Alfredo Cano, Sergio Hernandez-Linares, Eric Hernandez-Martinez
Abstract:
We consider the singular semilinear elliptic equation
in
,
on
,
where
is a smooth bounded domain, in
,
,
is the critical Sobolev exponent,
is a continuous function,
, where
is the first
Dirichlet eigenvalue of
in
and
.
We show that if
and f are invariant under a subgroup of
,
the effect of the equivariant topology of
will give many symmetric nodal solutions, which extends previous results of
Guo and Niu [8].
Submitted November 15, 2009. Published August 16, 2010.
Math Subject Classifications: 35J20, 35J25, 49J52, 58E35,74G35.
Key Words: Critical points; critical Sobolev exponent;
multiplicity of solutions; invariant under the action
of a orthogonal group; Palais-Smale condition;
singular semilinear elliptic problem; relative category.
Show me the PDF file (293 KB), TEX file, and other files for this article.
Alfredo Cano Rodríguez Universidad Autónoma del Estado de México Facultad de Ciencias, Departamento de Matemáticas Campus El Cerrillo Piedras Blancas Carretera Toluca-Ixtlahuaca, Km 15.5, Toluca, Estado de México, México email: calfredo420@gmail.com | |
Sergio Hernández-Linares Universidad Autónoma Metropolitana, Cuajimalpa Departamento de Matemáticas Aplicadas y Sistemas Artificios No. 40, Col. Hidalgo Del. Alvaro Obregón, C.P. 01120 México D.F., México} email: slinares@correo.cua.uam.mx | |
Eric Hernández-Martínez Universidad Autónoma de la Ciudad de México, Colegio de Ciencia y Tecnología. Academia de Matemáticas, Calle Prolongación San Isidro No. 151, Col. San Lorenzo Tezonco, Del. Iztapalapa, C.P. 09790, México D.F., México email: ebric2001@hotmail.com |
Return to the EJDE web page