Alfredo Cano, Sergio Hernandez-Linares, Eric Hernandez-Martinez
Abstract:
 We consider the singular semilinear elliptic equation
 
 
 in 
, 
 on 
,
 where 
 is a smooth bounded domain, in 
,
 
, 
 
 is the critical Sobolev  exponent, 
 is a continuous function, 
, where 
 is the first
 Dirichlet eigenvalue of 
 in
 
  and 
.
 We show that if 
 and f are invariant under a subgroup  of 
,
 the effect of the equivariant topology of 
  will  give many symmetric nodal solutions, which extends previous results of
 Guo and Niu [8].
 Submitted November 15, 2009. Published August 16, 2010.
Math Subject Classifications: 35J20, 35J25, 49J52, 58E35,74G35.
Key Words: Critical points; critical Sobolev exponent;
           multiplicity of solutions; invariant under the action 
	   of a orthogonal group; Palais-Smale condition; 
           singular semilinear elliptic problem; relative category.
Show me the PDF file (293 KB), TEX file, and other files for this article.
![]()  | 
  Alfredo Cano Rodríguez  Universidad Autónoma del Estado de México Facultad de Ciencias, Departamento de Matemáticas Campus El Cerrillo Piedras Blancas Carretera Toluca-Ixtlahuaca, Km 15.5, Toluca, Estado de México, México email: calfredo420@gmail.com  | 
|---|---|
![]()  | 
  Sergio Hernández-Linares  Universidad Autónoma Metropolitana, Cuajimalpa Departamento de Matemáticas Aplicadas y Sistemas Artificios No. 40, Col. Hidalgo Del. Alvaro Obregón, C.P. 01120 México D.F., México} email: slinares@correo.cua.uam.mx  | 
![]()  | 
  Eric  Hernández-Martínez  Universidad Autónoma de la Ciudad de México, Colegio de Ciencia y Tecnología. Academia de Matemáticas, Calle Prolongación San Isidro No. 151, Col. San Lorenzo Tezonco, Del. Iztapalapa, C.P. 09790, México D.F., México email: ebric2001@hotmail.com  | 
Return to the EJDE web page