{-1}{p-1}} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.3}
\end{gather*}
$$

for any $0 \leq i \leq N$. We denote by $W^{1, p}(\Omega, w)$ the space of real-valued functions $u \in L^{p}\left(\Omega, w_{0}\right)$ such that the derivatives in the sense of distributions fulfill

$$
\frac{\partial u}{\partial x_{i}} \in L^{p}\left(\Omega, w_{i}\right) \quad \text { for } i=1, \ldots, N
$$

Which is a Banach space under the norm

$$
\begin{equation*}
\|u\|_{1, p, w}=\left[\int_{\Omega}|u(x)|^{p} w_{0}(x) d x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right]^{1 / p} \tag{2.4}
\end{equation*}
$$

Condition 2.2 implies that $C_{0}^{\infty}(\Omega)$ is a space of $W^{1, p}(\Omega, w)$ and consequently, we can introduce the subspace $V=W_{0}^{1, p}(\Omega, w)$ of $W^{1, p}(\Omega, w)$ as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm (2.4). Moreover, condition 2.3) implies that $W^{1, p}(\Omega, w)$ as well as $W_{0}^{1, p}(\Omega, w)$ are reflexive Banach spaces.

We recall that the dual space of weighted Sobolev spaces $W_{0}^{1, p}(\Omega, w)$ is equivalent to $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, where $w^{*}=\left\{w_{i}^{*}=w_{i}^{1-p^{\prime}}, i=0, \ldots, N\right\}$ and where p^{\prime} is the conjugate of p; i.e., $p^{\prime}=\frac{p}{p-1}$, (see [11]).

3. Basic assumptions

Assumption (H1). For $2 \leq p<\infty$, we assume that the expression

$$
\begin{equation*}
\||u|\|_{V}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{3.1}
\end{equation*}
$$

is a norm defined on V which is equivalent to the norm 2.4), and there exists a weight function σ on Ω such that,

$$
\sigma \in L^{1}(\Omega) \quad \text { and } \sigma^{-1} \in L^{1}(\Omega)
$$

We assume also the Hardy inequality,

$$
\begin{equation*}
\left(\int_{\Omega}|u(x)|^{p} \sigma d x\right)^{1 / q} \leq c\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{3.2}
\end{equation*}
$$

holds for every $u \in V$ with a constant $c>0$ independent of u, and moreover, the imbedding

$$
\begin{equation*}
W^{1, p}(\Omega, w) \hookrightarrow \hookrightarrow L^{p}(\Omega, \sigma) \tag{3.3}
\end{equation*}
$$

expressed by the inequality (3.2) is compact. Notice that $\left(V,\||\cdot|\|_{V}\right)$ is a uniformly convex (and thus reflexive) Banach space.
Remark 3.1. If we assume that $w_{0}(x) \equiv 1$ and in addition the integrability condition: There exists $\nu \in] \frac{N}{p},+\infty\left[\cap\left[\frac{1}{p-1},+\infty[\right.\right.$ such that

$$
\begin{equation*}
w_{i}^{-\nu} \in L^{1}(\Omega) \quad \text { and } \quad w_{i}^{\frac{N}{N-1}} \in L_{\mathrm{loc}}^{1}(\Omega) \text { for all } i=1, \ldots, N \tag{3.4}
\end{equation*}
$$

Notice that the assumptions (2.2) and (3.4) imply

$$
\begin{equation*}
\|\mid u\| \|=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{3.5}
\end{equation*}
$$

which is a norm defined on $W_{0}^{1, p}(\Omega, w)$ and its equivalent to (2.4) and that, the imbedding

$$
\begin{equation*}
W_{0}^{1, p}(\Omega, w) \hookrightarrow L^{p}(\Omega) \tag{3.6}
\end{equation*}
$$

is compact for all $1 \leq q \leq p_{1}^{*}$ if $p \nu<N(\nu+1)$ and for all $q \geq 1$ if $p \nu \geq N(\nu+1)$ where $p_{1}=\frac{p \nu}{\nu+1}$ and p_{1}^{*} is the Sobolev conjugate of p_{1}; see [10, pp 30-31].

Assumption (H2).

$$
\begin{equation*}
b: \Omega \times \mathbb{R} \rightarrow \mathbb{R} \quad \text { is a Carathéodory function. } \tag{3.7}
\end{equation*}
$$

such that for every $x \in \Omega, b(x,$.$) is a strictly increasing C^{1}$-function with $b(x, 0)=0$. Next, for any $k>0$, there exists $\lambda_{k}>0$ and functions $A_{k} \in L^{1}(\Omega)$ and $B_{k} \in L^{p}(\Omega)$ such that

$$
\begin{equation*}
\lambda_{k} \leq \frac{\partial b(x, s)}{\partial s} \leq A_{k}(x) \quad \text { and } \quad\left|D_{x}\left(\frac{\partial b(x, s)}{\partial s}\right)\right| \leq B_{k}(x) \tag{3.8}
\end{equation*}
$$

for almost every $x \in \Omega$, for every s such that $|s| \leq k$, we denote by $D_{x}\left(\frac{\partial b(x, s)}{\partial s}\right)$ the gradient of $\frac{\partial b(x, s)}{\partial s}$ defined in the sense of distributions. For $i=1, \ldots, N$,

$$
\begin{equation*}
\left|a_{i}(x, t, s, \xi)\right| \leq \beta w_{i}^{1 / p}(x)\left[k(x, t)+\sigma^{1 / p^{\prime}}|s|^{q / p^{\prime}}+\sum_{j=1}^{N} w_{j}^{1 / p^{\prime}}(x)\left|\xi_{j}\right|^{p-1}\right] \tag{3.9}
\end{equation*}
$$

for a.e. $(x, t) \in Q$,all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, some function $k(x, t) \in L^{p^{\prime}}(Q)$ and $\beta>0$. Here σ and q are as in (H1).

$$
\begin{gather*}
{[a(x, t, s, \xi)-a(x, t, s, \eta)](\xi-\eta)>0 \quad \text { for all }(\xi, \eta) \in \mathbb{R}^{N} \times \mathbb{R}^{N}} \tag{3.10}\\
\qquad a(x, t, s, \xi) \cdot \xi \geq \alpha \sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p} \tag{3.11}
\end{gather*}
$$

Where α is a strictly positive constant.
Assumption (H3). Furthermore, let $H(x, t, s, \xi): \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a Carathéodory function such that for a.e $(x, t) \in Q$ and for all $s \in \mathbb{R}, \xi \in \mathbb{R}^{N}$, the growth condition

$$
\begin{equation*}
|H(x, t, s, \xi)| \leq \gamma(x, t)+g(s) \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p} \tag{3.12}
\end{equation*}
$$

is satisfied, where $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a continuous positive positive function that belongs to $L^{1}(\mathbb{R})$, while $\gamma(x, t)$ belongs to $L^{1}(Q)$.

We recall that, for $k>1$ and s in \mathbb{R}, the truncation is defined as

$$
T_{k}(s)= \begin{cases}s & \text { if }|s| \leq k \\ k \frac{s}{|s|} & \text { if }|s|>k\end{cases}
$$

4. Some technical results

Characterization of the time mollification of a function u. To deal with time derivative, we introduce a time mollification of a function u belonging to a some weighted Lebesgue space. Thus we define for all $\mu \geq 0$ and all $(x, t) \in Q$,

$$
u_{\mu}=\mu \int_{\infty}^{t} \tilde{u}(x, s) \exp (\mu(s-t)) d s
$$

where $\tilde{u}(x, s)=u(x, s) \chi_{(0, T)}(s)$.

Proposition 4.1 (2]). (1) If $u \in L^{p}\left(Q, w_{i}\right)$ then u_{μ} is measurable in Q and $\frac{\partial u_{\mu}}{\partial t}=\mu\left(u-u_{\mu}\right) a n d$,

$$
\left\|u_{\mu}\right\|_{L^{p}\left(Q, w_{i}\right)} \leq\|u\|_{L^{p}\left(Q, w_{i}\right)}
$$

(2) If $u \in W_{0}^{1, p}(Q, w)$, then $u_{\mu} \rightarrow u$ in $W_{0}^{1, p}(Q, w)$ as $\mu \rightarrow \infty$.
(3) If $u_{n} \rightarrow u$ in $W_{0}^{1, p}(Q, w)$, then $\left(u_{n}\right)_{\mu} \rightarrow u_{\mu}$ in $W_{0}^{1, p}(Q, w)$.

Some weighted embedding and compactness results. In this section we establish some embedding and compactness results in weighted Sobolev spaces, some trace results, Aubin's and Simon's results [17]. Let $V=W_{0}^{1, p}(\Omega, w), H=L^{2}(\Omega, \sigma)$ and let $V^{*}=W^{-1, p^{\prime}}$, with $(2 \leq p<\infty)$. Let $X=L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$. The dual space of X is $X^{*}=L^{p^{\prime}}\left(0, T, V^{*}\right)$ where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and denoting the space $W_{p}^{1}(0, T, V, H)=\left\{v \in X: v^{\prime} \in X^{*}\right\}$ endowed with the norm

$$
\|u\|_{W_{p}^{1}}=\|u\|_{X}+\left\|u^{\prime}\right\|_{X^{*}},
$$

which is a Banach space. Here u^{\prime} stands for the generalized derivative of u; i.e.,

$$
\int_{0}^{T} u^{\prime}(t) \varphi(t) d t=-\int_{0}^{T} u(t) \varphi^{\prime}(t) d t \quad \text { for all } \varphi \in C_{0}^{\infty}(0, T)
$$

Lemma 4.2 ([18]). (1) The evolution triple $V \subseteq H \subseteq V^{*}$ is satisfied.
(2) The imbedding $W_{p}^{1}(0, T, V, H) \subseteq C(0, T, H)$ is continuous.
(3) The imbedding $W_{p}^{1}(0, T, V, H) \subseteq L^{p}(Q, \sigma)$ is compact.

Lemma $4.3([2])$. Let $g \in L^{r}(Q, \gamma)$ and let $g_{n} \in L^{r}(Q, \gamma)$, with $\left\|g_{n}\right\|_{L^{r}(Q, \gamma)} \leq C$, $1<r<\infty$. If $g_{n}(x) \rightarrow g(x)$ a.e in Q, then $g_{n} \rightharpoonup g$ in $L^{r}(Q, \gamma)$ where $n \rightarrow \infty$.

Lemma 4.4 ([2]). Assume that

$$
\frac{\partial v_{n}}{\partial t}=\alpha_{n}+\beta_{n} \quad \text { in } D^{\prime}(Q)
$$

where α_{n} and β_{n} are bounded respectively in X^{*} and in $L^{1}(Q)$. If v_{n} is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$, then $v_{n} \rightarrow u$ in $L_{\text {loc }}^{p}(Q, \sigma)$. Further $v_{n} \rightarrow v$ strongly in $L^{1}(Q)$ where $n \rightarrow \infty$.

Lemma 4.5 ([2]). Assume that (H1) and (H2) are satisfied and let (u_{n}) be a sequence in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$ such that $u_{n} \rightharpoonup u$ weakly in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$ and

$$
\begin{equation*}
\int_{Q}\left[a\left(x, t, u_{n}, D u_{n}\right)-a(x, t, u, D u)\right]\left[D u_{n}-D u\right] d x d t \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Then, $u_{n} \rightarrow u$ in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$.
Definition 4.6. A monotone map $T: D(T) \rightarrow X^{*}$ is called maximal monotone if its graph

$$
G(T)=\left\{(u, T(u)) \in X \times X^{*} \quad \text { for all } u \in D(T)\right\}
$$

is not a proper subset of any monotone set in $X \times X^{*}$. Let us consider the operator $\frac{\partial}{\partial t}$ which induces a linear map L from the subset $D(L)=\left\{v \in X: v^{\prime} \in X^{*}, v(0)=\right.$ $0\}$ of X into X^{*} by

$$
\langle L u, v\rangle_{X}=\int_{0}^{T}\left\langle u^{\prime}(t), v(t)_{V} d t\right\rangle \quad u \in D(L), v \in X
$$

Lemma $4.7([18]) . L$ is a closed linear maximal monotone map.

In our study we deal with mappings of the form $F=L+S$ where L is a given linear densely defined maximal monotone map from $D(L) \subset X$ to X^{*} and S is a bounded demicontinuous map of monotone type from X to X^{*}.
Definition 4.8. A mapping S is called pseudo-monotone with $u_{n} \rightharpoonup u, L u_{n} \rightharpoonup L u$ and $\lim _{n \rightarrow \infty} \sup \left\langle S\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$, we have

$$
\lim _{n \rightarrow \infty} \sup \left\langle S\left(u_{n}\right), u_{n}-u\right\rangle=0
$$

and $S\left(u_{n}\right) \rightharpoonup S(u)$ as $n \rightarrow \infty$.

5. Main ReSults

Consider the problem

$$
\begin{gather*}
b\left(x, u_{0}\right) \in L^{1}(\Omega), \quad f \in L^{1}(Q) \\
\frac{\partial b(x, u)}{\partial t}-\operatorname{div}(a(x, t, u, D u))+H(x, t, u, D u)=f \quad \text { in } Q \tag{5.1}\\
u=0 \quad \text { on } \partial \Omega \times] 0, T[\\
b(x, u)(t=0)=b\left(x, u_{0}\right) \quad \text { on } \Omega
\end{gather*}
$$

Definition 5.1. Let $f \in L^{1}(Q)$ and $b\left(x, u_{0}\right) \in L^{1}(\Omega)$. A real-valued function u defined on Q is a renormalized solution of problem 5.1 if

$$
\begin{align*}
& T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \quad \text { for all } k \geq 0 \text { and } b(x, u) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) ; \tag{5.2}\\
& \qquad \begin{array}{c}
\{m \leq|u| \leq m+1\} \\
\\
\\
\frac{\partial B_{S}(x, u)}{\partial t}-\operatorname{div}\left(S^{\prime}(u) a(x, t, u, D u) D u d x d t \rightarrow 0 \quad \text { as } m \rightarrow+\infty\right. \\
+S^{\prime \prime}(u) a(x, t, u, D u) D u+H(x, t, u, D u) S^{\prime}(u) \\
=f S^{\prime}(u) \quad \text { in } D^{\prime}(Q)
\end{array} \tag{5.3}
\end{align*}
$$

for all functions $S \in W^{2, \infty}(\mathbb{R})$ which is piecewise C^{1} and such that S^{\prime} has a compact support in \mathbb{R}, where $B_{S}(x, z)=\int_{0}^{z} \frac{\partial b(x, r)}{\partial r} S^{\prime}(r) d r$ and

$$
\begin{equation*}
B_{S}(x, u)(t=0)=B_{S}\left(x, u_{0}\right) \quad \text { in } \Omega \tag{5.5}
\end{equation*}
$$

Remark 5.2. Equation (5.4) is formally obtained through pointwise multiplication of (5.1) by $S^{\prime}(u)$. However, while $a(x, t, u, D u)$ and $H(x, t, u, D u)$ does not in general make sense in (5.1), all the terms in 5.1) have a meaning in $D^{\prime}(Q)$.
Indeed, if M is such that supp $S^{\prime} \subset[-M, M]$, the following identifications are made in 5.4):

- $S(u)$ belongs to $L^{\infty}(Q)$ since S is a bounded function.
- $S^{\prime}(u) a(x, t, u, D u)$ identifies with $S^{\prime}(u) a\left(x, t, T_{M}(u), D T_{M}(u)\right)$ a.e. in Q. Since $\left|T_{M}(u)\right| \leq M$ a.e. in Q and $S^{\prime}(u) \in L^{\infty}(Q)$, we obtain from 3.9 and (5.2) that

$$
S^{\prime}(u) a\left(x, t, T_{M}(u), D T_{M}(u)\right) \in \prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right)
$$

- $S^{\prime \prime}(u) a(x, t, u, D u) D u$ identifies with $S^{\prime \prime}(u) a\left(x, t, T_{M}(u), D T_{M}(u)\right) D T_{M}(u)$ and

$$
S^{\prime \prime}(u) a\left(x, t, T_{M}(u), D T_{M}(u)\right) D T_{M}(u) \in L^{1}(Q)
$$

- $S^{\prime}(u) H(x, t, u, D u)$ identifies with $S^{\prime}(u) H\left(x, t, T_{M}(u), D T_{M}(u)\right)$ a.e in Q. Since $\left|T_{M}(u)\right| \leq M$ a.e in Q and $S^{\prime}(u) \in L^{\infty}(Q)$, we obtain from 3.9) and (3.12) that

$$
S^{\prime}(u) H\left(x, t, T_{M}(u), D T_{M}(u)\right) \in L^{1}(Q)
$$

- $S^{\prime}(u) f$ belongs to $L^{1}(Q)$.

The above considerations show that (5.4) holds in $D^{\prime}(Q)$ and that

$$
\frac{\partial B_{S}(x, u)}{\partial t} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega, w_{i}^{*}\right)\right)+L^{1}(Q)
$$

Due to the properties of S and $5.4, \frac{\partial S(u)}{\partial t} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega, w_{i}^{*}\right)\right)+L^{1}(Q)$, which implies that $S(u) \in C^{0}\left([0, T] ; L^{1}(\Omega)\right)$ so that the initial condition 5.5 makes sense, since, due to the properties of S (increasing) and 6.1), we have

$$
\begin{equation*}
\left|B_{S}(x, r)-B_{S}\left(x, r^{\prime}\right)\right| \leq A_{k}(x)\left|S(r)-S\left(r^{\prime}\right)\right| \quad \text { for all } r, r^{\prime} \in \mathbb{R} \tag{5.6}
\end{equation*}
$$

Theorem 5.3. Let $f \in L^{1}(Q)$ and $b\left(x, u_{0}\right) \in L^{1}(\Omega)$. Assume that (H1)-(H3) hold. Then, there exists at least one renormalized solution u of problem (5.1) (in the sense of Definition 5.1).

The proof of this theorem is done in four steps.
Step 1: Approximate problem and a priori estimates. For $n>0$, let us define the following approximation of b, H, f and u_{0};

$$
\begin{equation*}
b_{n}(x, r)=b\left(x, T_{n}(r)\right)+\frac{1}{n} r \quad \text { for } n>0 \tag{5.7}
\end{equation*}
$$

In view of (5.7), b_{n} is a Carathéodory function and satisfies (6.1), there exist $\lambda_{n}>0$ and functions $A_{n} \in L^{1}(\Omega)$ and $B_{n} \in L^{p}(\Omega)$ such that

$$
\lambda_{n} \leq \frac{\partial b_{n}(x, s)}{\partial s} \leq A_{n}(x) \quad \text { and } \quad\left|D_{x}\left(\frac{\partial b_{n}(x, s)}{\partial s}\right)\right| \leq B_{n}(x)
$$

a.e. in $\Omega, s \in \mathbb{R}$.

$$
H_{n}(x, t, s, \xi)=\frac{H(x, t, s, \xi)}{1+\frac{1}{n}|H(x, t, s, \xi)|} \chi_{\Omega_{n}}
$$

Note that Ω_{n} is a sequence of compacts covering the bounded open set Ω and $\chi_{\Omega_{n}}$ is its characteristic function.

$$
\begin{gather*}
f_{n} \in L^{p^{\prime}}(Q), \quad \text { and } \quad f_{n} \rightarrow f \quad \text { a.e. in } Q \text { and strongly in } L^{1}(Q) \text { as } n \rightarrow+\infty, \tag{5.8}\\
u_{0 n} \in D(\Omega), \quad\left\|b_{n}\left(x, u_{0 n}\right)\right\|_{L^{1}} \leq\left\|b\left(x, u_{0}\right)\right\|_{L^{1}}, \tag{5.9}\\
b_{n}\left(x, u_{0 n}\right) \rightarrow b\left(x, u_{0}\right) \quad \text { a.e. in } \Omega \text { and strongly in } L^{1}(\Omega) . \tag{5.10}
\end{gather*}
$$

Let us now consider the approximate problem:

$$
\begin{gather*}
\frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t}-\operatorname{div}\left(a\left(x, t, u_{n}, D u_{n}\right)\right)+H_{n}\left(x, t, u_{n}, D u_{n}\right)=f_{n} \quad \text { in } D^{\prime}(Q) \\
u_{n}=0 \quad \text { in }(0, T) \times \partial \Omega \tag{5.11}\\
b_{n}\left(x, u_{n}(t=0)\right)=b_{n}\left(x, u_{0 n}\right)
\end{gather*}
$$

Note that $H_{n}(x, t, s, \xi)$ satisfies the following conditions

$$
\left|H_{n}(x, t, s, \xi)\right| \leq H(x, t, s, \xi) \quad \text { and } \quad\left|H_{n}(x, t, s, \xi)\right| \leq n
$$

For all $u, v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$,

$$
\begin{aligned}
& \left|\int_{Q} H_{n}(x, t, u, D u) v d x d t\right| \\
& \leq\left(\int_{Q}\left|H_{n}(x, t, u, D u)\right|^{q^{\prime}} \sigma^{-\frac{q^{\prime}}{q}} d x d t\right)^{1 / q^{\prime}}\left(\int_{Q}|v|^{q} \sigma d x d t\right)^{1 / q} \\
& \leq n \int_{0}^{T}\left(\int_{\Omega_{n}} \sigma^{1-q^{\prime}} d x\right)^{1 / q^{\prime}} d t\|v\|_{L^{q}(Q, \sigma)} \\
& \leq C_{n}\|v\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)}
\end{aligned}
$$

Moreover, since $f_{n} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)\right)$, proving existence of a weak solution $u_{n} \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$ of (5.11) is an easy task (see e.g. [13], [2]).

Let $\varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \cap L^{\infty}(Q)$ with $\varphi>0$, choosing $v=\exp \left(G\left(u_{n}\right)\right) \varphi$ as test function in 5.11 where $G(s)=\int_{0}^{s} \frac{g(r)}{\alpha} d r$ (the function g appears in (3.12). We have

$$
\begin{aligned}
& \int_{Q} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} \exp \left(G\left(u_{n}\right)\right) \varphi d x d t+\int_{Q} a\left(x, t, u_{n}, D u_{n}\right) D\left(\exp \left(G\left(u_{n}\right)\right) \varphi\right) d x d t \\
& =\int_{Q} H_{n}\left(x, t, u_{n}, D u_{n}\right) \exp \left(G\left(u_{n}\right)\right) \varphi d x d t+\int_{Q} f_{n} \exp \left(G\left(u_{n}\right)\right) \varphi d x d t
\end{aligned}
$$

In view of 3.12, we obtain

$$
\begin{aligned}
& \int_{Q} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} \exp \left(G\left(u_{n}\right)\right) \varphi d x d t \\
& +\int_{Q} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} \frac{g\left(u_{n}\right)}{\alpha} \exp \left(G\left(u_{n}\right)\right) \varphi d x d t \\
& +\int_{Q} a\left(x, t, u_{n}, D u_{n}\right) \exp \left(G\left(u_{n}\right)\right) D \varphi d x d t \\
& \leq \int_{Q} \gamma(x, t) \exp \left(G\left(u_{n}\right)\right) \varphi d x d t+\int_{Q} g\left(u_{n}\right) \sum_{i=1}^{N}\left|\frac{\partial u_{n}}{\partial x_{i}}\right| w_{i} \exp \left(G\left(u_{n}\right)\right) \varphi d x d t \\
& \quad+\int_{Q} f_{n} \exp \left(G\left(u_{n}\right)\right) \varphi d x d t
\end{aligned}
$$

By 3.11, we obtain

$$
\begin{align*}
& \int_{Q} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} \exp \left(G\left(u_{n}\right)\right) \varphi d x d t+\int_{Q} a\left(x, t, u_{n}, D u_{n}\right) \exp \left(G\left(u_{n}\right)\right) D \varphi d x d t \\
& \leq \int_{Q} \gamma(x, t) \exp \left(G\left(u_{n}\right)\right) \varphi d x d t+\int_{Q} f_{n} \exp \left(G\left(u_{n}\right)\right) \varphi d x d t \tag{5.12}
\end{align*}
$$

for all $\varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \cap L^{\infty}(Q), \varphi>0$. On the other hand, taking $v=$ $\exp \left(-G\left(u_{n}\right)\right) \varphi$ as test function in 5.11) we deduce, as in 5.12, that

$$
\begin{aligned}
& \int_{Q} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} \exp \left(-G\left(u_{n}\right)\right) \varphi d x d t+\int_{Q} a\left(x, t, u_{n}, D u_{n}\right) \exp \left(-G\left(u_{n}\right)\right) D \varphi d x d t \\
& +\int_{Q} \gamma(x, t) \exp \left(-G\left(u_{n}\right)\right) \varphi d x d t
\end{aligned}
$$

$$
\begin{equation*}
\geq \int_{Q} f_{n} \exp \left(-G\left(u_{n}\right)\right) \varphi d x d t \tag{5.13}
\end{equation*}
$$

for all $\varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \cap L^{\infty}(Q), \varphi>0$. Let $\varphi=T_{k}\left(u_{n}\right)^{+} \chi_{(0, \tau)}$, for every $\tau \in[0, T]$, in 5.12 we have,

$$
\begin{align*}
& \int_{\Omega} B_{k}^{n}\left(x, u_{n}(\tau)\right) \exp \left(G\left(u_{n}\right)\right) d x+\int_{Q_{\tau}} a\left(x, t, u_{n}, D u_{n}\right) \exp \left(G\left(u_{n}\right)\right) D T_{k}\left(u_{n}\right)^{+} d x d t \\
& \leq \int_{Q_{\tau}} \gamma(x, t) \exp \left(G\left(u_{n}\right)\right) T_{k}\left(u_{n}\right)^{+} d x d t+\int_{Q_{\tau}} f_{n} \exp \left(G\left(u_{n}\right)\right) T_{k}\left(u_{n}\right)^{+} d x d t \\
& \quad+\int_{\Omega} B_{k}^{n}\left(x, u_{0 n}\right) d x \tag{5.14}
\end{align*}
$$

where $B_{k}^{n}(x, r)=\int_{0}^{r} T_{k}(s)^{+} \frac{\partial b_{n}(x, s)}{\partial s} d s$. Due to this definition, we have

$$
\begin{equation*}
0 \leq \int_{\Omega} B_{k}^{n}\left(x, u_{0 n}\right) d x \leq k \int_{\Omega}\left|b_{n}\left(x, u_{0 n}\right)\right| d x \leq k\left\|b\left(x, u_{0}\right)\right\|_{L^{1}(\Omega)} \tag{5.15}
\end{equation*}
$$

Using this inequality, $B_{k}^{n}\left(x, u_{n}\right) \geq 0$ and $G\left(u_{n}\right) \leq \frac{\|g\|_{L^{1}(\mathbb{R})}}{\alpha}$, we deduce

$$
\begin{aligned}
& \int_{Q_{\tau}} a\left(x, t, u_{n}, D T_{k}\left(u_{n}\right)^{+}\right) D T_{k}\left(u_{n}\right)^{+} \exp \left(G\left(u_{n}\right)\right) d x d t \\
& \leq k \exp \left(\frac{\|g\|_{L^{1}(\mathbb{R})}}{\alpha}\right)\left(\left\|u_{0 n}\right\|_{L^{1}(\Omega)}+\left\|f_{n}\right\|_{L^{1}(Q)}+\|\gamma\|_{L^{1}(Q)}+\left\|b_{n}\left(x, u_{0 n}\right)\right\|_{L^{1}(\Omega)}\right) \\
& \leq c_{1} k
\end{aligned}
$$

Thanks to (3.11), we have

$$
\begin{equation*}
\alpha \int_{Q_{\tau}} \sum_{i=1}^{N} w_{i}(x)\left|\frac{\partial T_{k}\left(u_{n}\right)^{+}}{\partial x_{i}}\right|^{p} \exp \left(G\left(u_{n}\right)\right) d x d t \leq c_{1} k \tag{5.16}
\end{equation*}
$$

We deduce that

$$
\begin{equation*}
\alpha \int_{Q} \sum_{i=1}^{N} w_{i}(x)\left|\frac{\partial T_{k}\left(u_{n}\right)^{+}}{\partial x_{i}}\right|^{p} d x d t \leq c_{1} k \tag{5.17}
\end{equation*}
$$

Similarly to 5.17), we take $\varphi=T_{k}\left(u_{n}\right)^{-} \chi_{(0, \tau)}$ in 5.13) we deduce that

$$
\begin{equation*}
\alpha \int_{Q} \sum_{i=1}^{N} w_{i}(x)\left|\frac{\partial T_{k}\left(u_{n}\right)^{-}}{\partial x_{i}}\right|^{p} d x d t \leq c_{2} k \tag{5.18}
\end{equation*}
$$

where c_{2} is a positive constant. Combining (5.17) and (5.18) we conclude that

$$
\begin{equation*}
\left\|T_{k}\left(u_{n}\right)\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)}^{p} \leq c k . \tag{5.19}
\end{equation*}
$$

We deduce from the above inequality, (5.14) and (5.15), that

$$
\begin{equation*}
\int_{\Omega} B_{k}^{n}\left(x, u_{n}\right) d x \leq k\left(\|f\|_{L^{1}(Q)}+\left\|b\left(x, u_{0}\right)\right\|_{L^{1}(\Omega)}\right) \equiv C k \tag{5.20}
\end{equation*}
$$

Then, $T_{k}\left(u_{n}\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$, and $T_{k}\left(u_{n}\right) \rightharpoonup v_{k}$ in the space $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right.$, and by the compact imbedding 3.6 gives

$$
T_{k}\left(u_{n}\right) \rightarrow v_{k} \quad \text { strongly in } L^{p}(Q, \sigma) \text { and a.e. in } Q
$$

Let $k>0$ be large enough and B_{R} be a ball of Ω, we have

$$
k \text { meas }\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R} \times[0, T]\right)
$$

$$
\begin{aligned}
& =\int_{0}^{T} \int_{\left\{\left|u_{n}\right|>k\right\} \cap B_{R}}\left|T_{k}\left(u_{n}\right)\right| d x d t \\
& \leq \int_{0}^{T} \int_{B_{R}}\left|T_{k}\left(u_{n}\right)\right| d x d t \\
& \leq\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{p} \sigma d x d t\right)^{1 / p}\left(\int_{0}^{T} \int_{B_{R}} \sigma^{1-p^{\prime}} d x d t\right)^{1 / p^{\prime}} \\
& \leq T c_{R}\left(\int_{Q} \sum_{i=1}^{N} w_{i}(x)\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p} d x d t\right)^{1 / p} \\
& \leq c k^{1 / p}
\end{aligned}
$$

which implies

$$
\operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R} \times[0, T]\right) \leq \frac{c_{1}}{k^{1-\frac{1}{p}}}, \quad \forall k \geq 1
$$

So, we have

$$
\lim _{k \rightarrow+\infty}\left(\operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R} \times[0, T]\right)\right)=0
$$

Now we turn to prove the almost every convergence of u_{n} and $b_{n}\left(x, u_{n}\right)$. Consider now a function non decreasing $g_{k} \in C^{2}(\mathbb{R})$ such that $g_{k}(s)=s$ for $|s| \leq \frac{k}{2}$ and $g_{k}(s)=k$ for $|s| \geq k$. Multiplying the approximate equation by $g_{k}^{\prime}\left(b_{n}\left(x, u_{n}\right)\right)$, we obtain

$$
\begin{align*}
& \frac{\partial g_{k}\left(b_{n}\left(x, u_{n}\right)\right)}{\partial t}-\operatorname{div}\left(a\left(x, t, u_{n}, D u_{n}\right) g_{k}^{\prime}\left(b_{n}\left(x, u_{n}\right)\right)\right) \\
& +a\left(x, t, u_{n}, D u_{n}\right) g_{k}^{\prime \prime}\left(b_{n}\left(x, u_{n}\right)\right) D_{x}\left(\frac{\partial b_{n}\left(x, u_{n}\right)}{\partial s}\right) D u_{n} \tag{5.21}\\
& +H_{n}\left(x, t, u_{n}, D u_{n}\right) g_{k}^{\prime}\left(b_{n}\left(x, u_{n}\right)\right) \\
& =f_{n} g_{k}^{\prime}\left(b_{n}\left(x, u_{n}\right)\right)
\end{align*}
$$

in the sense of distributions, which implies that

$$
\begin{gather*}
g_{k}\left(b_{n}\left(x, u_{n}\right)\right) \text { is bounded in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \tag{5.22}\\
\frac{\partial g_{k}\left(b_{n}\left(x, u_{n}\right)\right)}{\partial t} \text { is bounded in } X^{*}+L^{1}(Q), \tag{5.23}
\end{gather*}
$$

independent of n as long as $k<n$. Due to Definition (3.7) and (5.7) of b_{n}, it is clear that

$$
\left\{\left|b_{n}\left(x, u_{n}\right)\right| \leq k\right\} \subset\left\{\left|u_{n}\right| \leq k^{*}\right\}
$$

as long as $k<n$ and k^{*} is a constant independent of n. As a first consequence we have

$$
\begin{equation*}
D g_{k}\left(b_{n}\left(x, u_{n}\right)\right)=g_{k}^{\prime}\left(x, b_{n}\left(u_{n}\right)\right) D_{x}\left(\frac{\partial b_{n}\left(x, T_{k^{*}}\left(u_{n}\right)\right)}{\partial s}\right) D T_{k^{*}}\left(u_{n}\right) \quad \text { a.e in } Q \tag{5.24}
\end{equation*}
$$

as long as $k<n$. Secondly, the following estimate holds

$$
\begin{aligned}
& \left\|g_{k}^{\prime}\left(b_{n}\left(x, u_{n}\right)\right) D_{x}\left(\frac{\partial b_{n}\left(x, T_{k^{*}}\left(u_{n}\right)\right)}{\partial s}\right)\right\|_{L^{\infty}(Q)} \\
& \leq\left\|g_{k}^{\prime}\right\|_{L^{\infty}(Q)}\left(\max _{|r| \leq k^{*}}\left(D_{x}\left(\frac{\partial b_{n}(x, s)}{\partial s}\right)\right)+1\right)
\end{aligned}
$$

As a consequence of (5.19), 5.24 we then obtain (5.22). To show that 5.23) holds, due to 5.21 we obtain

$$
\begin{align*}
\frac{\partial g_{k}\left(b_{n}\left(x, u_{n}\right)\right)}{\partial t}= & \operatorname{div}\left(a\left(x, t, u_{n}, D u_{n}\right) g_{k}^{\prime}\left(b_{n}\left(x, u_{n}\right)\right)\right) \\
& -a\left(x, t, u_{n}, D u_{n}\right) g_{k}^{\prime \prime}\left(b_{n}\left(u_{n}\right)\right) D_{x}\left(\frac{\partial b_{n}\left(x, u_{n}\right)}{\partial s}\right) \tag{5.25}\\
& +H_{n}\left(x, t, u_{n}, D u_{n}\right) g_{k}^{\prime}\left(b_{n}\left(x, u_{n}\right)\right)+f_{n} g_{k}^{\prime}\left(b_{n}\left(x, u_{n}\right)\right)
\end{align*}
$$

Since support of g_{k}^{\prime} and support of $g_{k}^{\prime \prime}$ are both included in $[-k, k], u_{n}$ may be replaced by $T_{k^{*}}\left(u_{n}\right)$ in each of these terms. As a consequence, each term on the right-hand side of 5.25 is bounded either in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)\right)$ or in $L^{1}(Q)$. Hence lemma 4.4 allows us to conclude that $g_{k}\left(b_{n}\left(x, u_{n}\right)\right)$ is compact in $L_{\mathrm{loc}}^{p}(Q, \sigma)$. Thus, for a subsequence, it also converges in measure and almost every where in Q, due to the choice of g_{k}, we conclude that for each k, the sequence $T_{k}\left(b_{n}\left(x, u_{n}\right)\right)$ converges almost everywhere in Q (since we have, for every $\lambda>0$,)

$$
\begin{aligned}
& \operatorname{meas}\left(\left\{\left|b_{n}\left(x, u_{n}\right)-b_{m}\left(x, u_{m}\right)\right|>\lambda\right\} \cap B_{R} \times[0, T]\right) \\
& \leq \operatorname{meas}\left(\left\{\left|b_{n}\left(x, u_{n}\right)\right|>k\right\} \cap B_{R} \times[0, T]\right)+\operatorname{meas}\left(\left\{\left|b_{m}\left(x, u_{m}\right)\right|>k\right\} \cap B_{R} \times[0, T]\right) \\
& \quad+\operatorname{meas}\left(\left\{\left|g_{k}\left(b_{n}\left(x, u_{n}\right)\right)-g_{k}\left(b_{m}\left(x, u_{m}\right)\right)\right|>\lambda\right\}\right)
\end{aligned}
$$

Let $\varepsilon>0$, then there exist $k(\varepsilon)>0$ such that

$$
\operatorname{meas}\left(\left\{\left|b_{n}\left(x, u_{n}\right)-b_{m}\left(x, u_{m}\right)\right|>\lambda\right\} \cap B_{R} \times[0, T]\right) \leq \varepsilon
$$

for all $n, m \geq n_{0}(k(\varepsilon), \lambda, R)$. This proves that $\left(b_{n}\left(x, u_{n}\right)\right)$ is a Cauchy sequence in measure in $B_{R} \times[0, T]$, thus converges almost everywhere to some measurable function v. Then for a subsequence denoted again u_{n},

$$
\begin{gather*}
u_{n} \rightarrow u \quad \text { a.e. in } Q \tag{5.26}\\
b_{n}\left(x, u_{n}\right) \rightarrow b(x, u) \quad \text { a.e. in } Q . \tag{5.27}
\end{gather*}
$$

We can deduce from (5.19) that

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \quad \text { weakly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \tag{5.28}
\end{equation*}
$$

and then, the compact imbedding 3.3 gives

$$
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { strongly in } L^{q}(Q, \sigma) \text { and a.e. in } Q .
$$

Which implies, by using (3.9), for all $k>0$ that there exists a function $h_{k} \in$ $\prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right)$, such that

$$
\begin{equation*}
a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right) \rightharpoonup h_{k} \quad \text { weakly in } \prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right) \tag{5.29}
\end{equation*}
$$

We now establish that $b(x, u)$ belongs to $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$. Using 5.26 and passing to the limit-inf in 5.20 as n tends to $+\infty$, we obtain that

$$
\frac{1}{k} \int_{\Omega} B_{k}(x, u)(\tau) d x \leq\left[\|f\|_{L^{1}(Q)}+\left\|u_{0}\right\|_{L^{1}(\Omega)}\right] \equiv C
$$

for almost any τ in $(0, T)$. Due to the definition of $B_{k}(x, s)$ and the fact that $\frac{1}{k} B_{k}(x, u)$ converges pointwise to $b(x, u)$, as k tends to $+\infty$, shows that $b(x, u)$ belong to $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$.

Lemma 5.4. Let u_{n} be a solution of the approximate problem (5.11). Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} d x d t=0 \tag{5.30}
\end{equation*}
$$

Proof. Considering the function $\varphi=T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right)^{-}:=\alpha_{m}\left(u_{n}\right)$ in 5.13) this function is admissible since $\varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right)$ and $\varphi \geq 0$. Then, we have

$$
\begin{aligned}
& \int_{Q} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} \alpha_{m}\left(u_{n}\right) d x d t+\int_{\left\{-(m+1) \leq u_{n} \leq-m\right\}} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} \alpha_{m}^{\prime}\left(u_{n}\right) d x d t \\
& \quad+\int_{Q} f_{n} \exp \left(-G\left(u_{n}\right)\right) \alpha_{m}\left(u_{n}\right) d x d t \\
& \leq \int_{Q} \gamma(x, t) \exp \left(-G\left(u_{n}\right)\right) \alpha_{m}\left(u_{n}\right) d x d t
\end{aligned}
$$

Which, by setting $B_{n}^{m}(x, r)=\int_{0}^{r} \frac{\partial b_{n}(x, s)}{\partial s} \alpha_{m}(s) d s$, gives

$$
\begin{aligned}
& \int_{\Omega} B_{n}^{m}\left(x, u_{n}\right)(T) d x+\int_{\left\{-(m+1) \leq u_{n} \leq-m\right\}} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} \alpha_{m}^{\prime}\left(u_{n}\right) d x d t \\
& +\int_{Q} f_{n} \exp \left(-G\left(u_{n}\right)\right) \alpha_{m}\left(u_{n}\right) d x d t \\
& \leq \int_{Q} \gamma(x, t) \exp \left(-G\left(u_{n}\right)\right) \alpha_{m}\left(u_{n}\right) d x d t+\int_{\Omega} B_{n}^{m}\left(x, u_{0 n}\right) d x
\end{aligned}
$$

Since $B_{n}^{m}\left(x, u_{n}\right)(T) \geq 0$ and by Lebesgue's theorem, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{Q} f_{n} \exp \left(-G\left(u_{n}\right)\right) \alpha_{m}\left(u_{n}\right) d x d t=0 \tag{5.31}
\end{equation*}
$$

Similarly, since $\gamma \in L^{1}(\Omega)$, we obtain

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{Q} \gamma \exp \left(-G\left(u_{n}\right)\right) \alpha_{m}\left(u_{n}\right) d x d t=0 \tag{5.32}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\left\{-(m+1) \leq u_{n} \leq-m\right\}} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} d x d t=0 \tag{5.33}
\end{equation*}
$$

On the other hand, let $\varphi=T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right)^{+}$as test function in 5.12 and reasoning as in the proof of 5.33 we deduce that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\left.\{m) \leq u_{n} \leq m+1\right\}} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} d x d t=0 \tag{5.34}
\end{equation*}
$$

Thus (5.30 follows from (5.33) and 5.34.
Step 2: Almost everywhere convergence of the gradients. This step is devoted to introduce for $k \geq 0$ fixed a time regularization of the function $T_{k}(u)$ in order to perform the monotonicity method. This kind of regularization has been first introduced by R. Landes (see Lemma 6 and proposition 3, p.230, and proposition 4, p.231, in [12]).

Let $\psi_{i} \in D(\Omega)$ be a sequence which converge strongly to u_{0} in $L^{1}(\Omega)$. Set $w_{\mu}^{i}=\left(T_{k}(u)\right)_{\mu}+e^{-\mu t} T_{k}\left(\psi_{i}\right)$ where $\left(T_{k}(u)\right)_{\mu}$ is the mollification with respect to time of $T_{k}(u)$. Note that w_{μ}^{i} is a smooth function having the following properties:

$$
\begin{align*}
& \frac{\partial w_{\mu}^{i}}{\partial t}= \mu\left(T_{k}(u)-w_{\mu}^{i}\right), \quad w_{\mu}^{i}(0)=T_{k}\left(\psi_{i}\right), \quad\left|w_{\mu}^{i}\right| \leq k \tag{5.35}\\
& w_{\mu}^{i} \rightarrow T_{k}(u) \quad \text { in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \tag{5.36}
\end{align*}
$$

as $\mu \rightarrow \infty$. We introduce the following function of one real:

$$
h_{m}(s)= \begin{cases}1 & \text { if }|s| \leq m \\ 0 & \text { if }|s| \geq m+1 \\ m+1-s & \text { if } m \leq s \leq m+1 \\ m+1+s & \text { if }-(m+1) \leq s \leq-m\end{cases}
$$

where $m>k$.
Let $\varphi=\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)^{+} h_{m}\left(u_{n}\right) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \cap L^{\infty}(Q)$ and $\varphi \geq 0$, then we take this function in 5.12), we obtain

$$
\begin{align*}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} \exp \left(G\left(u_{n}\right)\right)\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \\
& +\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, u_{n}, D u_{n}\right) D\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \\
& -\int_{\left\{m \leq u_{n} \leq m+1\right\}} \exp \left(G\left(u_{n}\right)\right) a\left(x, t, u_{n}, D u_{n}\right) D u_{n}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)^{+} d x d t \tag{5.37}\\
& \leq \int_{Q} \gamma(x, t) \exp \left(G\left(u_{n}\right)\right)\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)^{+} h_{m}\left(u_{n}\right) d x d t \\
& \quad+\int_{Q} f_{n} \exp \left(G\left(u_{n}\right)\right)\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)^{+} h_{m}\left(u_{n}\right) d x d t
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \int_{\left\{m \leq u_{n} \leq m+1\right\}} \exp \left(G\left(u_{n}\right)\right) a\left(x, t, u_{n}, D u_{n}\right) D u_{n}\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)^{+} d x d t \\
& \leq 2 k \int_{\left\{m \leq u_{n} \leq m+1\right\}} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} d x d t
\end{aligned}
$$

Thanks to (5.30) the third integral tend to zero as n and m tend to infinity, and by Lebesgue's theorem, we deduce that the right hand side converge to zero as n, m and μ tend to infinity. Since

$$
\begin{gathered}
\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)^{+} h_{m}\left(u_{n}\right) \rightharpoonup\left(T_{k}(u)-w_{\mu}^{i}\right)^{+} h_{m}(u) \quad \text { weakly* in } L^{\infty}(Q), \text { as } n \rightarrow \infty \\
\text { and }\left(T_{k}(u)-w_{\mu}^{i}\right)^{+} h_{m}(u) \rightharpoonup 0 \quad \text { weakly* in } L^{\infty}(Q) \text { as } \mu \rightarrow \infty
\end{gathered}
$$

Let $\varepsilon_{l}(n, m, \mu, i) l=1, \ldots, n$ various functions tend to zero as n, m, i and μ tend to infinity.

The definition of the sequence w_{μ}^{i} makes it possible to establish the following lemma, which will be proved in the Appendix.

Lemma 5.5. 14 For $k \geq 0$ we have

$$
\begin{equation*}
\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} \exp \left(G\left(u_{n}\right)\right)\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \geq \varepsilon(n, m, \mu, i) \tag{5.38}
\end{equation*}
$$

On the other hand, the second term of left hand side of 5.37 reads as follows

$$
\begin{aligned}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, u_{n}, D u_{n}\right) D\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \\
& =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0,\left|u_{n}\right| \leq k\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right) D\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \\
& -\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0,\left|u_{n}\right| \geq k\right\}} a\left(x, t, u_{n}, D u_{n}\right) D w_{\mu}^{i} h_{m}\left(u_{n}\right) d x d t .
\end{aligned}
$$

Since $m>k, h_{m}\left(u_{n}\right)=0$ on $\left\{\left|u_{n}\right| \geq m+1\right\}$, One has

$$
\begin{align*}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, u_{n}, D u_{n}\right) D\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \\
& =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right) D\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \\
& \quad-\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0,\left|u_{n}\right| \geq k\right\}} a\left(x, t, T_{m+1}\left(u_{n}\right), D T_{m+1}\left(u_{n}\right)\right) D w_{\mu}^{i} h_{m}\left(u_{n}\right) d x d t \\
& =J_{1}+J_{2} \tag{5.39}
\end{align*}
$$

In the following we pass to the limit in 5.39): first we let n tend to $+\infty$, then μ and finally m, tend to $+\infty$. Since $a\left(x, t, T_{m+1}\left(u_{n}\right), D T_{m+1}\left(u_{n}\right)\right)$ is bounded in $\prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right)$, we have that

$$
a\left(x, t, T_{m+1}\left(u_{n}\right), D T_{m+1}\left(u_{n}\right)\right) h_{m}\left(u_{n}\right) \chi_{\left\{\left|u_{n}\right|>k\right\}} \rightarrow h_{m} h_{m}(u) \chi_{\{|u|>k\}}
$$

strongly in $\prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right)$ as n tends to infinity, it follows that

$$
\begin{aligned}
J_{2} & =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} h_{m} D w_{\mu}^{i} h_{m}(u) \chi_{\{|u|>k\}} d x d t+\varepsilon(n) \\
& =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} h_{m}\left(D T_{k}(u)_{\mu}-e^{-\mu t} D T_{k}\left(\psi_{i}\right)\right) h_{m}(u) \chi_{\{|u|>k\}} d x d t+\varepsilon(n) .
\end{aligned}
$$

By letting $\mu \rightarrow+\infty$,

$$
J_{2}=\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} h_{m} D T_{k}(u) d x d t+\varepsilon(n, \mu)
$$

Using now the term J_{1} of 5.39 one can easily show that

$$
\begin{align*}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right) D\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \\
& =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \\
& \quad \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] h_{m}\left(u_{n}\right) d x d t \\
& \quad+\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\left(D T_{k}\left(u_{n}\right)-D T_{k}(u)\right) h_{m}\left(u_{n}\right) d x d t \\
& \quad+\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right) D T_{k}(u) h_{m}\left(u_{n}\right) d x d t \\
& \quad-\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right) D w_{\mu}^{i} h_{m}\left(u_{n}\right) d x d t \\
& =K_{1}+K_{2}+K_{3}+K_{4} . \tag{5.40}
\end{align*}
$$

We shall go to the limit as n and $\mu \rightarrow+\infty$ in the three integrals of the right-hand side. Starting with K_{2}, we have by letting $n \rightarrow+\infty$,

$$
\begin{equation*}
K_{2}=\varepsilon(n) . \tag{5.41}
\end{equation*}
$$

About K_{3}, we have by letting $n \rightarrow+\infty$ and using 5.29,

$$
K_{3}=\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} h_{k} D T_{k}(u) h_{m}(u) \chi_{\{|u|>k\}} d x d t+\varepsilon(n)
$$

By letting $\mu \rightarrow+\infty$,

$$
\begin{equation*}
K_{3}=\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} h_{k} D T_{k}(u) d x d t+\varepsilon(n, \mu) \tag{5.42}
\end{equation*}
$$

For K_{4} we can write

$$
K_{4}=-\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} h_{k} D w_{\mu}^{i} h_{m}(u) d x d t+\varepsilon(n)
$$

By letting $\mu \rightarrow+\infty$,

$$
\begin{equation*}
K_{4}=-\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} h_{k} D T_{k}(u) d x d t+\varepsilon(n, \mu) . \tag{5.43}
\end{equation*}
$$

We then conclude that

$$
\begin{aligned}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right) D\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) h_{m}\left(u_{n}\right) d x d t \\
& =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \\
& \quad \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] h_{m}\left(u_{n}\right) d x d t+\varepsilon(n, \mu) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{align*}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \\
& \quad \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] d x d t \\
& =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \\
& \quad \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] h_{m}\left(u_{n}\right) d x d t \tag{5.44}\\
& \quad+\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)\left(D T_{k}\left(u_{n}\right)-D T_{k}(u)\right) \\
& \quad \times\left(1-h_{m}\left(u_{n}\right)\right) d x d t \\
& \quad-\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\left(D T_{k}\left(u_{n}\right)-D T_{k}(u)\right) \\
& \quad \times\left(1-h_{m}\left(u_{n}\right)\right) d x d t .
\end{align*}
$$

Since $h_{m}\left(u_{n}\right)=1$ in $\left\{\left|u_{n}\right| \leq m\right\}$ and $\left\{\left|u_{n}\right| \leq k\right\} \subset\left\{\left|u_{n}\right| \leq m\right\}$ for m large enough, we deduce from (5.44) that

$$
\begin{aligned}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \\
& \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] d x d t \\
& =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \\
& \quad \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] h_{m}\left(u_{n}\right) d x d t \\
& \quad+\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0,\left|u_{n}\right|>k\right\}} a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right) D T_{k}(u)\left(1-h_{m}\left(u_{n}\right)\right) d x d t
\end{aligned}
$$

It is easy to see that the last terms of the last equality tend to zero as $n \rightarrow+\infty$, which implies

$$
\begin{aligned}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \\
& \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] d x d t \\
& =\int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \\
& \quad \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] h_{m}\left(u_{n}\right) d x d t+\varepsilon(n)
\end{aligned}
$$

Combining (5.38), 5.40, (5.41), 5.42, (5.43) and (5.44, we obtain

$$
\begin{align*}
& \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \tag{5.45}\\
& \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] d x d t \leq \varepsilon(n, \mu, m)
\end{align*}
$$

Passing to the limit in 5.45 as n and m tend to infinity, we obtain

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \tag{5.46}\\
& \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] d x d t=0
\end{align*}
$$

On the other hand, taking $\varphi=\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right)^{-} h_{m}\left(u_{n}\right)$ in 5.13, we deduce as in (5.46) that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{\left\{T_{k}\left(u_{n}\right)-w_{\mu}^{i} \leq 0\right\}}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \tag{5.47}\\
& \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] d x d t=0
\end{align*}
$$

Combining (5.46) and 5.47, we conclude

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{Q}\left[a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}(u)\right)\right] \tag{5.48}\\
& \times\left[D T_{k}\left(u_{n}\right)-D T_{k}(u)\right] d x d t=0
\end{align*}
$$

Which, by lemma 4.5, implies

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { strongly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \text { for all } k . \tag{5.49}
\end{equation*}
$$

Now, observe that for every $\sigma>0$,

$$
\begin{aligned}
& \operatorname{meas}\left\{(x, t) \in \Omega \times[0, T]:\left|D u_{n}-D u\right|>\sigma\right\} \\
& \leq \operatorname{meas}\left\{(x, t) \in \Omega \times[0, T]:\left|D u_{n}\right|>k\right\} \\
& \quad+\operatorname{meas}\{(x, t) \in \Omega \times[0, T]:|u|>k\} \\
& \quad+\operatorname{meas}\left\{(x, t) \in \Omega \times[0, T]:\left|D T_{k}\left(u_{n}\right)-D T_{k}(u)\right|>\sigma\right\}
\end{aligned}
$$

then as a consequence of 5.49 we have that $D u_{n}$ converges to $D u$ in measure and therefore, always reasoning for a subsequence,

$$
\begin{equation*}
D u_{n} \rightarrow D u \quad \text { a. e. in } Q \tag{5.50}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
a\left(x, t, T_{k}\left(u_{n}\right), D T_{k}\left(u_{n}\right)\right) \rightharpoonup a\left(x, t, T_{k}(u), D T_{k}(u)\right) \quad \text { in } \prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right) \tag{5.51}
\end{equation*}
$$

Step 3: Equi-integrability of the nonlinearity sequence. We shall now prove that $H_{n}\left(x, t, u_{n}, D u_{n}\right) \rightarrow H(x, t, u, D u)$ strongly in $L^{1}(Q)$ by using Vitali's theorem. Since $H_{n}\left(x, t, u_{n}, D u_{n}\right) \rightarrow H(x, t, u, D u)$ a.e. in Q, Consider a function $\rho_{h}(s)=\int_{0}^{s} g(\nu) \chi_{\{\nu>h\}} d \nu$, take $\varphi=\rho_{h}\left(u_{n}\right)=\int_{0}^{u_{n}} g(s) \chi_{\{s>h\}} d s$ as test function in (5.12), we obtain

$$
\begin{aligned}
& {\left[\int_{\Omega} B_{h}^{n}\left(x, u_{n}\right) d x\right]_{0}^{T}+\int_{Q} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} g\left(u_{n}\right) \chi_{\left\{u_{n}>h\right\}} d x d t} \\
& \leq\left(\int_{h}^{\infty} g(s) \chi_{\{s>h\}} d s\right) \exp \left(\frac{\|g\|_{L^{1}(\mathbb{R})}}{\alpha}\right)\left(\|\gamma\|_{L^{1}(Q)}+\left\|f_{n}\right\|_{L^{1}(Q)}\right)
\end{aligned}
$$

where $B_{h}^{n}(x, r)=\int_{0}^{r} \frac{\partial b_{n}(x, s)}{\partial s} \rho_{h}(s) d s$, which implies, since $B_{h}^{n}(x, r) \geq 0$,

$$
\begin{aligned}
& \int_{Q} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} g\left(u_{n}\right) \chi_{\left\{u_{n}>h\right\}} d x d t \\
& \leq\left(\int_{h}^{\infty} g(s) d s\right) \exp \left(\frac{\|g\|_{L^{1}(\mathbb{R})}}{\alpha}\right)\left(\|\gamma\|_{L^{1}(Q)}+\left\|f_{n}\right\|_{L^{1}(Q)}\right)+\int_{\Omega} B_{h}^{n}\left(x, u_{0 n}\right) d x
\end{aligned}
$$

Using (3.11, we have

$$
\int_{\left\{u_{n}>h\right\}} g\left(u_{n}\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} d x d t \leq C \int_{h}^{\infty} g(s) d s
$$

Since $g \in L^{1}(\mathbb{R})$, we have

$$
\lim _{h \rightarrow \infty} \sup _{n \in \mathbb{N}} \int_{\left\{u_{n}>h\right\}} g\left(u_{n}\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} d x d t=0
$$

Similarly, let $\varphi=\int_{u_{n}}^{0} g(s) \chi_{\{s<-h\}} d s$ as a test function in 5.13), we conclude that

$$
\lim _{h \rightarrow \infty} \sup _{n \in \mathbb{N}} \int_{\left\{u_{n}<-h\right\}} g\left(u_{n}\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} d x d t=0 .
$$

Consequently,

$$
\lim _{h \rightarrow+\infty} \sup _{n \in \mathbb{N}} \int_{\left\{\left|u_{n}\right|>h\right\}} g\left(u_{n}\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} d x d t=0
$$

which, for h large enough, implies

$$
\begin{aligned}
\int_{Q} g\left(u_{n}\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} d x d t & \leq \int_{\left\{\left|u_{n}\right|<h\right\}} g\left(u_{n}\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} d x d t+1 \\
& \leq \int_{Q} g\left(T_{k}\left(u_{n}\right)\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p} d x d t+1
\end{aligned}
$$

Then by 5.49 and Vitali's theorem, we can deduce that $g\left(u_{n}\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p}$ converges to $g(u) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u}{\partial x_{i}}\right|^{p}$ strongly in $L^{1}(Q)$. Consequently, using (3.12), we conclude that

$$
\begin{equation*}
H_{n}\left(x, t, u_{n}, D u_{n}\right) \rightarrow H(x, t, u, D u) \quad \text { strongly in } L^{1}(Q) \tag{5.52}
\end{equation*}
$$

Step 4. In this step we prove that u satisfies (5.3), (5.4) and (5.5).
Lemma 5.6. The limit u of the approximate solution u_{n} of (5.11) satisfies

$$
\lim _{m \rightarrow+\infty} \int_{\{m \leq|u| \leq m+1\}} a(x, t, u, D u) D u d x d t=0
$$

Proof. Note that for any fixed $m \geq 0$,

$$
\begin{aligned}
& \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} \\
& =\int_{Q} a\left(x, t, u_{n}, D u_{n}\right)\left(D T_{m+1}\left(u_{n}\right)-D T_{m}\left(u_{n}\right)\right) \\
& =\int_{Q} a\left(x, t, T_{m+1}\left(u_{n}\right), D T_{m+1}\left(u_{n}\right)\right) D T_{m+1}\left(u_{n}\right) \\
& \quad-\int_{Q} a\left(x, t, T_{m}\left(u_{n}\right), D T_{m}\left(u_{n}\right)\right) D T_{m}\left(u_{n}\right)
\end{aligned}
$$

According to 5.51 and 5.49, one is alloed to pass to the limit as $n \rightarrow+\infty$ for fixed $m \geq 0$, and to obtain

$$
\begin{align*}
& \lim _{n \rightarrow+\infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, t, u_{n}, D u_{n}\right) D u_{n} d x d t \\
& =\int_{Q} a\left(x, t, T_{m+1}(u), D T_{m+1}(u)\right) D T_{m+1}(u) d x d t \\
& \quad-\int_{Q} a\left(x, t, T_{m}(u), D T_{m}(u)\right) D T_{m}\left(u_{n}\right) d x d t \tag{5.53}\\
& =\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a(x, t, u, D u) D u d x d t
\end{align*}
$$

Taking the limit as $m \rightarrow+\infty$ in 5.53 and using the estimate 5.30 show that u satisfies (5.4) and the proof is complete.

Now, we show that u satisfies (5.4) and (5.5). Let S be a function in $W^{1, \infty}(\mathbb{R})$ such that S has a compact support. Let M be a positive real number such that support of $\left(S^{\prime}\right)$ is a subset of $[-M, M]$. Pointwise multiplication of the approximate equation 5.11 by $S^{\prime}\left(u_{n}\right)$ leads to

$$
\begin{align*}
& \frac{\partial B_{S}^{n}\left(x, u_{n}\right)}{\partial t}-\operatorname{div}\left[S^{\prime}\left(u_{n}\right) a\left(u_{n}, D u_{n}\right)\right]+S^{\prime \prime}\left(u_{n}\right) a\left(u_{n}, D u_{n}\right) D u_{n} \\
& +S^{\prime}\left(u_{n}\right) H_{n}\left(u_{n}, D u_{n}\right) \tag{5.54}\\
& =f S^{\prime}\left(u_{n}\right) \quad \text { in } D^{\prime}(Q)
\end{align*}
$$

Passing to the limit, as n tends to $+\infty$, we have

- Since S is bounded and continuous, $u_{n} \rightarrow u$ a.e. in Q implies that $B_{S}^{n}\left(x, u_{n}\right)$ converges to $B_{S}(x, u)$ a.e. in Q and L^{∞} weak-*. Then

$$
\frac{\partial B_{S}^{n}\left(x, u_{n}\right)}{\partial t} \text { converges to } \frac{\partial B_{S}(x, u)}{\partial t}
$$

in $D^{\prime}(Q)$ as n tends to $+\infty$.

- Since $\operatorname{supp}\left(S^{\prime}\right) \subset[-M, M]$, we have for $n \geq M$,

$$
S^{\prime}\left(u_{n}\right) a_{n}\left(u_{n}, D u_{n}\right)=S^{\prime}\left(u_{n}\right) a\left(T_{M}\left(u_{n}\right), D T_{M}\left(u_{n}\right)\right) \quad \text { a.e. in } Q
$$

The pointwise convergence of u_{n} tou and (5.51) as n tends to $+\infty$ and the bounded character of S^{\prime} permit us to conclude that

$$
\begin{equation*}
S^{\prime}\left(u_{n}\right) a_{n}\left(u_{n}, D u_{n}\right) \rightharpoonup S^{\prime}(u) a\left(T_{M}(u), D T_{M}(u)\right) \quad \text { in } \prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right) \tag{5.55}
\end{equation*}
$$

as n tends to $+\infty$. $S^{\prime}(u) a\left(T_{M}(u), D T_{M}(u)\right)$ has been denoted by $S^{\prime}(u) a(u, D u)$ in equation (5.4).

- Regarding the 'energy' term, we have

$$
S^{\prime \prime}\left(u_{n}\right) a\left(u_{n}, D u_{n}\right) D u_{n}=S^{\prime \prime}\left(u_{n}\right) a\left(T_{M}\left(u_{n}\right), D T_{M}\left(u_{n}\right)\right) D T_{M}\left(u_{n}\right) \quad \text { a.e. in } Q
$$

The pointwise convergence of $S^{\prime}\left(u_{n}\right) \operatorname{to} S^{\prime}(u)$ and 5.51) as n tends to $+\infty$ and the bounded character of $S^{\prime \prime}$ permit us to conclude that

$$
\begin{equation*}
S^{\prime \prime}\left(u_{n}\right) a_{n}\left(u_{n}, D u_{n}\right) D u_{n} \rightharpoonup S^{\prime \prime}(u) a\left(T_{M}(u), D T_{M}(u)\right) D T_{M}(u) \text { weakly in } L^{1}(Q) \tag{5.56}
\end{equation*}
$$

Recall that

$$
S^{\prime \prime}(u) a\left(T_{M}(u), D T_{M}(u)\right) D T_{M}(u)=S^{\prime \prime}(u) a(u, D u) D u \quad \text { a.e. in } Q
$$

- Since $\operatorname{supp}\left(S^{\prime}\right) \subset[-M, M]$, by 5.52, we have

$$
\begin{equation*}
S^{\prime}\left(u_{n}\right) H_{n}\left(x, t, u_{n}, D u_{n}\right) \rightarrow S^{\prime}(u) H(x, t, u, D u) \quad \text { strongly in } L^{1}(Q), \tag{5.57}
\end{equation*}
$$

as n tends to $+\infty$.

- Due to (5.8) and $\left(u_{n} \rightarrow u\right.$ a.e in $\left.Q\right)$, we have

$$
S^{\prime}\left(u_{n}\right) f_{n} \rightarrow S^{\prime}(u) f \quad \text { strongly in } L^{1}(Q) \text { as } n \rightarrow+\infty
$$

As a consequence of the above convergence result, we are in a position to pass to the limit as n tends to $+\infty$ in equation (5.54) and to conclude that u satisfies (5.4).

It remains to show that $B_{S}(x, u)$ satisfies the initial condition (5.5). To this end, firstly remark that, S being bounded, $B_{S}^{n}\left(x, u_{n}\right)$ is bounded in $L^{\infty}(Q)$. Secondly, (5.54) and the above considerations on the behavior of the terms of this equation show that $\frac{\partial B_{S}^{n}\left(x, u_{n}\right)}{\partial t}$ is bounded in $L^{1}(Q)+L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)\right)$. As a consequence, an Aubin's type lemma (see, e.g, [17]) implies that $B_{S}^{n}\left(x, u_{n}\right)$ lies in a compact set of $C^{0}\left([0, T], L^{1}(\Omega)\right)$. It follows that on the one hand, $B_{S}^{n}\left(x, u_{n}\right)(t=$ $0)=B_{S}^{n}\left(x, u_{0}^{n}\right)$ converges to $B_{S}(x, u)(t=0)$ strongly in $L^{1}(\Omega)$. On the other hand, the smoothness of S implies that

$$
B_{S}(x, u)(t=0)=B_{S}\left(x, u_{0}\right) \quad \text { in } \Omega
$$

As a conclusion, steps $1-5$ complete the proof of theorem 5.3

6. Example

Let us consider the special case

$$
b(x, r)=\sigma(x)|s|^{q(x)-2} s
$$

and $q: \Omega \rightarrow] 1,+\infty\left[\right.$ with $q(x) \leq-|x|^{2}+2$. Then $b: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, Such that for every $x \in \Omega, b(x,$.$) is a strictly increasing C^{1}$-function with $b(x, 0)=0$. Next, for any $k>0$, there exist $\lambda_{k}>0$ and functions $A_{k} \in L^{1}(\Omega)$ and $B_{k} \in L^{p}(\Omega)$ such that

$$
\begin{gather*}
\lambda_{k} \leq \frac{\partial b(x, s)}{\partial s} \leq A_{k}(x), \quad\left|D_{x}\left(\frac{\partial b(x, s)}{\partial s}\right)\right| \leq B_{k}(x) \tag{6.1}\\
H(x, t, s, \xi)=\rho \sin (s) \exp \left(s^{-2}\right) \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p}, \quad \rho \in \mathbb{R} \tag{6.2}\\
a_{i}(x, t, s, d)=w_{i}(x)\left|d_{i}\right|^{p-1} \operatorname{sgn}\left(d_{i}\right), \quad i=1, \ldots, N \tag{6.3}
\end{gather*}
$$

with $w_{i}(x),(i=1, \ldots, N)$, a weight function strictly positive, $x \in Q$. Then, we can consider the Hardy inequality in the form

$$
\left(\int_{\Omega}|u(x)|^{p} \sigma(x) d x\right)^{1 / p} \leq c\left(\int_{\Omega}|D u(x)|^{p} w(x) d x\right)^{1 / p}
$$

It is easy to show that the $a_{i}(t, x, s, d)$ are Caratheodory functions satisfying the growth condition (3.9) and the coercivity (3.11). On the order hand the monotonicity condition is verified. In fact,

$$
\sum_{i=1}^{N}\left(a_{i}(x, t, d)-a\left(x, t, d^{\prime}\right)\right)\left(d_{i}-d_{i}^{\prime}\right)
$$

$$
=w(x) \sum_{i=1}^{N-1}\left(\left|d_{i}\right|^{p-1} \operatorname{sgn}\left(d_{i}\right)-\left|d_{i}^{\prime}\right|^{p-1} \operatorname{sgn}\left(d_{i}^{\prime}\right)\right)\left(d_{i}-d_{i}^{\prime}\right)>0
$$

for almost all $x \in \Omega$ and for all $d, d^{\prime} \in \mathbb{R}^{N}$. This last inequality can not be strict, since for $d \neq d^{\prime}$, since $w>0$ a.e. in Ω.

While the Carathéodory function $H(x, t, s, \xi)$ satisfies the condition 3.12 indeed

$$
|H(x, t, s, \xi)| \leq|\rho| \exp \left(s^{-2}\right) \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p}=g(s) \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p}
$$

where $g(s)=|\rho| \exp \left(s^{-2}\right.$ is a function positive continuous which belongs to $L^{1}(\mathbb{R})$. Note that $H(x, t, s, \xi)$ does not satisfy the sign condition 1.2) and the coercivity condition (1.4).

In particular, let us use special weight function, w, expressed in terms of the distance to the bounded $\partial \Omega$. Denote $d(x)=\operatorname{dist}(x, \partial \Omega)$ and set $w(x)=d^{\lambda}(x)$, $\sigma(x)=d^{\mu}(x)$.

Finally, the hypotheses of Theorem 5.3 are satisfied. Therefore, for all $f \in L^{1}(Q)$, the problem

$$
\begin{aligned}
& b(x, u) \in L^{\infty}\left([0, T] ; L^{1}(\Omega)\right) ; \quad T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, w)\right) \\
& \lim _{m \rightarrow+\infty} \int_{\{m \leq|u| \leq m+1\}} d^{\lambda}(x) \sum_{i=1}^{N}\left|\frac{\partial u}{\partial x_{i}}\right|^{p-1} \operatorname{sgn}\left(\frac{\partial u}{\partial x_{i}}\right) \frac{\partial u}{\partial x_{i}} d x d t=0 \\
& B_{S}(x, r)=\int_{0}^{r} \frac{\partial b(x, \sigma)}{\partial \sigma} S^{\prime}(\sigma) d \sigma \\
& \quad \int_{\Omega} B_{S}(x, u(T)) \varphi(T) d x-\int_{Q} B_{S}(x, u) \frac{\partial \varphi}{\partial t} d x d t \\
& \quad+\int_{Q} S^{\prime}(u) d^{\lambda}(x) \sum_{i=1}^{N}\left|\frac{\partial u}{\partial x_{i}}\right|^{p-1} \operatorname{sgn}\left(\frac{\partial u}{\partial x_{i}}\right) \frac{\partial \varphi}{\partial x_{i}} d x d t \\
& \quad+\int_{Q} S^{\prime \prime}(u) d^{\lambda}(x) \sum_{i=1}^{N}\left|\frac{\partial u}{\partial x_{i}}\right|^{p-1} \operatorname{sgn}\left(\frac{\partial u}{\partial x_{i}}\right) \frac{\partial u}{\partial x_{i}} \varphi d x d t \\
& \quad+\int_{Q} \rho S^{\prime}(u) \sin (u) \exp \left(u^{-2}\right) \sum_{i=1}^{N} w_{i}\left|\frac{\partial u}{\partial x_{i}}\right|^{p-1} \varphi d x d t \\
& \quad=\int_{Q} f S^{\prime}(u) \varphi d x d t+\int_{\Omega} B_{S}\left(x, u_{0}\right) \varphi(0) d x \\
& B_{S}(x, u)(t=0)=B_{S}\left(x, u_{0}\right) \quad \text { in } \Omega
\end{aligned}
$$

for all $\varphi \in C_{0}^{\infty}(Q)$ and $S \in W^{1, \infty}(\mathbb{R})$ with $S^{\prime} \in C_{0}^{\infty}(\mathbb{R})$, has at least one renormalised solution.

7. Appendix

Proof of Lemma 5.5. (see also [15]) Integration by parts and the use of the properties of $(w)_{\mu}^{i}$ yield

$$
\begin{align*}
& \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} h_{m}\left(u_{n}\right) \exp \left(G\left(u_{n}\right)\right)\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) d x d t \\
& =\int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} h_{m}\left(u_{n}\right) T_{k}\left(u_{n}\right) \exp \left(G\left(u_{n}\right)\right), d x d t \tag{7.1}\\
& -\int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} h_{m}\left(u_{n}\right) \exp \left(G\left(u_{n}\right)\right) w_{\mu}^{i} d x d t \\
& =I_{1}^{n}+I_{2}^{n, \mu} .
\end{align*}
$$

We denote

$$
\begin{gathered}
B_{m, k}^{n}(x, r)=\int_{0}^{r} \frac{\partial b_{n}(x, s)}{\partial s} h_{m}(s) T_{k}(s) \exp (G(s)) d s \\
B_{m}^{n}(x, r)=\int_{0}^{r} \frac{\partial b_{n}(x, s)}{\partial s} h_{m}(s) \exp (G(s)) d s
\end{gathered}
$$

By a standard argument we can write the first term on the right-hand side of 7.1 as

$$
\begin{align*}
I_{1}^{n} & =\left[\int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} B_{m, k}^{n}\left(x, u_{n}\right) d x\right]_{0}^{T} \\
& =\int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)(T)-w_{\mu}^{i}(T) \geq 0\right\}} B_{m, k}^{n}\left(x, T_{m}\left(u_{n}\right)(T)\right) d x \tag{7.2}\\
& -\int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)(0)-w_{\mu}^{i}(0) \geq 0\right\}} B_{m, k}^{n}\left(x, T_{m}\left(u_{n}\right)(0)\right) d x
\end{align*}
$$

We observe that

$$
\frac{\partial b_{n}\left(x, T_{m}\left(u_{n}\right)\right)}{\partial s} h_{m}\left(u_{n}\right)=\left(\frac{\partial b_{n}\left(x, T_{m}\left(u_{n}\right)\right)}{\partial s}+\frac{1}{n}\right) h_{m}\left(u_{n}\right)
$$

for $n>m$ with $\operatorname{supp} h_{m} \subset[-m ; m]$. Passing to the limit in 7.2$]$ as $n \rightarrow+\infty$, we deduce that

$$
\begin{align*}
I_{1}^{n} & =\int_{\left\{x \in \Omega ; T_{k}(u)(T)-w_{\mu}^{i}(T) \geq 0\right\}} B_{m, k}\left(x, T_{m}(u(T))\right) d x \tag{7.3}\\
& -\int_{\left\{x \in \Omega ; T_{k}(u)(0)-w_{\mu}^{i}(0) \geq 0\right\}} B_{m, k}\left(x, T_{m}\left(u_{0}\right)\right) d x+\varepsilon(n)
\end{align*}
$$

where $B_{m, k}(x, r)=\int_{0}^{r} \frac{\partial b(x, s)}{\partial s} h_{m}(s) T_{k}(s) \exp (G(s)) d s$. Passing to the limit in 7.3 as $i \rightarrow+\infty$ and $\mu \rightarrow+\infty$, we have

$$
\begin{equation*}
I_{1}^{n}=\int_{\Omega}\left[B_{m, k}(x, u(T))-B_{m, k}\left(x, u_{0}\right)\right] d x+\varepsilon(n, \mu, i) \tag{7.4}
\end{equation*}
$$

The second term on the right-hand side of (7.1) can be written as

$$
\begin{align*}
I_{2}^{n, \mu}= & -\int_{0}^{T} \int_{\left\{x \in \Omega ; / T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} h_{m}\left(u_{n}\right) \exp \left(G\left(u_{n}\right)\right) w_{\mu}^{i} d x d t \\
= & -\left[\int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} B_{m}^{n}\left(x, u_{n}\right) w_{\mu}^{i} d x\right]_{0}^{T} \\
& \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} B_{m}^{n}\left(x, u_{n}\right) \frac{\partial w_{\mu}^{i}}{\partial t} d x d t \tag{7.5}\\
= & -\int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)(T)-w_{\mu}^{i}(T) \geq 0\right\}} B_{m}^{n}\left(x, T_{m}\left(u_{n}(T)\right)\right) w_{\mu}^{i}(T) d x \\
+ & \int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)(0)-w_{\mu}^{i}(0) \geq 0\right\}} B_{m}^{n}\left(x, u_{0 n}\right) w_{\mu}^{i}(0) d x \\
& +\mu \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}\left(u_{n}\right)-w_{\mu}^{i} \geq 0\right\}} B_{m}^{n}\left(x, u_{n}\right)\left(T_{k}(u)-w_{\mu}^{i}\right) d x d t .
\end{align*}
$$

By passing to the limit as n tends to infinity in 7.5 , we obtain

$$
\begin{aligned}
I_{2}^{n, \mu}= & -\int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}}\left[B_{m}(x, u(T)) w_{\mu}^{i}(T)-B_{m}\left(x, u_{0}\right) w_{\mu}^{i}(0) d x\right. \\
& +\mu \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}} \int_{0}^{T} B_{m}(x, u)\left(T_{k}(u)-w_{\mu}^{i}\right) d x d t+\varepsilon(n),
\end{aligned}
$$

where $B_{m}(x, r)=\int_{0}^{r} \frac{\partial b(x, s)}{\partial s} h_{m}(s) \exp (G(s)) d s$. Therefore, passing to the limit, in i and μ, in the first terms on the right-hand side of the last equality, we deduce that

$$
\begin{align*}
& \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}}\left[B_{m}(x, u(T)) w_{\mu}^{i}(T)-B_{m}\left(x, u_{0}\right) w_{\mu}^{i}(0) d x\right. \tag{7.6}\\
& =\int_{\Omega}\left[B_{m}(x, u(T))\left(T_{k}(u(T))-B_{m}\left(x, u_{0}\right) T_{k}\left(u_{0}\right)\right) d x+\varepsilon(n, \mu, i)\right.
\end{align*}
$$

The second term on the right-hand side of 7.5 can be rewritten as

$$
\begin{align*}
& \mu \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}} B_{m}(x, u)\left(T_{k}(u)-w_{\mu}^{i}\right) d x d t \\
& =\mu \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}}\left(B_{m}(x, u)-B_{m}\left(x, T_{k}(u)\right)\right)\left(T_{k}(u)-w_{\mu}^{i}\right) d x d t \\
& +\mu \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}}\left(B_{m}\left(x, T_{k}(u)\right)-B_{m}\left(x, w_{\mu}^{i}\right)\left(T_{k}(u)-w_{\mu}^{i}\right) d x d t\right. \tag{7.7}\\
& +\mu \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}} B_{m}\left(x, w_{\mu}^{i}\right)\left(T_{k}(u)-w_{\mu}^{i}\right) d x d t \\
& =J_{1}+J_{2}+J_{3},
\end{align*}
$$

where

$$
\begin{align*}
J_{1}= & \mu \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0 ; u>k\right\}}\left(B_{m}(x, u)-B_{m}(x, k)\right)\left(k-w_{\mu}^{i}\right) d x d t \\
& +\mu \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0 ; u<-k\right\}}\left(B_{m}(x, u)-B_{m}(x,-k)\right)\left(-k-w_{\mu}^{i}\right) d x d t \\
\geq & 0 . \tag{7.8}
\end{align*}
$$

As $B_{m}(x, z)$ is non-decreasing for z and $-k \leq w_{\mu}^{i} \leq k$, it follows that

$$
\begin{equation*}
J_{2} \geq 0 \tag{7.9}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
J_{3} & =\mu \int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}} B_{m}\left(x, w_{\mu}^{i}\right)\left(T_{k}(u)-w_{\mu}^{i}\right) d x d t \\
& =\int_{0}^{T} \int_{\left\{x \in \Omega ; T_{k}(u)-w_{\mu}^{i} \geq 0\right\}} B_{m}\left(x, w_{\mu}^{i}\right) \frac{\partial(w)_{\mu}^{i}}{\partial t} d x d t \tag{7.10}\\
& =\int_{\left\{x \in \Omega ; T_{k}(u)(T)-w_{\mu}^{i}(T) \geq 0\right\}} \bar{B}\left(x, w_{\mu}^{i}(T)\right) d x \\
& -\int_{\left\{x \in \Omega ; T_{k}(u)(0)-w_{\mu}^{i}(0) \geq 0\right\}} \bar{B}\left(\left(x, w_{\mu}^{i}(0)\right) d x\right.
\end{align*}
$$

where $\bar{B}(x, z)=\int_{0}^{z} B_{m}(x, r) d r$. Also $w_{\mu}^{i} \rightarrow T_{k}(u)$ a.e. in Q as i and μ tends to $+\infty$ and $\left|w_{\mu}^{i}\right| \leq k$. Then Lebegue's convergence theorem shows that

$$
\begin{equation*}
J_{3}=\int_{\Omega}\left(\bar{B}\left(x, T_{k}(u(T))\right)-\bar{B}\left(x, T_{k}\left(u_{0}\right)\right)\right) d x+\varepsilon(n, \mu, i) \tag{7.11}
\end{equation*}
$$

In view of (7.6)-7.11, one has

$$
\begin{align*}
I_{2}^{n, \mu} \geq & -\int_{\Omega}\left[B_{m}(x, u(T)) T_{k}(u(T))-B_{m}\left(x, u_{0}\right) T_{k}\left(u_{0}\right)\right] d x \tag{7.12}\\
& +\int_{\Omega}\left(\bar{B}\left(x, T_{k}(u(T))\right)-\bar{B}\left(x, T_{k}\left(u_{0}\right)\right)\right) d x+\varepsilon(n, \mu, i)
\end{align*}
$$

As a consequence of $7.1,(7.4$ and 7.12 , we deduce that

$$
\begin{align*}
& \int_{\left\{(x, t) \in \Omega \times(0, T) ; \quad T_{k}(u)-w_{\mu}^{i} \geq 0\right\}} \frac{\partial b_{n}\left(x, u_{n}\right)}{\partial t} h_{m}\left(u_{n}\right) \exp \left(G\left(u_{n}\right)\right)\left(T_{k}\left(u_{n}\right)-w_{\mu}^{i}\right) d x d t \geq \\
& \geq \int_{\Omega}\left[B_{m, k}(x, u(T))-B_{m, k}\left(x, u_{0}\right)\right] d x \\
& \quad-\int_{\Omega}\left[B_{m}(x, u(T)) T_{k}(u(T))-B_{m}\left(x, u_{0}\right) T_{k}\left(u_{0}\right)\right] d x \\
& \quad+\int_{\Omega}\left(\bar{B}\left(x, T_{k}(u(T))\right)-\bar{B}\left(x, T_{k}\left(u_{0}\right)\right)\right) d x+\varepsilon(n, \mu, i) \tag{7.13}
\end{align*}
$$

Observe that for any $z \in \mathbb{R}$ and for almost every $x \in \Omega$, we have

$$
\bar{B}\left(x, T_{k}(z)\right)=B_{m}(x, z) T_{k}(z)-B_{m, k}(x, z)
$$

Indeed,

$$
\begin{align*}
\bar{B}\left(x, T_{k}(z)\right)= & \int_{0}^{T_{k}(z)} B_{m}(x, r) d r \\
= & {\left[r \int_{0}^{r} \frac{\partial b(x, \sigma)}{\partial \sigma} h_{m}(\sigma) \exp (G(\sigma)) d \sigma\right]_{0}^{T_{k}(z)} } \\
& -\int_{0}^{T_{k}(z)} r \frac{\partial b(x, r)}{\partial r} h_{m}(r) \exp (G(r)) d r \tag{7.14}\\
= & T_{k}(z) \int_{0}^{T_{k}(z)} \frac{\partial b(x, r)}{\partial r} h_{m}(r) \exp (G(r)) d r \\
& -\int_{0}^{T_{k}(z)} T_{k}(r) \frac{\partial b(x, r)}{\partial r} h_{m}(r) \exp (G(r)) d r \\
= & T_{k}(z) B_{m}\left(x, T_{k}(z)\right)-B_{m, k}\left(x, T_{k}(z)\right) .
\end{align*}
$$

This is due to the fact that for $|r|<k$, we have

$$
\bar{B}\left(x, T_{k}(r)\right)=T_{k}(r) B_{m}(x, r)-B_{m, k}(x, r),
$$

and if $r>k$ we have

$$
\begin{aligned}
& B_{m, k}(x, r) \\
& =\int_{0}^{k} \frac{\partial b(x, \sigma)}{\partial \sigma} h_{m}(\sigma) \sigma \exp (G(\sigma)) d \sigma+k \int_{k}^{r} \frac{\partial b(x, \sigma)}{\partial \sigma} h_{m}(\sigma) \exp (G(\sigma)) d \sigma \\
& -T_{k}(r) B_{m}(x, r) \\
& =-k \int_{0}^{k} \frac{\partial b(x, \sigma)}{\partial \sigma} h_{m}(\sigma) \exp (G(\sigma)) d \sigma-k \int_{k}^{r} \frac{\partial b(x, \sigma)}{\partial \sigma} h_{m}(\sigma) \exp (G(\sigma)) d \sigma
\end{aligned}
$$

and
$\bar{B}(x, k)=k \int_{0}^{k} \frac{\partial b(x, \sigma)}{\partial \sigma} h_{m}(\sigma) \exp (G(\sigma)) d \sigma-k \int_{0}^{k} \frac{\partial b(x, \sigma)}{\partial \sigma} h_{m}(\sigma) \exp (G(\sigma)) \sigma d \sigma$.
The case $r<-k$ is similar to the previous one. This conclude the proof.
Acknowledgements. The authors are grateful to Professor H. Redwane for his comments and suggestions. His article [15] was the motivation for writing this article.

References

[1] R. Adams; Sobolev spaces, AC, Press, New York, 1975.
[2] L. Aharouch, E. Azroul and M. Rhoudaf; Strongly nonlinear variational parabolic problems in weighted sobolev spaces. The Australian journal of Mathematical Analysis and Applications, Vol.5, Issue 2, Article 13, pp. 1-25,2008.
[3] L. Aharouch, E. Azroul and M. Rhoudaf; Existence results for Strongly nonlinear degenerated parabolic equations via strong convergence of truncations with L^{1} data.
[4] Y. Akdim, J. Bennouna, M. Mekkour and M. Rhoudaf; Renormalised solutions of nonlinear degenerated parabolic problems with L^{1} data: existence and uniqueness, to appear in "Series in Contemporary Applied Mathematics" World Scientific.
[5] L. Boccardo, D. Giachetti, J. I. Diaz, F. Murat; Existence and Regularity of Renormalized Solutions of some Elliptic Problems involving derivatives of nonlinear terms, Journal of differential equations 106, 215-237 (1993)
[6] A. DallAglio and L. Orsina; Nonlinear parabolic equations with natural growth conditions and L^{1} data, Nonlinear Anal. 27 (1996), 5973.
[7] G. Dal Maso, F. Murat, L. Orsina and A. Prignet; Definition and existence of renormalized solutions of elliptic equations with general measure data, C. R. Acad. Sci. Paris 325 (1997), 481-486.
[8] R. J. Diperna and P.-L. Lions; On the Cauchy problem for Boltzman equations: global existence and weak stability. Ann. of Math. (2) 130(1989), 321-366.
[9] P. Drabek, A. Kufner and V. Mustonen; Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221.
[10] P. Drabek, A. Kufner and F. Nicolosi; Non linear elliptic equations, singular and degenerated cases, University of West Bohemia, (1996).
[11] A. Kufner; Weighted Sobolev Spaces, John Wiley and Sons, (1985).
[12] R. Landes; On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect A 89 (1981), 321-366.
[13] J.-L. Lions; quelques méthodes de résolution des problème aux limites non lineaires, Dundo, Paris (1969).
[14] J.-M. Rakotoson; Uniqueness of renormalized solutions in a T-set for L^{1} data problems and the link between various formulations, Indiana University Math. Jour., vol. 43, 2(1994).
[15] H. Redwane; Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dyn. Syst. Appl., 2, (2007), 241-264.
[16] H. Redwane; Existence results for a class of parabolic equations in Orlicz spaces, Electronic Journal of Qualitative Theory of Diferential Equations, 2010, No. 2, 1-19.
[17] J. Simon; Compact sets in the space $L^{p}(0, T, B)$, Ann. Mat. Pura. Appl., 146 (1987),pp. 65-96.
[18] E. Zeidler; Nonlinear Functional Analysis and its Applications, Springer-Verlag, New YorkHeidlberg, (1990).

Département de Mathématiques, Faculté des Sciences Dhar-Mahraz, Fès, Morocco
E-mail address, Y. Akdim: akdimyoussef@yahoo.fr
E-mail address, J. Bennouna: jbennouna@hotmail.com
E-mail address, M. Mekkour: mekkour.mounir@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. A7A15, A6A32, 47D20.
 Key words and phrases. Weighted Sobolev spaces; truncations; time-regularization; renormalized solutions.
 (C) 2011 Texas State University - San Marcos.

 Submitted June 28, 2010. Published January 4, 2011.

