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MULTIPLE SOLUTIONS FOR A SINGULAR SEMILINEAR
ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT AND
SYMMETRIES

ALFREDO CANO, SERGIO HERNANDEZ-LINARES, ERIC HERNANDEZ-MARTINEZ

ABSTRACT. We consider the singular semilinear elliptic equation —Au— ﬁu—

Au = f(z)u|2" ! in ©, u = 0 on 89, where Q is a smooth bounded domain,
in RN, N > 4, 2% := ]3]_\’2 is the critical Sobolev exponent, f : RN — R is
a continuous function, 0 < A < A1, where A is the first Dirichlet eigenvalue
of —A — # inQand 0 < p < := (%)2 We show that if Q and f are
invariant under a subgroup of O(N), the effect of the equivariant topology of
Q will give many symmetric nodal solutions, which extends previous results of
Guo and Niu [§].

1. INTRODUCTION
Much attention has been paid to the singular semilinear elliptic problem

u . .
—Au — MW — M= f(x)|u* *u in Q, 1)
u=~0 on 02,

where Q € RY (N > 4) is a smooth bounded domain, 0 € Q, 0 < pu < I :=
(N —2)/2)%, X € (0, \1), where ); is the first Dirichlet eigenvalue of —A — # on
2 and 2* := 2N/(N — 2) is the critical Sobolev exponent, and f is a continuous
function. We state some related work here about this problem.

Brezis and Nirenberg [2] proved the existence of one positive solution for
with g = 0 and f = 1, with A € (0, A1), where \; is the first Dirichlet eigenvalue
of —A on Q and N > 4. Rey [I3] and Lazzo [II] established a close relationship
between the number of positive solutions for with 4 = 0 and f = 1 and the
domain topology if A is positive and sufficiently small. Cerami, Solimini, and Struwe
[6] proved that with 4 = 0 and f = 1 has one solution changing sign exactly
once for N > 6 and A € (0,\1). In [B] Castro and Clapp proved that there is an
effect of the domain topology on the number of minimal nodal solutions changing

2000 Mathematics Subject Classification. 35J20, 35J25, 49J52, 58 £35,74G35.

Key words and phrases. Critical points; critical Sobolev exponent; multiplicity of solutions;
invariant under the action of a orthogonal group; Palais-Smale condition;

singular semilinear elliptic problem; relative category.

(©2010 Texas State University - San Marcos.

Submitted November 15, 2009. Published August 16, 2010.

This work was presented in the Poster Sessions at the III CLAM Congreso Latino
Americano de Matemadticos, 2009, Santiago, Chile.

1



2 A. CANO, S. HERNANDEZ—LINARES, E. HERNANDEZ-MARTINEZ EJDE-2010/112

sign just once of with © = 0 and f = 1, with X positive sufficiently small.
Recently Cano and Clapp [3] proved the multiplicity of sign changing solutions
for with A = a and p = 0, where a and f are continuous functions. The
existence of non trivial positive solution for with f =1 and p € [0, — 1] and
A € (0, A1) where A; is the first Dirichlet eigenvalue of —A — # on (2, was proved
by Janelli [I0]. Cao and Peng [4] proved the existence of a pair of sign changing
solutions for with f =1, N> 7, € [0, —4], A € (0,\1). Han and Liu [9]
proved the existence of one non trivial solution for with A > 0, f(z) > 0 and
some additional assumptions. Chen [7] proved the existence of one positive solution
for with A € (0, A1) and f not necessarily positive but satisfying additional
hypothesis. Guo and Niu [8] proved the existence of a symmetric nodal solution
and a positive solution for 0 < A < A1, where A\ is the first Dirichlet eigenvalue of
—A— # on Q, with Q and f invariant under a subgroup of O(N).

2. STATEMENT OF RESULTS

Let I" be a closed subgroup of the orthogonal transformations O(NN). We consider
the problem

u . .
—Au—,uw—)\uzf(z)hﬁ2 u in Q

u=0 on 0N (2.1)
u(yr) =u(z) VeeQ, yeT,

where (2 is a smooth bounded domain, I-invariant in RN, N >4, 2* := (2N)/(N —
2) is the critical Sobolev exponent, f : RV — R is a I'-invariant continuous function,
0 < A < A1, where A; is the first Dirichlet eigenvalue of —A — \;IZ on ) and
0<p<p:=((N-2)/2)>%

Note that a subset X of RY is I'-invariant if y2 € X for all z € X and v € T.
A function h : X — R is T-invariant if h(yx) = h(z) for all x € X and v € I'. Let
'z := {yz : v € T'} be the I'-orbit of a point x € RY, and #I'z its cardinality.
Let X/T := {I'z : € X} denote the [-orbit space of X C RY with the quotient
topology.

Let us recall that the least energy solutions of

—Au=[u*%u inRY

u—0 asl|z|— oo

(2.2)

are the instantons

(V-2)/2
c ) : (2.3)

o oP

where C(N) = (N(N — 2))V=2)/2 (see [1], [15]). If the domain is not RY, there is
no minimal energy solutions. These solutions minimize

Jan [Vul?da
Q*dJL‘)Q/Q* ’

where DV2(RY) is the completion of C2°(RY) with respect to the norm

ul? ;:/ Vul?dz.
RN

USY (z) = C(N)(

ue D2 (RV)\{0} (fRN lu
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Also, for 0 < p < 71 it is well known that the positive solutions to
—Au — uiz =|u* 2u inRY
|| (2.4)
u—0 as|z|— oo.

are

Up(@) = Cu(N 2 e
ul@) = Cul )(52|x|(\/ﬁﬂ/ﬂ)/ﬁ+|;z;|(\/ﬁ+x/ﬂ)/\/ﬁ>

where ¢ > 0 and C,(N) = (%)(1\”2)/4 (see [16]). These solutions minimize

S (IVul® = i) da

7

Sy = min

weDL2(RN)\{0} (fRN |u g*dx)2/2*
We denote 4T 4T
— 0. y L
M=t e 0 g man = I oo

We shall assume that f satisfies:

(F1) f(z) >0 for all z € Q.
(F2) f is locally flat at M, that is, there exist r > 0, v > N and A > 0 such that

|f(z) = fy)l < Alz —yl” ifye M and [z —y| <r

For all 0 < g < mand 0 < A < Ay we define the bilinear operator (-,-)x, :
HY(Q) x H (D) — R by

(U, V) = / (Vu - Vo — |m‘; Auw)dz
x
which is an inner product in H{(Q2). Its induced norm

o =y = ([ (090l = s = Ny

is equivalent to the usual norm |jul| := |lulo,o in H}(Q). This fact is a direct
consequence of the Hardy inequality

2 1
/ ﬁﬁdx < :/ |Vul?dz, Yu € H} (). (2.5)

Since A1 is the first Dirichlet eigenvalue of —A — T |2 on ,

/)\|u\2dx<—/ \Vu\2—u| P)dw (2.6)
Q

2
o= [ (90 = g = Aul?) o

(1_%1)/ (1Vul? nt |2)dx

> (1= )04 [ [Vufds
A

= (-3 ;)IIUHQ-

The other inequality follows from the Sobolev imbedding theorem.

Therefore, by (2.5)),

(2.7)
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It is easy to see that, if f € C(Q) satisfies (F1) then the norms

- (/ [l dz)V/?, and fulpae = (/ F@) [l )
Q Q
are equivalent. We denote

r._ ; ﬂ) N/2
Our multiplicity results will require the following non existence assumption.
(Al)) The problem

|u

—Au= f(z)[ul* 2u inQ
u=0 on 00 (2.8)
u(yr) =u(z) VeeQ, vel
does not have a positive solution u which satisfies [Jul[* < ¢} .

2.1. Multiplicity of positive solutions. Our next result generalizes the work of
Guo and Niu [8] for the problem (2.1)) and establishes a relationship between the
topology of the domain and the multiplicity of positive solutions. For § > 0 let

My = {y € M :dist(y,00) > §}, Bs(M) := {z € RY : dist(z, M) < 3}. (2.9)
Theorem 2.1. Let N > 4, Q and f be T'-invariant, and (F1), (F2), (Al) and

6? < Sf,V/Q hold. For each 6,8 > 0 there exist \* € (0,\1), u* € (0,71) such that
for all X € (0,\*), u € (0, u*) the problem has at least

cat g, (ar)/r(Ms /T)
positive solutions which satisfy
Oy =8 <|lull3,, <.
2.2. Multiplicity of nodal solutions. We assume that I' is the kernel of an
epimorphism 7 : G — Z/2 := {—1,1}, where G is a closed subgroup of O(N) for

which, Q is G-invariant and f : RY — R is a G-invariant function.
A real valued function u defined in Q will be called T-equivariant if

u(gz) = 1(g)u(z) VreQ, gedG.
In this section we study the problem
—Au — u% —u= f(@)|ul* "2u inQ
x
u=0 on 00 (2.10)
u(gr) =7(g)u(r) Ve eQ, gelG

Note that all 7-equivariant functions w are I'-invariant; i.e., u(gz) = u(z) for all
x €9, gel. If uis a T-equivariant function then u(gx) = —u(x) for all x € Q and
g € 771(=1). Thus all non trivial 7-equivariant solution of (2.1)) change sign.

Definition 2.2. We call a I'-invariant subset X of R TI'-connected if cannot be
written as the union of two disjoint open I'-invariant subsets. A real valued function
u:Q — Ris (T',2)-nodal if the sets

{r eQ:u(xr) >0} and {zxe€Q:u(x)<0}

are nonempty and I'-connected.
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For each G-invariant subset X of RY, we define
X" ={xe X :Gx =Tz}
Let § > 0, define
M_s:={y e M :dist(y,00N Q") > 6},
and Bs(M) as in (2.9). |

The next theorem is a multiplicity result for 7-equivariant (I", 2)-nodal solutions

for the problem ([2.1)).

Theorem 2.3. Let N > 4, and (F1), (F2), (A1) and Z? < Sftv/z hold. If T is the
kernel of an epimorphism 1 : G — Z/2 defined on a closed subgroup G of O(N) for
which Q and f are G-invariant. Given §,0" > 0 there exists \* € (0, A1), u* € (0, )
such that for all X € (0,\*), u € (0, u*) the problem has at least

cat (g (v Bs(m)r) /6 (M 5/ G)
pairs +u of T-equivariants (T',2)-nodal solutions which satisfy
205 — & < lul3,, <20

2.3. Non symmetric properties for solutions. Let I' C I C O(N). Next we
give sufficient conditions for the existence of many solutions which are I'-invariant
but are not I'-invariant.

Theorem 2.4. Let N > 4 and assume that f satisfies (F1), (F2), (Al) and K? <
55/2. Let T be a closed subgroup of O(N) containing T, for which Q and f are

I-invariant and ~
min _TE e #TE
zeQ f($)¥ zeq fla)N=2/2"
Given 6,6 > 0 there exist A\* € (0,A1), p* € (0,) such that for all X € (0,\*),
w € (0, u*) the problem has at least
cat g;(ar)/r(M; /T)

positive solutions which are not T -invariant and satisfy

N ! 2 N
3. THE VARIATIONAL PROBLEM

Let 7 : G — 7Z/2 be a homomorphism defined on a closed subgroup G of O(N),
and I' := ker 7. Consider the problem

u . :
—Au—uw—)\u:f(x)|u|2 2u in Q

u=0 on 00 (3.1)
u(gr) = 1(g)u(r) VreQ, geq,

where €2 is a G-invariant bounded smooth subset of RV, and f : RV — R is a
G-invariant continuous function which satisfies (F1).

If 7 = 1 then the problems @ and coincide. If 7 is an epimorphism then
a solution of is a solution of with the additional property u(gz) = —u(x)
for all z € Q and g € 77(—1). So every non trivial solution of is a sign
changing solution for .
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The homomorphism 7 induces the action of G on H} () given by

(gu)(z) == T(g9)u(g~'z).

The fixed point space of the action is given by
H3(Q) :={uc H{(Q) :gu=u Vg€ G}
={uec H}(Q) :u(gr) = 7(g)u(zr) Yge€ G, Vel

is the space of T-equivariant functions. The fixed point space of the restriction of
this action to T’

HY ()Y = {u € HYQ) : u(gz) = 7(g)u(z),Vg € T, Vo € Q}

are the I-invariant functions of H§(€2). The norms | - ||, || - || on H{(2) and
| la=, | - |f.2- on L' (Q) are G-invariant with respect to the action induced by 7;
therefore, the functional

1 u? 1 .
B @)= 5 [ (0 = = Nu)do = 5 [ f@)fuf da

1 1 .
= Sl = 5l

is G-invariant, with derivative

DE ,, f(u)v = / (Vu - Vo — ,uu—v2 - Auv)dm - / f()|ul* "2uvde.
Q || Q

By the principle of symmetric criticality [12], the critical points of its restriction to
H}(Q)T are the solutions of (2.10), and all non trivial solutions lie on the Nehari
manifold

Nimf ={u € H&(Q)T cu#0,DEy , s(u)u =0}
={ue Hy Q) :u#0,[ul}, = ulf,-}

which is of class C? and radially diffeomorphic to the unit sphere in HE ()™ by the
radial projection

IIU\Ii,u><N*2>/4
Therefore, the nontrivial solutions of (2.10) are precisely the critical points of the

restriction of Ey ,, r to NY, ;. If 7 =1 we write N/\F_mf and if G is a trivial group
N5 Note that

g P HE QT \AO} = Ny () = (

1 S .
Bans) = ol = S lulfar Yue N, . (3.2)
e Ll 2 .
Brps(mns ) = 5 () V€ HY@T\{0).
f.2*
We define

. 1
m(Ap, f) = inf By (u) = g s

A f

1 (HUIli,M>N/2

11 -
weHY(@\{0} N\ [ul ,.
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In particular, E) , s are bounded below on N, ,, r. We denote by
r — T —
me A )= b Eypp o mTAp f) = inf By

. f A, f
3.1. Estimates for the infimum.
Proposition 3.1. mU(\, u, f) > 0.

Proof. Assume that m" (X, s, f) = 0. Then there exist a sequence (u,) on Ny ,
such that

Ek,u,f(un) - ml“()\’ w, f) = 0.

So Ex . p(up) = %Hunﬂiﬂ Since ||+ ||, and ||- || are equivalent norms of H}(€2) we
have that u, — 0 strongly in Hg(Q); but Ny , ; is closed in Hg () then 0 € Ny, ;
which is a contradiction. g

Proposition 3.2. Let 0 < A < N < A\, 0 < pu <y <f@and f : RN - R
a continuous function X-invariant, such that f satisfies (F1), and ¥ is a closed
subgroup of O(N). Then ||u||§\,7“/ < ||u\|§\#,

m(N, ', f) <m(A\ s f) and mE(N 1 f) <mE N p, f).

Proof. By definition of || - ||x,,, we obtain the first inequality. Let u € H}(2) \ {0},
then

m(N 1, ) < Exv e g (T, p (0)

i ( ||u||§\/,;t’ )N/2
N

|u‘?“,2*
1 (Il
N |u|}2
= B (T .5 (1)
From this inequality there proof follows. O

<

We denote by A; the first Dirichlet eigenvalue of —A — # in H} ().

Lemma 3.3. For all A € (0,\1), p € (0,7), u € HX(Q)™, it follows that

N\ N
)2 (5=5) Bt (T ().

=

Eo,f(m0,0,7(u)) < (=
#(m0,0.1 T

Proof. Since

1l Ve 1l
Brus(mns@) = v (1) = ()
A N \Tul?,. N \Tul¥,.
and by (2.7)
I A
(1= 20 = )l < i3
then
2% AR N N
(=22 = )2 ul™ < [l

P AN )
(1-=)2(1- /\*) NN
H 1 |ul -

< EA,/L,f(WA,u,f(“))
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SO

N N
2 2

4 A1
E T u)) < (= E\ T u)),
0,0,/ (m0,0,7(u)) (ufu) (/\1 - )\) ot (T (1))
which concludes the proof. O
As a immediately consequence we have the following result.

Corollary 3.4.

vz

w7 0.0.0) ()T (£25) T (o ).

B—p - /\)
For the proof of the next lemma we refer the reader to [3].

Lemma 3.5. If QN M # () then

(a) m"(0,0, f) < § 05
(b) if there exists y € QN M with Tz # Gy, then m” (0,0, f) < %E?

3.2. A compactness result.
Definition 3.6. A sequence {u,} C HZ () satisfying
Eyu5(un) —c and VEy, f(u,) — 0.

is called a Palais-Smale sequence for E) , s at c. We say that E) ,  satisfies
the Palais-Smale condition (PS). if every Palais-Smale sequence for Ey , ¢ at ¢
has a convergent subsequence. If {u,} C H}(Q)" then {u,} is a T-equivariant
Palais-Smale sequence and E) , s satisfies the T-equivariant Palais-Smale condition,
(PS);. If 7 =1 {u,} is a I'-invariant Palais-Smale sequence and Ej ,  satisfies
the [-invariant Palais-Smale condition (PS)L.

The next theorem, proved by Guo-Niu [§], describes the 7-equivariant Palais-
Smale sequence for E) , r.

Theorem 3.7. Let (u,) be a Palais-Smale in H} ()7, for Ey g at ¢ > 0. Then
there exist a solution u of -, m,l € N; a closed subgroup G of finite index in
G, sequences {y,} C Q, {ri} C (0,400); a solution Wy of [2.2), fori=1,...,m;
and {RJ} C R, a solution u{L of . forj=1,...,1. Such that

(i) Gy =G
(ii) (r ) Ydist(yl,00) — oo, yi — 4, if n — oo, fori=1,...,m.
(i) (r},)""gyn—9'ynl — 00, if n — oo, and [g] # [¢] € G/G', fori=1,...,m,
(iv) @i (gz) = 7(9)u}(z) V2 € RN and g € GY,
( ; @ﬂ(gm) = T(g)ﬁﬁ(m) Vz:eRN andge G, R, — 0 forj=1,...,1

@D+ Y () ) P g ()

rl
=1 [g]eG/G? n
l
2 ~i X
+Z(Rj M(E)+O(1)7
j=1 "
i3 G/G’ o] i l 00 =7
(Vil) By g (n) = Bx g (u) + S (EER) % 1 (@) + X0 B (), as

flyh) 2
n — 00
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Corollary 3.8. E) , s satisfies (PS)] at every

el‘
¢ < min {#(G/F)Nf7 w%&vm}.

4. THE BARIORBIT MAP

We will assume the nonexistence condition
(NE) The infimum of Eg s is not achieved in N ;.

Corollary and Lemma [3.5] imply

r ; . #lx L o2
0,0 = inf E = — s | =577 4.1
m ( ) 7f> A}f&f 0,0,f (IJCHEHEI f(w)(N72)/2) N ( )
if (NE) is assumed. It is well known that (N FE) holds, if ' = {1} and f is constant
(see [14, Cap. III, Teorema 1.2]). Set

7#&’/ = min 7#F:C
Fly)N=272 = g flr)N-2/2 0

For every y € RV, v € T, the isotropy subgroups satisfy r,, = ATyy~!. Therefore
the set of isotropy subgroups of I'-invariant subsets consists of complete conjugacy
classes. We choose I'; C T', i = 1,...,m, one in each conjugacy class of an isotropy
subgroup of M. Set

M::{yeﬁ:

& :z{zeV:’yz:z VveFi}
the fixed point space of V' C RY under the action of T;. Set
Mi:={yeM:T,=T1;},
TM' :={yy:yel, ye M} ={ye M:([,) = ()}
By definition of M it follows that f is constant on each T M®. Set
fi :== f(CM?) € R.
Fix §p > 0 such that

ly —yy| =300 Yye M, yelifyy#y,

= 4.2
dist(TM*, TM7) > 36y Vi, j=1,...,mifi#j, (42)

and such that the isotropy subgroup of each point in Mgo = {z € Vi:dist(z, M?) <
0o} is precisely T';. Define

2—N .
W, = Z fi T Uey. ifz€ M,
[gler/T;

where U, , := Uy¥ as in (2.3). For each 6 € (0,dy) define
Mg = M; U--- UM,
B;s :={(g,2) : € € (0,0), z € Ms},
Qs := {:I:WE’Z : (572’) S B5}, Qg := @50.

For the proof of next proposition see [3].
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Proposition 4.1. Let § € (0,00), and assume that (NE) holds. There exists n >
mY (0,0, f) with following properties: For each u € N()F,o,f such that Eyo r(u) < n

we have
1
o f B 1 r
ngeol\u Wil <4/ 5NmH(0,0, ),

and there exist precisely one v € {—1,1}, one e € (0,0¢) and one I'-orbit 'z € Ms,
such that

Ju—Weell = inf flu=W].
Moreover (e, z) € Bs.

4.1. Definition of the bariorbit map. Fix ¢ € (0, &) and choose > m! (0,0, f)
as in Proposition Define

Ego s i={ue Hy() : Eoor(u) <n},
Bs(M) := {z € RN : dist(z, M) < 6},

and the space of I'-orbits of Bs(M) by Bs(M)/T.
From Proposition [{.1] we can define

Definition 4.2. The bariorbit map
8" Noos N EGo ;= Bs(M)/T,
is defined by

T - def . . .
5 () =Ty &L Wey | = i o~ W].

This map is continuous and Z/2-invariant by the compactness of Ms.
If T is the kernel of an epimorphism 7 : G — Z/2, choose g, € 771(—1). Let

u € N ; then u changes sign and u™ (z) = —ut (g7 tx). Therefore, ||u™||? = |ju=||?
and [u't|3 5. = [u” |7 4.. So
uwE N =>ur €NJo; and Egos(u) =2Eor(u®). (4.3)

Lemma 4.3. If Ey o ¢ does not achieve its infimum at N()T,o,ﬁ then

- . _ . #lw 2 N/2 _ r
m’ (0,0, f) :== leloff Eoo,5 = <£nelg W> ~°o T =2m (0,0, f).
Proof. By contradiction. Suppose that there exists u € J\/‘OT,OJ such that Eoy o f(u) =
m7 (0,0, f). Then u* € Nj, ; and

T : #FJZ 2 N/2
m" (0,0, f) < (Iférﬁl f(x)<N—2>/2)NS .

Hence

r 1 . #l'x 1 N/2 _ T
m (070uf) §E0’0,f(u+)—§m (0707f) < (%%W)NS =m (0>07f)~

Thus u* is a minimum of Ey s on J\fOF’OJ, which contradicts (NE). The corollary
[3:8 implies

. . #Tz 2 N2
m(0,0,f)—(gggW)Ns '
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Then property (4.3)) implies
2
UieNg)‘Q‘fﬁan,f VUEN&OJOEOZ)J,

SO
Jut — oW, || = Mrpeigo [ut =W & [lu™ +vWe gy = Vgleigo [u™ = WI. (44)
Therefore,
B (ut) =Ty <= 6" (u") = T(gry), (4.5)
and
BY(ut) # B (uT) Yue NG ;N Eyh (4.6)
Set

Bs(M)" :={z € Bs(M) : Gz =Tz}.
Proposition 4.4. The map
BT NGy N Eol s — (Bs(M)\ Bs(M)7)/T, 7 (u) := 5" (u"),
is well defined, continuous and Z/2-equivariant; i.e.,
B7(—u) =L(gry) <= B7(u) =Ty.
Proof. If w € N, NEY) ; and B7(u) = Ty € Bs(M)"/T then g'(ut) = Ty =

I'(g-y) = BY(u™), this is a contradiction to ([4.6). We conclude that 87 (u) &
Bs(M)7/T. The continuity and Z/2-equivariant properties follows by 8! ones. [

5. MULTIPLICITY OF SOLUTIONS

5.1. Lusternik-Schnirelmann theory. An involution on a topological space X
isamap px : X — X, such that px o px = idx. Given an involution we can define
an action of Z/2 on X and viceversa. The trivial action is given by the identity
ox = idx, the action of G/T' ~ Z/2 on the orbit space RY /T' where G C O(N)
and T is the kernel of an epimorphism 7 : G — Z/2, and the antipodal action
o(u) =—uon Ny, . Amap f: X — Y is called Z/2-equivariant (or a Z/2-map)
if oy o f = f o ox, and two Z/2-maps, fo,f1 : X — Y, are said to be Z/2-
homotopic if there exists a homotopy © : X x [0,1] — Y such that ©(x,0) = fo(z),
O(x,1) = fi(x) and O(pxx,t) = oy O(z,t) for every z € X, t € [0,1]. A subset A
of X is Z/2-equivariant if pxa € A for every a € A.
Definition 5.1. The Z/2-category of a Z/2-map f : X — Y is the smallest integer
k :=7Z/2-cat(f) with following properties
(i) There exists a cover of X = X; U---U X}, by k open Z/2-invariant subsets,
(ii) The restriction f |x,: X; — Y is Z/2-homotopic to the composition x;ocq; of
aZ/2-map «; : X; — {yi, 0v¥i}, yi € Y, and the inclusion &; : {y;, 0y y:i} —
Y.

If not such covering exists, we define Z/2-cat(f) := occ.

If A is a Z/2-invariant subset of X and ¢ : A — X is the inclusion we write
Z]2-catx (A) :=Z)2-cat(t), 7Z/2-catx(X) :=Z/2-cat(X).

Note that if g, = idx then
Z/2-catx (A) = catx(A), 7Z/2-cat(X) := cat(X),

are the usual Lusternik-Schnirelmann category (see [I7, definition 5.4]).
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Theorem 5.2. Let ¢ : M — R be an even functional of class C', and M a
submanifold of a Hilbert space of class C2, symmetric with respect to the origin.
If ¢ is bounded below and satisfies (PS). for each ¢ < d, then ¢ has at least 7./2-
cat(¢?) pairs critical points such that ¢(u) < d.

5.2. Proof of Theorems. We prove Theorem [2.3] only; the proof of Theorem
is analogous. Recall that if 7 is the identity or an epimorphism then #(G/T') is 1
or 2.

Proof of Theorem[2.3 By Corollary 3.8} Ej .y satisfies (PS)j for

W <G/r>

9<1nm{#{G/F) T g2y,

By Lusternik-Schnirelmann theory Ej ,, r has at least Z/2-cat(NY fﬂE N, ) Pairs

+u of critical points in N/\T%f N E/\%f. We are going to estimate this category for
an appropriate value of 6.
Without lost of generality we can assume that § € (0,dp), with §p as in (4.2).

N
Let n > %f, w* € (0,f) and A\* € (0, A1) such that
r
Nn gf }
IRy :
HGIE =5

i A
(7 N/2 1 )N/Z

ByLemma 1fu€N,\THfﬂE)\Mf,u€(0,u ), A € (0, A*) we have

N
2

Eo,0,7(m0,0,£ (1)) < (= / ) ()\1 — )\)

B (u)
i—p s f

< (-5
< #(G/T)n.

Let 87 be the 7-bariorbit function, defined in Proposition [£.4] Hence the com-
position map

BT omoo,r NSy NES ;= (Bs(M)\ Bs(M)")/T,

is a well defined Z/2-invariant continuous function.
By the [3| Propos1tlon 3] using (F2) we can choose ¢ > 0 small enough and

0:=0.< #(G/F)N such that

gF
Expg (s (wl,) <0 <#(G/T)5r ¥y e My,

where wl , = wl, —wl, ., 7(9;) = —1, and
Z f(y) (2 My, oy (2) Py ().
[vler/ry

Thus the map
af : M;(;/F = N3N Eg,u,f’
oy (Ty) = mx . p (Wl ),
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is a well defined Z/2-invariant continuous function. Moreover, 37 (mg 0,7 (af (T'y))) =
I'y for all y € M_5. Therefore,

Z/Q— Cat(N)t#yf n Eg,#,f) > Cat((Bé(M)\Bé(M)T)/F)(M;(;/F).
So (2.10) has at least
cat((Bs(m)\Bs(M)7)/c) (M 5/G)

pairs fu solution which satisfy

él“
B g () < #(G/T) 5
By the choice of \* and p* we have
_ r
( I )N/2( AL )N/Q < Kf )
o — u* AL — AF _EE—(S’
Then
[ . A — A o
N < H— N2, AL N/2 -
#(G/T) L= < (RSN )
S mT(Avluﬂ f) S E>\7M7f(u)
1, 0
= NHUH,\,H < #(G/F)N
therefore

#(G/T)l; = 8" < |Jul} . < #(G/T)L5.
O

Proof of Theorem[2.]] By Theorem [2.1]there exist A and p sufficiently close to zero
such that the problem (2.1) has at least catpg;(ar)r(My /T') positive solutions such
T

that EA%f(u) < eﬁf
T ~ ~
We will prove that %f < m%(0,0, f). First suppose that m!' (0,0, f) does not
- T r ~
achieve then by the hypothesis m! (0,0, f) = %f > %f If m* (0,0, f) is achieved
there exists u € N({O’f C N{O’f and

T =
& =m0 (0.0, f) <m(0,0,f) = Eo o (u)

By (3.4) there exist \e (0,A1) and g € (0,f) such that for each A € (O,X) and
u € (0,12) such that

o - A I -
cf r < 1 \N/2, M \Nj/2 T
v <m0.0.0) < (VAN O )

Then
6? .
Expg(u) < 55 < m"(\, 1, f).

Therefore, u is not [-invariant solution. O
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