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MULTIPLE SOLUTIONS FOR A SINGULAR SEMILINEAR
ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT AND

SYMMETRIES

ALFREDO CANO, SERGIO HERNÁNDEZ-LINARES, ERIC HERNÁNDEZ-MARTÍNEZ

Abstract. We consider the singular semilinear elliptic equation−∆u− µ
|x|2 u−

λu = f(x)|u|2∗−1 in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain,

in RN , N ≥ 4, 2∗ := 2N
N−2

is the critical Sobolev exponent, f : RN → R is

a continuous function, 0 < λ < λ1, where λ1 is the first Dirichlet eigenvalue

of −∆ − µ
|x|2 in Ω and 0 < µ < µ := (N−2

2
)2. We show that if Ω and f are

invariant under a subgroup of O(N), the effect of the equivariant topology of

Ω will give many symmetric nodal solutions, which extends previous results of
Guo and Niu [8].

1. Introduction

Much attention has been paid to the singular semilinear elliptic problem

−∆u− µ
u

|x|2
− λu = f(x)|u|2

∗−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 4) is a smooth bounded domain, 0 ∈ Ω, 0 ≤ µ < µ :=
((N − 2)/2)2, λ ∈ (0, λ1), where λ1 is the first Dirichlet eigenvalue of −∆− µ

|x|2 on
Ω and 2∗ := 2N/(N − 2) is the critical Sobolev exponent, and f is a continuous
function. We state some related work here about this problem.

Brezis and Nirenberg [2] proved the existence of one positive solution for (1.1)
with µ = 0 and f = 1, with λ ∈ (0, λ1), where λ1 is the first Dirichlet eigenvalue
of −∆ on Ω and N ≥ 4. Rey [13] and Lazzo [11] established a close relationship
between the number of positive solutions for (1.1) with µ = 0 and f = 1 and the
domain topology if λ is positive and sufficiently small. Cerami, Solimini, and Struwe
[6] proved that (1.1) with µ = 0 and f = 1 has one solution changing sign exactly
once for N ≥ 6 and λ ∈ (0, λ1). In [5] Castro and Clapp proved that there is an
effect of the domain topology on the number of minimal nodal solutions changing
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Americano de Matemáticos, 2009, Santiago, Chile.

1
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sign just once of (1.1) with µ = 0 and f = 1, with λ positive sufficiently small.
Recently Cano and Clapp [3] proved the multiplicity of sign changing solutions
for (1.1) with λ = a and µ = 0, where a and f are continuous functions. The
existence of non trivial positive solution for (1.1) with f = 1 and µ ∈ [0, µ− 1] and
λ ∈ (0, λ1) where λ1 is the first Dirichlet eigenvalue of −∆− µ

|x|2 on Ω, was proved
by Janelli [10]. Cao and Peng [4] proved the existence of a pair of sign changing
solutions for (1.1) with f = 1, N ≥ 7, µ ∈ [0, µ − 4], λ ∈ (0, λ1). Han and Liu [9]
proved the existence of one non trivial solution for (1.1) with λ > 0, f(x) > 0 and
some additional assumptions. Chen [7] proved the existence of one positive solution
for (1.1) with λ ∈ (0, λ1) and f not necessarily positive but satisfying additional
hypothesis. Guo and Niu [8] proved the existence of a symmetric nodal solution
and a positive solution for 0 < λ < λ1, where λ1 is the first Dirichlet eigenvalue of
−∆− µ

|x|2 on Ω, with Ω and f invariant under a subgroup of O(N).

2. Statement of results

Let Γ be a closed subgroup of the orthogonal transformations O(N). We consider
the problem

−∆u− µ
u

|x|2
− λu = f(x)|u|2

∗−2u in Ω

u = 0 on ∂Ω

u(γx) = u(x) ∀x ∈ Ω, γ ∈ Γ,

(2.1)

where Ω is a smooth bounded domain, Γ-invariant in RN , N ≥ 4, 2∗ := (2N)/(N −
2) is the critical Sobolev exponent, f : RN → R is a Γ-invariant continuous function,
0 < λ < λ1, where λ1 is the first Dirichlet eigenvalue of −∆ − µ

|x|2 on Ω and
0 < µ < µ := ((N − 2)/2)2.

Note that a subset X of RN is Γ-invariant if γx ∈ X for all x ∈ X and γ ∈ Γ.
A function h : X → R is Γ-invariant if h(γx) = h(x) for all x ∈ X and γ ∈ Γ. Let
Γx := {γx : γ ∈ Γ} be the Γ-orbit of a point x ∈ RN , and #Γx its cardinality.
Let X/Γ := {Γx : x ∈ X} denote the Γ-orbit space of X ⊂ RN with the quotient
topology.

Let us recall that the least energy solutions of

−∆u = |u|2
∗−2u in RN

u → 0 as |x| → ∞
(2.2)

are the instantons

Uε,y
0 (x) := C(N)

( ε

ε2 + |x− y|2
)(N−2)/2

, (2.3)

where C(N) = (N(N − 2))(N−2)/2 (see [1], [15]). If the domain is not RN , there is
no minimal energy solutions. These solutions minimize

S0 := min
u∈D1,2(RN )\{0}

∫
RN |∇u|2dx( ∫

RN |u|2∗dx
)2/2∗

,

where D1,2(RN ) is the completion of C∞
c (RN ) with respect to the norm

‖u‖2 :=
∫

RN

|∇u|2dx.
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Also, for 0 < µ < µ it is well known that the positive solutions to

−∆u− µ
u

|x|2
= |u|2

∗−2u in RN

u → 0 as |x| → ∞.
(2.4)

are

Uµ(x) := Cµ(N)
( ε

ε2|x|(
√

µ−
√

µ−µ)/
√

µ + |x|(
√

µ+
√

µ−µ)/
√

µ

)(N−2)/2

,

where ε > 0 and Cµ(N) = ( 4N(µ−µ)
N−2 )(N−2)/4 (see [16]). These solutions minimize

Sµ := min
u∈D1,2(RN )\{0}

∫
RN

(
|∇u|2 − µ u2

|x|2
)
dx( ∫

RN |u|2∗dx
)2/2∗

.

We denote
M :=

{
y ∈ Ω :

#Γy

f(y)(N−2/2
= min

x∈Ω

#Γx

f(x)(N−2)/2

}
.

We shall assume that f satisfies:
(F1) f(x) > 0 for all x ∈ Ω.
(F2) f is locally flat at M , that is, there exist r > 0, ν > N and A > 0 such that

|f(x)− f(y)| ≤ A|x− y|ν if y ∈ M and |x− y| < r.

For all 0 < µ < µ and 0 < λ < λ1 we define the bilinear operator 〈·, ·〉λ,µ :
H1

0 (Ω)×H1
0 (Ω) → R by

〈u, v〉λ,µ :=
∫

Ω

(∇u · ∇v − µ
uv

|x|2
− λuv)dx

which is an inner product in H1
0 (Ω). Its induced norm

‖u‖λ,µ :=
√
〈u, u〉λ,µ =

( ∫
Ω

(|∇u|2 − µ
u2

|x|2
− λ|u|2)dx

)1/2

is equivalent to the usual norm ‖u‖ := ‖u‖0,0 in H1
0 (Ω). This fact is a direct

consequence of the Hardy inequality∫
Ω

u2

|x|2
dx ≤ 1

µ

∫
Ω

|∇u|2dx, ∀u ∈ H1
0 (Ω). (2.5)

Since λ1 is the first Dirichlet eigenvalue of −∆− µ
|x|2 on Ω,∫

Ω

λ|u|2dx ≤ λ

λ1

∫
Ω

(
|∇u|2 − µ

u2

|x|2
)
dx. (2.6)

Therefore, by (2.5),

‖u‖2λ,µ :=
∫

Ω

(
|∇u|2 − µ

u2

|x|2
− λ|u|2

)
dx

≥ (1− λ

λ1
)
∫

Ω

(
|∇u|2 − µ

u2

|x|2
)
dx,

≥ (1− λ

λ1
)(1− µ

µ
)
∫

Ω

|∇u|2dx

= (1− λ

λ1
)(1− µ

µ
)‖u‖2.

(2.7)

The other inequality follows from the Sobolev imbedding theorem.
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It is easy to see that, if f ∈ C(Ω) satisfies (F1) then the norms

|u|2∗ := (
∫

Ω

|u|2
∗
dx)1/2∗ , and |u|f,2∗ := (

∫
Ω

f(x)|u|2
∗
dx)1/2∗

are equivalent. We denote

`Γf :=
(

min
x∈Ω

#Γx

f(x)(N−2)/2

)
S

N/2
0 .

Our multiplicity results will require the following non existence assumption.
(A1)) The problem

−∆u = f(x)|u|2
∗−2u in Ω

u = 0 on ∂Ω

u(γx) = u(x) ∀x ∈ Ω, γ ∈ Γ

(2.8)

does not have a positive solution u which satisfies ‖u‖2 ≤ `Γf .

2.1. Multiplicity of positive solutions. Our next result generalizes the work of
Guo and Niu [8] for the problem (2.1) and establishes a relationship between the
topology of the domain and the multiplicity of positive solutions. For δ > 0 let

M−
δ := {y ∈ M : dist(y, ∂Ω) ≥ δ}, Bδ(M) := {z ∈ RN : dist(z,M) ≤ δ}. (2.9)

Theorem 2.1. Let N ≥ 4, Ω and f be Γ-invariant, and (F1), (F2), (A1) and
`Γf ≤ S

N/2
µ hold. For each δ, δ′ > 0 there exist λ∗ ∈ (0, λ1), µ∗ ∈ (0, µ) such that

for all λ ∈ (0, λ∗), µ ∈ (0, µ∗) the problem (2.1) has at least

catBδ(M)/Γ(M−
δ /Γ)

positive solutions which satisfy

`Γf − δ′ ≤ ‖u‖2λ,µ < `Γf .

2.2. Multiplicity of nodal solutions. We assume that Γ is the kernel of an
epimorphism τ : G → Z/2 := {−1, 1}, where G is a closed subgroup of O(N) for
which, Ω is G-invariant and f : RN → R is a G-invariant function.

A real valued function u defined in Ω will be called τ -equivariant if

u(gx) = τ(g)u(x) ∀x ∈ Ω, g ∈ G.

In this section we study the problem

−∆u− µ
u

|x|2
− λu = f(x)|u|2

∗−2u in Ω

u = 0 on ∂Ω

u(gx) = τ(g)u(x) ∀x ∈ Ω, g ∈ G

(2.10)

Note that all τ -equivariant functions u are Γ-invariant; i.e., u(gx) = u(x) for all
x ∈ Ω, g ∈ Γ. If u is a τ -equivariant function then u(gx) = −u(x) for all x ∈ Ω and
g ∈ τ−1(−1). Thus all non trivial τ -equivariant solution of (2.1) change sign.

Definition 2.2. We call a Γ-invariant subset X of RN Γ-connected if cannot be
written as the union of two disjoint open Γ-invariant subsets. A real valued function
u : Ω → R is (Γ, 2)-nodal if the sets

{x ∈ Ω : u(x) > 0} and {x ∈ Ω : u(x) < 0}
are nonempty and Γ-connected.
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For each G-invariant subset X of RN , we define

Xτ := {x ∈ X : Gx = Γx}.
Let δ > 0, define

M−
τ,δ := {y ∈ M : dist(y, ∂Ω ∩ Ωτ ) ≥ δ},

and Bδ(M) as in (2.9).
The next theorem is a multiplicity result for τ -equivariant (Γ, 2)-nodal solutions

for the problem (2.1).

Theorem 2.3. Let N ≥ 4, and (F1), (F2), (A1) and `Γf ≤ S
N/2
µ hold. If Γ is the

kernel of an epimorphism τ : G → Z/2 defined on a closed subgroup G of O(N) for
which Ω and f are G-invariant. Given δ, δ′ > 0 there exists λ∗ ∈ (0, λ1), µ∗ ∈ (0, µ)
such that for all λ ∈ (0, λ∗), µ ∈ (0, µ∗) the problem (2.1) has at least

cat(Bδ(M)\Bδ(M)τ )/G(M−
τ,δ/G)

pairs ±u of τ -equivariants (Γ, 2)-nodal solutions which satisfy

2`Γf − δ′ ≤ ‖u‖2λ,µ < 2`Γf .

2.3. Non symmetric properties for solutions. Let Γ ⊂ Γ̃ ⊂ O(N). Next we
give sufficient conditions for the existence of many solutions which are Γ-invariant
but are not Γ̃-invariant.

Theorem 2.4. Let N ≥ 4 and assume that f satisfies (F1), (F2), (A1) and `Γf ≤
S

N/2
µ . Let Γ̃ be a closed subgroup of O(N) containing Γ, for which Ω and f are

Γ̃-invariant and

min
x∈Ω

#Γx

f(x)
N−2

2

< min
x∈Ω

#Γ̃x

f(x)(N−2)/2
.

Given δ, δ′ > 0 there exist λ∗ ∈ (0, λ1), µ∗ ∈ (0, µ) such that for all λ ∈ (0, λ∗),
µ ∈ (0, µ∗) the problem (2.1) has at least

catBδ(M)/Γ(M−
δ /Γ)

positive solutions which are not Γ̃-invariant and satisfy

2`Γf − δ′ ≤ ‖u‖2λ,µ < 2`Γf .

3. The variational problem

Let τ : G → Z/2 be a homomorphism defined on a closed subgroup G of O(N),
and Γ := ker τ . Consider the problem

−∆u− µ
u

|x|2
− λu = f(x)|u|2

∗−2u in Ω

u = 0 on ∂Ω

u(gx) = τ(g)u(x) ∀x ∈ Ω, g ∈ G,

(3.1)

where Ω is a G-invariant bounded smooth subset of RN , and f : RN → R is a
G-invariant continuous function which satisfies (F1).

If τ ≡ 1 then the problems (2.10) and (2.1) coincide. If τ is an epimorphism then
a solution of (2.10) is a solution of (2.1) with the additional property u(gx) = −u(x)
for all x ∈ Ω and g ∈ τ−1(−1). So every non trivial solution of (2.10) is a sign
changing solution for (2.1).
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The homomorphism τ induces the action of G on H1
0 (Ω) given by

(gu)(x) := τ(g)u(g−1x).

The fixed point space of the action is given by

H1
0 (Ω)τ := {u ∈ H1

0 (Ω) : gu = u ∀g ∈ G}
= {u ∈ H1

0 (Ω) : u(gx) = τ(g)u(x) ∀g ∈ G, ∀x ∈ Ω},
is the space of τ -equivariant functions. The fixed point space of the restriction of
this action to Γ

H1
0 (Ω)Γ = {u ∈ H1

0 (Ω) : u(gx) = τ(g)u(x),∀g ∈ Γ, ∀x ∈ Ω}
are the Γ-invariant functions of H1

0 (Ω). The norms ‖ · ‖λ,µ, ‖ · ‖ on H1
0 (Ω) and

| · |2∗ , | · |f,2∗ on L2∗(Ω) are G-invariant with respect to the action induced by τ ;
therefore, the functional

Eλ,µ,f (u) :=
1
2

∫
Ω

(|∇u|2 − µ
u2

|x|2
− λ|u|2)dx− 1

2∗

∫
Ω

f(x)|u|2
∗
dx

=
1
2
‖u‖2λ,µ −

1
2∗
|u|2

∗

f,2∗

is G-invariant, with derivative

DEλ,µ,f (u)v =
∫

Ω

(
∇u · ∇v − µ

uv

|x|2
− λuv

)
dx−

∫
Ω

f(x)|u|2
∗−2uvdx.

By the principle of symmetric criticality [12], the critical points of its restriction to
H1

0 (Ω)τ are the solutions of (2.10), and all non trivial solutions lie on the Nehari
manifold

N τ
λ,µ,f := {u ∈ H1

0 (Ω)τ : u 6= 0, DEλ,µ,f (u)u = 0}

= {u ∈ H1
0 (Ω)τ : u 6= 0, ‖u‖2λ,µ = |u|2

∗

f,2∗}.

which is of class C2 and radially diffeomorphic to the unit sphere in H1
0 (Ω)τ by the

radial projection

πλ,µ,f : H1
0 (Ω)τ \ {0} → N τ

λ,µ,f πλ,µ,f (u) :=
(‖u‖2λ,µ

|u|2∗f,2∗

)(N−2)/4

u.

Therefore, the nontrivial solutions of (2.10) are precisely the critical points of the
restriction of Eλ,µ,f to N τ

λ,µ,f . If τ ≡ 1 we write NΓ
λ,µ,f and if G is a trivial group

Nλ,µ,f . Note that

Eλ,µ,f (u) =
1
N
‖u‖2λ,µ =

1
N
|u|2

∗

f,2∗ ∀u ∈ N τ
λ,µ,f . (3.2)

and

Eλ,µ,f (πλ,µ,f (u)) =
1
N

(‖u‖2λ,µ

|u|2f,2∗

)N/2

∀u ∈ H1
0 (Ω)τ\{0}.

We define

m(λ, µ, f) := inf
Nλ,µ,f

Eλ,µ,f (u) = inf
Nλ,µ,f

1
N
‖u‖2λ,µ

= inf
u∈H1

0 (Ω)\{0}

1
N

(‖u‖2λ,µ

|u|2f,2∗

)N/2

.
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In particular, Eλ,µ,f are bounded below on Nλ,µ,f . We denote by

mΓ(λ, µ, f) := inf
NΓ

λ,µ,f

Eλ,µ,f , mτ (λ, µ, f) := inf
N τ

λ,µ,f

Eλ,µ,f .

3.1. Estimates for the infimum.

Proposition 3.1. mΓ(λ, µ, f) > 0.

Proof. Assume that mΓ(λ, µ, f) = 0. Then there exist a sequence (un) on NΓ
λ,µ,f

such that
Eλ,µ,f (un) → mΓ(λ, µ, f) = 0.

So Eλ,µ,f (un) = 1
N ‖un‖2λ,µ. Since ‖·‖λ,µ and ‖·‖ are equivalent norms of H1

0 (Ω) we
have that un → 0 strongly in H1

0 (Ω); but NΓ
λ,µ,f is closed in H1

0 (Ω) then 0 ∈ NΓ
λ,µ,f

which is a contradiction. �

Proposition 3.2. Let 0 < λ ≤ λ′ < λ1, 0 < µ ≤ µ′ < µ and f : RN → R
a continuous function Σ-invariant, such that f satisfies (F1), and Σ is a closed
subgroup of O(N). Then ‖u‖2λ′,µ′ ≤ ‖u‖2λ,µ,

m(λ′, µ′, f) ≤ m(λ, µ, f) and mΣ(λ′, µ′, f) ≤ mΣ(λ, µ, f).

Proof. By definition of ‖ · ‖λ,µ we obtain the first inequality. Let u ∈ H1
0 (Ω) \ {0},

then

m(λ′, µ′, f) ≤ Eλ′,µ′,f (πλ′,µ′,f (u))

=
1
N

(‖u‖2λ′,µ′
|u|2f,2∗

)N/2

≤ 1
N

(‖u‖2λ,µ

|u|2f,2∗

)N/2

= Eλ,µ,f (πλ,µ,f (u)).

From this inequality there proof follows. �

We denote by λ1 the first Dirichlet eigenvalue of −∆− µ
|x|2 in H1

0 (Ω).

Lemma 3.3. For all λ ∈ (0, λ1), µ ∈ (0, µ), u ∈ H1
0 (Ω)τ , it follows that

E0,0,f (π0,0,f (u)) ≤ (
µ̄

µ̄− µ
)

N
2

( λ1

λ1 − λ

)N
2 Eλ,µ,f (πλ,µ,f (u)).

Proof. Since

Eλ,µ,f (πλ,µ,f (u)) =
1
N

(‖u‖2λ,µ

|u|2f,2∗

)N/2

=
1
N

(‖u‖N
λ,µ

|u|Nf,2∗

)
,

and by (2.7)

(1− µ

µ̄
)(1− λ

λ1
)‖u‖2 ≤ ‖u‖2λ,µ,

then

(1− µ

µ̄
)

N
2 (1− λ

λ1
)

N
2 ‖u‖N ≤ ‖u‖N

λ,µ

(1− µ

µ̄
)

N
2 (1− λ

λ1
)

N
2

1
N

‖u‖N

|u|Nf,2∗
≤ Eλ,µ,f (πλ,µ,f (u))
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so

E0,0,f (π0,0,f (u)) ≤
( µ̄

µ̄− µ

)N
2

( λ1

λ1 − λ

)N
2 Eλ,µ,f (πλ,µ,f (u)),

which concludes the proof. �

As a immediately consequence we have the following result.

Corollary 3.4.

mτ (0, 0, f) ≤ (
µ̄

µ̄− µ
)

N
2

( λ1

λ1 − λ

)N
2 mτ (λ, µ, f).

For the proof of the next lemma we refer the reader to [3].

Lemma 3.5. If Ω ∩M 6= ∅ then
(a) mΓ(0, 0, f) ≤ 1

N `Γf .
(b) if there exists y ∈ Ω ∩M with Γx 6= Gy, then mτ (0, 0, f) ≤ 2

N `Γf .

3.2. A compactness result.

Definition 3.6. A sequence {un} ⊂ H1
0 (Ω) satisfying

Eλ,µ,f (un) → c and ∇Eλ,µ,f (un) → 0.

is called a Palais-Smale sequence for Eλ,µ,f at c. We say that Eλ,µ,f satisfies
the Palais-Smale condition (PS)c if every Palais-Smale sequence for Eλ,µ,f at c
has a convergent subsequence. If {un} ⊂ H1

0 (Ω)τ then {un} is a τ -equivariant
Palais-Smale sequence and Eλ,µ,f satisfies the τ -equivariant Palais-Smale condition,
(PS)τ

c . If τ ≡ 1 {un} is a Γ-invariant Palais-Smale sequence and Eλ,µ,f satisfies
the Γ-invariant Palais-Smale condition (PS)Γc .

The next theorem, proved by Guo-Niu [8], describes the τ -equivariant Palais-
Smale sequence for Eλ,µ,f .

Theorem 3.7. Let (un) be a Palais-Smale in H1
0 (Ω)τ , for Eλ,µ,f at c ≥ 0. Then

there exist a solution u of (2.10), m, l ∈ N; a closed subgroup Gi of finite index in
G, sequences {yi

n} ⊂ Ω, {ri
n} ⊂ (0,+∞); a solution ûi

0 of (2.2), for i = 1, . . . ,m;
and {Rj

n} ⊂ R+, a solution ûj
µ of (2.4) for j = 1, . . . , l. Such that

(i) Gyi
n

= Gi

(ii) (ri
n)−1dist(yi

n, ∂Ω) →∞, yi
n → yi, if n →∞, for i = 1, . . . ,m.

(iii) (ri
n)−1|gyi

n−g′yi
n| → ∞, if n →∞, and [g] 6= [g′] ∈ G/Gi, for i = 1, . . . ,m,

(iv) ûi
0(gx) = τ(g)ûi

0(x) ∀z ∈ RN and g ∈ Gi,
(v) ûj

µ(gx) = τ(g)ûj
µ(x) ∀z ∈ RN and g ∈ G, Rj

n → 0 for j = 1, . . . , l
(vi)

un(x) = u(x) +
m∑

i=1

∑
[g]∈G/Gi

(ri
n)

2−N
2 f(yi)

2−N
4 τ(g)ûi

0(g
−1(

x− gyi
n

ri
n

))

+
l∑

j=1

(Rj
n)

2−N
2 ûi

µ(
x

Rj
n

) + o(1),

(vii) Eλ,µ,f (un) → Eλ,µ,f (u) +
∑m

i=1(
#(G/Gi)

f(yi)
N−2

2
)E∞

0,0,1(û
i
0) +

∑l
j=1 E∞

0,µ,1(û
j
µ), as

n →∞
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Corollary 3.8. Eλ,µ,f satisfies (PS)τ
c at every

c < min
{
#(G/Γ)

`Γf
N

,
#(G/Γ)

N
SN/2

µ

}
.

4. The bariorbit map

We will assume the nonexistence condition

(NE) The infimum of E0,0,f is not achieved in NΓ
0,0,f .

Corollary 3.8 and Lemma 3.5 imply

mΓ(0, 0, f) := inf
NΓ

0,0,f

E0,0,f =
(

min
x∈Ω

#Γx

f(x)(N−2)/2

) 1
N

SN/2. (4.1)

if (NE) is assumed. It is well known that (NE) holds, if Γ = {1} and f is constant
(see [14, Cap. III, Teorema 1.2]). Set

M :=
{
y ∈ Ω :

#Γy

f(y)(N−2)/2
= min

x∈Ω

#Γx

f(x)(N−2)/2

}
.

For every y ∈ RN , γ ∈ Γ, the isotropy subgroups satisfy Γγy = γΓyγ−1. Therefore
the set of isotropy subgroups of Γ-invariant subsets consists of complete conjugacy
classes. We choose Γi ⊂ Γ, i = 1, . . . ,m, one in each conjugacy class of an isotropy
subgroup of M . Set

V i :=
{
z ∈ V : γz = z ∀γ ∈ Γi

}
the fixed point space of V ⊂ RN under the action of Γi. Set

M i := {y ∈ M : Γy = Γi},
ΓM i := {γy : γ ∈ Γ, y ∈ M i} = {y ∈ M : (Γy) = (Γi)}.

By definition of M it follows that f is constant on each ΓM i. Set

fi := f(ΓM i) ∈ R.

Fix δ0 > 0 such that

|y − γy| ≥ 3δ0 ∀y ∈ M, γ ∈ Γ if γy 6= y,

dist(ΓM i,ΓM j) ≥ 3δ0 ∀i, j = 1, . . . ,m if i 6= j,
(4.2)

and such that the isotropy subgroup of each point in M i
δ0

:= {z ∈ V i : dist(z,M i) ≤
δ0} is precisely Γi. Define

Wε,z :=
∑

[g]∈Γ/Γi

f
2−N

4
i Uε,gz if z ∈ M i

δ0
,

where Uε,y := Uε,y
0 as in (2.3). For each δ ∈ (0, δ0) define

Mδ := M1
δ ∪ · · · ∪Mm

δ ,

Bδ := {(ε, z) : ε ∈ (0, δ), z ∈ Mδ},
Θδ := {±Wε,z : (ε, z) ∈ Bδ}, Θ0 := Θδ0 .

For the proof of next proposition see [3].
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Proposition 4.1. Let δ ∈ (0, δ0), and assume that (NE) holds. There exists η >
mΓ(0, 0, f) with following properties: For each u ∈ NΓ

0,0,f such that E0,0,f (u) ≤ η
we have

inf
W∈Θ0

‖u−W‖ <

√
1
2
NmΓ(0, 0, f),

and there exist precisely one ν ∈ {−1, 1}, one ε ∈ (0, δ0) and one Γ-orbit Γz ∈ Mδ0

such that
‖u− νWε,z‖ = inf

W∈Θ0
‖u−W‖.

Moreover (ε, z) ∈ Bδ.

4.1. Definition of the bariorbit map. Fix δ ∈ (0, δ0) and choose η > mΓ(0, 0, f)
as in Proposition 4.1. Define

Eη
0,0,f := {u ∈ H1

0 (Ω) : E0,0,f (u) ≤ η},

Bδ(M) := {z ∈ RN : dist(z,M) ≤ δ},

and the space of Γ-orbits of Bδ(M) by Bδ(M)/Γ.
From Proposition 4.1 we can define

Definition 4.2. The bariorbit map

βΓ : NΓ
0,0,f ∩ Eη

0,0,f → Bδ(M)/Γ,

is defined by

βΓ(u) = Γy
def⇐⇒ ‖u±Wε,y‖ = min

W∈Θ0
‖u−W‖.

This map is continuous and Z/2-invariant by the compactness of Mδ.
If Γ is the kernel of an epimorphism τ : G → Z/2, choose gτ ∈ τ−1(−1). Let

u ∈ N τ
0,0,f then u changes sign and u−(x) = −u+(g−1

τ x). Therefore, ‖u+‖2 = ‖u−‖2

and |u+|2∗f,2∗ = |u−|2∗f,2∗ . So

u ∈ N τ
0,0,f =⇒ u± ∈ NΓ

0,0,f and E0,0,f (u) = 2E0,0,f (u±). (4.3)

Lemma 4.3. If E0,0,f does not achieve its infimum at N τ
0,0,f , then

mτ (0, 0, f) := inf
N τ

0,0,f

E0,0,f =
(

min
x∈Ω

#Γx

f(x)(N−2)/2

) 2
N

SN/2 = 2mΓ(0, 0, f).

Proof. By contradiction. Suppose that there exists u ∈ N τ
0,0,f such that E0,0,f (u) =

mτ (0, 0, f). Then u+ ∈ N Γ
0,0,f and

mτ (0, 0, f) ≤
(

min
x∈Ω

#Γx

f(x)(N−2)/2

) 2
N

SN/2.

Hence

mΓ(0, 0, f) ≤ E0,0,f (u+) =
1
2
mτ (0, 0, f) ≤

(
min
x∈Ω

#Γx

f(x)
N−2

2

) 1
N

SN/2 = mΓ(0, 0, f).

Thus u+ is a minimum of E0,0,f on NΓ
0,0,f , which contradicts (NE). The corollary

3.8 implies

mτ (0, 0, f) =
(

min
x∈Ω

#Γx

f(x)(N−2)/2

) 2
N

SN/2.

�
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Then property (4.3) implies

u± ∈ NΓ
0,0,f ∩ Eη

0,0,f ∀u ∈ N τ
0,0,f ∩ E2η

0,0,f ,

so

‖u+ − νWε,y‖ = min
W∈Θ0

‖u+ −W‖ ⇔ ‖u− + νWε,gτ y‖ = min
W∈Θ0

‖u− −W‖. (4.4)

Therefore,
βΓ(u+) = Γy ⇐⇒ βΓ(u−) = Γ(gτy), (4.5)

and
βΓ(u+) 6= βΓ(u−) ∀u ∈ N τ

0,0,f ∩ E2η
0,0,f . (4.6)

Set
Bδ(M)τ := {z ∈ Bδ(M) : Gz = Γz}.

Proposition 4.4. The map

βτ : N τ
0,0,f ∩ E2η

0,0,f → (Bδ(M) \Bδ(M)τ )/Γ, βτ (u) := βΓ(u+),

is well defined, continuous and Z/2-equivariant; i.e.,

βτ (−u) = Γ(gτy) ⇐⇒ βτ (u) = Γy.

Proof. If u ∈ N τ
0,0,f ∩ E2η

0,0,f and βτ (u) = Γy ∈ Bδ(M)τ/Γ then βΓ(u+) = Γy =
Γ(gτy) = βΓ(u−), this is a contradiction to (4.6). We conclude that βτ (u) 6∈
Bδ(M)τ/Γ. The continuity and Z/2-equivariant properties follows by βΓ ones. �

5. Multiplicity of solutions

5.1. Lusternik-Schnirelmann theory. An involution on a topological space X
is a map %X : X → X, such that %X ◦%X = idX . Given an involution we can define
an action of Z/2 on X and viceversa. The trivial action is given by the identity
%X = idX , the action of G/Γ ' Z/2 on the orbit space RN/Γ where G ⊂ O(N)
and Γ is the kernel of an epimorphism τ : G → Z/2, and the antipodal action
%(u) = −u on N τ

λ,µ,f . A map f : X → Y is called Z/2-equivariant (or a Z/2-map)
if %Y ◦ f = f ◦ %X , and two Z/2-maps, f0, f1 : X → Y , are said to be Z/2-
homotopic if there exists a homotopy Θ : X× [0, 1] → Y such that Θ(x, 0) = f0(x),
Θ(x, 1) = f1(x) and Θ(%Xx, t) = %Y Θ(x, t) for every x ∈ X, t ∈ [0, 1]. A subset A
of X is Z/2-equivariant if %Xa ∈ A for every a ∈ A.

Definition 5.1. The Z/2-category of a Z/2-map f : X → Y is the smallest integer
k := Z/2-cat(f) with following properties

(i) There exists a cover of X = X1 ∪ · · · ∪Xk by k open Z/2-invariant subsets,
(ii) The restriction f |Xi

: Xi → Y is Z/2-homotopic to the composition κi◦αi of
a Z/2-map αi : Xi → {yi, %Y yi}, yi ∈ Y , and the inclusion κi : {yi, %Y yi} ↪→
Y .

If not such covering exists, we define Z/2-cat(f) := ∞.

If A is a Z/2-invariant subset of X and ι : A ↪→ X is the inclusion we write

Z/2-catX(A) := Z/2- cat(ι), Z/2-catX(X) := Z/2- cat(X).

Note that if %x = idX then

Z/2-catX(A) := catX(A), Z/2- cat(X) := cat(X),

are the usual Lusternik-Schnirelmann category (see [17, definition 5.4]).
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Theorem 5.2. Let φ : M → R be an even functional of class C1, and M a
submanifold of a Hilbert space of class C2, symmetric with respect to the origin.
If φ is bounded below and satisfies (PS)c for each c ≤ d, then φ has at least Z/2-
cat(φd) pairs critical points such that φ(u) ≤ d.

5.2. Proof of Theorems. We prove Theorem 2.3 only; the proof of Theorem 2.1
is analogous. Recall that if τ is the identity or an epimorphism then #(G/Γ) is 1
or 2.

Proof of Theorem 2.3. By Corollary 3.8, Eλ,µ,f satisfies (PS)τ
θ for

θ < min{#(G/Γ)
`Γf
N

,
#(G/Γ)

N
SN/2

µ }.

By Lusternik-Schnirelmann theory Eλ,µ,f has at least Z/2-cat(N τ
λ,µ,f∩Eθ

λ,µ,f ) pairs
±u of critical points in N τ

λ,µ,f ∩Eθ
λ,µ,f . We are going to estimate this category for

an appropriate value of θ.
Without lost of generality we can assume that δ ∈ (0, δ0), with δ0 as in (4.2).

Let η >
`Γf
N , µ∗ ∈ (0, µ) and λ∗ ∈ (0, λ1) such that

(
µ̄

µ̄− µ∗
)N/2(

λ1

λ1 − λ∗
)N/2 = min{2,

Nη

#(G/Γ)`Γf
,

`Γf
`Γf − δ′

}.

By Lemma 3.3, if u ∈ N τ
λ,µ,f ∩ Eθ

λ,µ,f , µ ∈ (0, µ∗), λ ∈ (0, λ∗) we have

E0,0,f (π0,0,f (u)) ≤ (
µ̄

µ̄− µ
)

N
2

( λ1

λ1 − λ

)N
2 Eλ,µ,f (u)

<
( µ̄

µ̄− µ

)N
2

( λ1

λ1 − λ

)N
2 #(G/Γ)

`Γf
N

≤ #(G/Γ)η.

Let βτ be the τ -bariorbit function, defined in Proposition 4.4. Hence the com-
position map

βτ ◦ π0,0,f : N τ
λ,µ,f ∩ Eθ

λ,µ,f → (Bδ(M) \Bδ(M)τ )/Γ,

is a well defined Z/2-invariant continuous function.
By the [3, Proposition 3] using (F2) we can choose ε > 0 small enough and

θ := θε < #(G/Γ) `Γf
N such that

Eλ,µ,f (πλ,µ,f (wτ
ε,y)) ≤ θ < #(G/Γ)

`Γf
N

, ∀ y ∈ M−
δ ,

where wτ
ε,y = wΓ

ε,y − wΓ
ε,gτ y, τ(gτ ) = −1, and

wΓ
ε,y(x) =

∑
[γ]∈Γ/Γy

f(y)(2−N)/4Uε,γy(x)ϕγy(x).

Thus the map

ατ
δ : M−

τ,δ/Γ → N τ
λ,µ,f ∩ Eθ

λ,µ,f ,

ατ
δ (Γy) := πλ,µ,f (wτ

ε,y),
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is a well defined Z/2-invariant continuous function. Moreover, βτ (π0,0,f (ατ
δ (Γy))) =

Γy for all y ∈ M−
τ,δ. Therefore,

Z/2- cat(N τ
λ,µ,f ∩ Eθ

λ,µ,f ) ≥ cat((Bδ(M)\Bδ(M)τ )/Γ)(M−
τ,δ/Γ).

So (2.10) has at least

cat((Bδ(M)\Bδ(M)τ )/G)(M−
τ,δ/G)

pairs ±u solution which satisfy

Eλ,µ,f (u) < #(G/Γ)
`Γf
N

.

By the choice of λ∗ and µ∗ we have

(
µ̄

µ̄− µ∗
)N/2(

λ1

λ1 − λ∗
)N/2 ≤

`Γf
`Γf − δ′

.

Then

#(G/Γ)
`Γf − δ′

N
≤ (

µ̄− µ

µ̄
)N/2(

λ1 − λ

λ1
)N/2#(G/Γ)

`Γf
N

≤ mτ (λ, µ, f) ≤ Eλ,µ,f (u)

=
1
N
‖u‖2λ,µ < #(G/Γ)

`Γf
N

therefore
#(G/Γ)`Γf − δ′′ ≤ ‖u‖2λ,µ < #(G/Γ)`Γf .

�

Proof of Theorem 2.4. By Theorem 2.1 there exist λ and µ sufficiently close to zero
such that the problem (2.1) has at least catBδ(M)/Γ(M−

δ /Γ) positive solutions such

that Eλ,µ,f (u) <
`Γf
N .

We will prove that `Γf
N < m

eΓ(0, 0, f). First suppose that m
eΓ(0, 0, f) does not

achieve then by the hypothesis m
eΓ(0, 0, f) = `

eΓ
f

N >
`Γf
N . If m

eΓ(0, 0, f) is achieved
there exists u ∈ N eΓ

0,0,f ⊂ NΓ
0,0,f and

`Γf
N

= mΓ(0, 0, f) < m
eΓ(0, 0, f) = E0,0,f (u).

By (3.4) there exist λ̂ ∈ (0, λ1) and µ̂ ∈ (0, µ̄) such that for each λ ∈ (0, λ̂) and
µ ∈ (0, µ̂) such that

`Γf
N

< mΓ̃(0, 0, f) ≤ (
λ1

λ1 − λ
)N/2(

µ

µ− µ
)N/2mΓ̃(λ, µ, f).

Then

Eλ,µ,f (u) <
`Γf
N

< mΓ̃(λ, µ, f).

Therefore, u is not Γ̃-invariant solution. �
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E-mail address: ebric2001@hotmail.com


	1. Introduction
	2. Statement of results
	2.1. Multiplicity of positive solutions
	2.2. Multiplicity of nodal solutions
	2.3. Non symmetric properties for solutions

	3. The variational problem
	3.1. Estimates for the infimum
	3.2. A compactness result

	4. The bariorbit map
	4.1. Definition of the bariorbit map

	5. Multiplicity of solutions
	5.1. Lusternik-Schnirelmann theory
	5.2. Proof of Theorems

	References

