Electronic Journal of Differential Equations, Vol. 2010(2010), No. 112, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

MULTIPLE SOLUTIONS FOR A SINGULAR SEMILINEAR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT AND SYMMETRIES

ALFREDO CANO, SERGIO HERNÁNDEZ-LINARES, ERIC HERNÁNDEZ-MARTÍNEZ

Abstract

We consider the singular semilinear elliptic equation $-\Delta u-\frac{\mu}{|x|^{2}} u-$ $\lambda u=f(x)|u|^{2^{*}-1}$ in $\Omega, u=0$ on $\partial \Omega$, where Ω is a smooth bounded domain, in $\mathbb{R}^{N}, N \geq 4,2^{*}:=\frac{2 N}{N-2}$ is the critical Sobolev exponent, $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a continuous function, $0<\lambda<\lambda_{1}$, where λ_{1} is the first Dirichlet eigenvalue of $-\Delta-\frac{\mu}{|x|^{2}}$ in Ω and $0<\mu<\bar{\mu}:=\left(\frac{N-2}{2}\right)^{2}$. We show that if Ω and f are invariant under a subgroup of $O(N)$, the effect of the equivariant topology of Ω will give many symmetric nodal solutions, which extends previous results of Guo and Niu 8.

1. Introduction

Much attention has been paid to the singular semilinear elliptic problem

$$
\begin{gather*}
-\Delta u-\mu \frac{u}{|x|^{2}}-\lambda u=f(x)|u|^{2^{*}-2} u \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 4)$ is a smooth bounded domain, $0 \in \Omega, 0 \leq \mu<\bar{\mu}:=$ $((N-2) / 2)^{2}, \lambda \in\left(0, \lambda_{1}\right)$, where λ_{1} is the first Dirichlet eigenvalue of $-\Delta-\frac{\mu}{|x|^{2}}$ on Ω and $2^{*}:=2 N /(N-2)$ is the critical Sobolev exponent, and f is a continuous function. We state some related work here about this problem.

Brezis and Nirenberg [2] proved the existence of one positive solution for 1.1) with $\mu=0$ and $f=1$, with $\lambda \in\left(0, \lambda_{1}\right)$, where λ_{1} is the first Dirichlet eigenvalue of $-\Delta$ on Ω and $N \geq 4$. Rey [13] and Lazzo [11] established a close relationship between the number of positive solutions for 1.1 with $\mu=0$ and $f=1$ and the domain topology if λ is positive and sufficiently small. Cerami, Solimini, and Struwe [6] proved that (1.1) with $\mu=0$ and $f=1$ has one solution changing sign exactly once for $N \geq 6$ and $\lambda \in\left(0, \lambda_{1}\right)$. In [5] Castro and Clapp proved that there is an effect of the domain topology on the number of minimal nodal solutions changing

[^0]sign just once of (1.1) with $\mu=0$ and $f=1$, with λ positive sufficiently small. Recently Cano and Clapp [3] proved the multiplicity of sign changing solutions for (1.1) with $\lambda=a$ and $\mu=0$, where a and f are continuous functions. The existence of non trivial positive solution for 1.1) with $f=1$ and $\mu \in[0, \bar{\mu}-1]$ and $\lambda \in\left(0, \lambda_{1}\right)$ where λ_{1} is the first Dirichlet eigenvalue of $-\Delta-\frac{\mu}{|x|^{2}}$ on Ω, was proved by Janelli [10. Cao and Peng [4] proved the existence of a pair of sign changing solutions for (1.1) with $f=1, N \geq 7, \mu \in[0, \bar{\mu}-4], \lambda \in\left(0, \lambda_{1}\right)$. Han and Liu [9] proved the existence of one non trivial solution for (1.1) with $\lambda>0, f(x)>0$ and some additional assumptions. Chen [7] proved the existence of one positive solution for (1.1) with $\lambda \in\left(0, \lambda_{1}\right)$ and f not necessarily positive but satisfying additional hypothesis. Guo and Niu [8 proved the existence of a symmetric nodal solution and a positive solution for $0<\lambda<\lambda_{1}$, where λ_{1} is the first Dirichlet eigenvalue of $-\Delta-\frac{\mu}{|x|^{2}}$ on Ω, with Ω and f invariant under a subgroup of $O(N)$.

2. Statement of results

Let Γ be a closed subgroup of the orthogonal transformations $O(N)$. We consider the problem

$$
\begin{gather*}
-\Delta u-\mu \frac{u}{|x|^{2}}-\lambda u=f(x)|u|^{2^{*}-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{2.1}\\
u(\gamma x)=u(x) \quad \forall x \in \Omega, \gamma \in \Gamma
\end{gather*}
$$

where Ω is a smooth bounded domain, Γ-invariant in $\mathbb{R}^{N}, N \geq 4,2^{*}:=(2 N) /(N-$ 2) is the critical Sobolev exponent, $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Γ-invariant continuous function, $0<\lambda<\lambda_{1}$, where λ_{1} is the first Dirichlet eigenvalue of $-\Delta-\frac{\mu}{|x|^{2}}$ on Ω and $0<\mu<\bar{\mu}:=((N-2) / 2)^{2}$.

Note that a subset X of \mathbb{R}^{N} is Γ-invariant if $\gamma x \in X$ for all $x \in X$ and $\gamma \in \Gamma$. A function $h: X \rightarrow \mathbb{R}$ is Γ-invariant if $h(\gamma x)=h(x)$ for all $x \in X$ and $\gamma \in \Gamma$. Let $\Gamma x:=\{\gamma x: \gamma \in \Gamma\}$ be the Γ-orbit of a point $x \in \mathbb{R}^{N}$, and $\# \Gamma x$ its cardinality. Let $X / \Gamma:=\{\Gamma x: x \in X\}$ denote the Γ-orbit space of $X \subset \mathbb{R}^{N}$ with the quotient topology.

Let us recall that the least energy solutions of

$$
\begin{gather*}
-\Delta u=|u|^{2^{*}-2} u \quad \text { in } \mathbb{R}^{N} \\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{2.2}
\end{gather*}
$$

are the instantons

$$
\begin{equation*}
U_{0}^{\varepsilon, y}(x):=C(N)\left(\frac{\varepsilon}{\varepsilon^{2}+|x-y|^{2}}\right)^{(N-2) / 2} \tag{2.3}
\end{equation*}
$$

where $C(N)=(N(N-2))^{(N-2) / 2}$ (see [1], 15]). If the domain is not \mathbb{R}^{N}, there is no minimal energy solutions. These solutions minimize

$$
S_{0}:=\min _{u \in D^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x\right)^{2 / 2^{*}}},
$$

where $D^{1,2}\left(\mathbb{R}^{N}\right)$ is the completion of $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the norm

$$
\|u\|^{2}:=\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x
$$

Also, for $0<\mu<\bar{\mu}$ it is well known that the positive solutions to

$$
\begin{gather*}
-\Delta u-\mu \frac{u}{|x|^{2}}=|u|^{2^{*}-2} u \quad \text { in } \mathbb{R}^{N} \tag{2.4}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty
\end{gather*}
$$

are

$$
U_{\mu}(x):=C_{\mu}(N)\left(\frac{\varepsilon}{\varepsilon^{2}|x|^{(\sqrt{\mu}-\sqrt{\bar{\mu}-\mu}) / \sqrt{\bar{\mu}}}+|x|^{(\sqrt{\bar{\mu}}+\sqrt{\bar{\mu}-\mu}) / \sqrt{\bar{\mu}}}}\right)^{(N-2) / 2},
$$

where $\varepsilon>0$ and $C_{\mu}(N)=\left(\frac{4 N(\bar{\mu}-\mu)}{N-2}\right)^{(N-2) / 4}$ (see [16]). These solutions minimize

$$
S_{\mu}:=\min _{u \in D^{1,2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}-\mu \frac{u^{2}}{|x|^{2}}\right) d x}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x\right)^{2 / 2^{*}}}
$$

We denote

$$
M:=\left\{y \in \bar{\Omega}: \frac{\# \Gamma y}{f(y)^{(N-2 / 2}}=\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{(N-2) / 2}}\right\} .
$$

We shall assume that f satisfies:
(F1) $f(x)>0$ for all $x \in \bar{\Omega}$.
(F2) f is locally flat at M, that is, there exist $r>0, \nu>N$ and $A>0$ such that

$$
|f(x)-f(y)| \leq A|x-y|^{\nu} \quad \text { if } y \in M \text { and }|x-y|<r
$$

For all $0<\mu<\bar{\mu}$ and $0<\lambda<\lambda_{1}$ we define the bilinear operator $\langle\cdot, \cdot\rangle_{\lambda, \mu}$: $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
\langle u, v\rangle_{\lambda, \mu}:=\int_{\Omega}\left(\nabla u \cdot \nabla v-\mu \frac{u v}{|x|^{2}}-\lambda u v\right) d x
$$

which is an inner product in $H_{0}^{1}(\Omega)$. Its induced norm

$$
\|u\|_{\lambda, \mu}:=\sqrt{\langle u, u\rangle_{\lambda, \mu}}=\left(\int_{\Omega}\left(|\nabla u|^{2}-\mu \frac{u^{2}}{|x|^{2}}-\lambda|u|^{2}\right) d x\right)^{1 / 2}
$$

is equivalent to the usual norm $\|u\|:=\|u\|_{0,0}$ in $H_{0}^{1}(\Omega)$. This fact is a direct consequence of the Hardy inequality

$$
\begin{equation*}
\int_{\Omega} \frac{u^{2}}{|x|^{2}} d x \leq \frac{1}{\bar{\mu}} \int_{\Omega}|\nabla u|^{2} d x, \quad \forall u \in H_{0}^{1}(\Omega) \tag{2.5}
\end{equation*}
$$

Since λ_{1} is the first Dirichlet eigenvalue of $-\Delta-\frac{\mu}{|x|^{2}}$ on Ω,

$$
\begin{equation*}
\int_{\Omega} \lambda|u|^{2} d x \leq \frac{\lambda}{\lambda_{1}} \int_{\Omega}\left(|\nabla u|^{2}-\mu \frac{u^{2}}{|x|^{2}}\right) d x \tag{2.6}
\end{equation*}
$$

Therefore, by 2.5,

$$
\begin{align*}
\|u\|_{\lambda, \mu}^{2} & :=\int_{\Omega}\left(|\nabla u|^{2}-\mu \frac{u^{2}}{|x|^{2}}-\lambda|u|^{2}\right) d x \\
& \geq\left(1-\frac{\lambda}{\lambda_{1}}\right) \int_{\Omega}\left(|\nabla u|^{2}-\mu \frac{u^{2}}{|x|^{2}}\right) d x \tag{2.7}\\
& \geq\left(1-\frac{\lambda}{\lambda_{1}}\right)\left(1-\frac{\mu}{\bar{\mu}}\right) \int_{\Omega}|\nabla u|^{2} d x \\
& =\left(1-\frac{\lambda}{\lambda_{1}}\right)\left(1-\frac{\mu}{\bar{\mu}}\right)\|u\|^{2}
\end{align*}
$$

The other inequality follows from the Sobolev imbedding theorem.

It is easy to see that, if $f \in C(\bar{\Omega})$ satisfies (F1) then the norms

$$
|u|_{2^{*}}:=\left(\int_{\Omega}|u|^{2^{*}} d x\right)^{1 / 2^{*}}, \quad \text { and } \quad|u|_{f, 2^{*}}:=\left(\int_{\Omega} f(x)|u|^{2^{*}} d x\right)^{1 / 2^{*}}
$$

are equivalent. We denote

$$
\ell_{f}^{\Gamma}:=\left(\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{(N-2) / 2}}\right) S_{0}^{N / 2}
$$

Our multiplicity results will require the following non existence assumption.
(A1)) The problem

$$
\begin{gather*}
-\Delta u=f(x)|u|^{2^{*}-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{2.8}\\
u(\gamma x)=u(x) \quad \forall x \in \Omega, \gamma \in \Gamma
\end{gather*}
$$

does not have a positive solution u which satisfies $\|u\|^{2} \leq \ell_{f}^{\Gamma}$.
2.1. Multiplicity of positive solutions. Our next result generalizes the work of Guo and Niu [8] for the problem 2.1] and establishes a relationship between the topology of the domain and the multiplicity of positive solutions. For $\delta>0$ let

$$
\begin{equation*}
M_{\delta}^{-}:=\{y \in M: \operatorname{dist}(y, \partial \Omega) \geq \delta\}, B_{\delta}(M):=\left\{z \in \mathbb{R}^{N}: \operatorname{dist}(z, M) \leq \delta\right\} \tag{2.9}
\end{equation*}
$$

Theorem 2.1. Let $N \geq 4, \Omega$ and f be Γ-invariant, and (F1), (F2), (A1) and $\ell_{f}^{\Gamma} \leq S_{\mu}^{N / 2}$ hold. For each $\delta, \delta^{\prime}>0$ there exist $\lambda^{*} \in\left(0, \lambda_{1}\right), \mu^{*} \in(0, \bar{\mu})$ such that for all $\lambda \in\left(0, \lambda^{*}\right), \mu \in\left(0, \mu^{*}\right)$ the problem (2.1) has at least

$$
\operatorname{cat}_{B_{\delta}(M) / \Gamma}\left(M_{\delta}^{-} / \Gamma\right)
$$

positive solutions which satisfy

$$
\ell_{f}^{\Gamma}-\delta^{\prime} \leq\|u\|_{\lambda, \mu}^{2}<\ell_{f}^{\Gamma} .
$$

2.2. Multiplicity of nodal solutions. We assume that Γ is the kernel of an epimorphism $\tau: G \rightarrow \mathbb{Z} / 2:=\{-1,1\}$, where G is a closed subgroup of $O(N)$ for which, Ω is G-invariant and $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a G-invariant function.

A real valued function u defined in Ω will be called τ-equivariant if

$$
u(g x)=\tau(g) u(x) \quad \forall x \in \Omega, g \in G
$$

In this section we study the problem

$$
\begin{gather*}
-\Delta u-\mu \frac{u}{|x|^{2}}-\lambda u=f(x)|u|^{2^{*}-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{2.10}\\
u(g x)=\tau(g) u(x) \quad \forall x \in \Omega, g \in G
\end{gather*}
$$

Note that all τ-equivariant functions u are Γ-invariant; i.e., $u(g x)=u(x)$ for all $x \in \Omega, g \in \Gamma$. If u is a τ-equivariant function then $u(g x)=-u(x)$ for all $x \in \Omega$ and $g \in \tau^{-1}(-1)$. Thus all non trivial τ-equivariant solution of 2.1 change sign.
Definition 2.2. We call a Γ-invariant subset X of $\mathbb{R}^{N} \Gamma$-connected if cannot be written as the union of two disjoint open Γ-invariant subsets. A real valued function $u: \Omega \rightarrow \mathbb{R}$ is $(\Gamma, 2)$-nodal if the sets

$$
\{x \in \Omega: u(x)>0\} \quad \text { and } \quad\{x \in \Omega: u(x)<0\}
$$

are nonempty and Γ-connected.

For each G-invariant subset X of \mathbb{R}^{N}, we define

$$
X^{\tau}:=\{x \in X: G x=\Gamma x\}
$$

Let $\delta>0$, define

$$
M_{\tau, \delta}^{-}:=\left\{y \in M: \operatorname{dist}\left(y, \partial \Omega \cap \Omega^{\tau}\right) \geq \delta\right\}
$$

and $B_{\delta}(M)$ as in 2.9 .
The next theorem is a multiplicity result for τ-equivariant $(\Gamma, 2)$-nodal solutions for the problem (2.1).

Theorem 2.3. Let $N \geq 4$, and (F1), (F2), (A1) and $\ell_{f}^{\Gamma} \leq S_{\mu}^{N / 2}$ hold. If Γ is the kernel of an epimorphism $\tau: G \rightarrow \mathbb{Z} / 2$ defined on a closed subgroup G of $O(N)$ for which Ω and f are G-invariant. Given $\delta, \delta^{\prime}>0$ there exists $\lambda^{*} \in\left(0, \lambda_{1}\right), \mu^{*} \in(0, \bar{\mu})$ such that for all $\lambda \in\left(0, \lambda^{*}\right), \mu \in\left(0, \mu^{*}\right)$ the problem 2.1 has at least

$$
\operatorname{cat}_{\left(B_{\delta}(M) \backslash B_{\delta}(M)^{\tau}\right) / G}\left(M_{\tau, \delta}^{-} / G\right)
$$

pairs $\pm u$ of τ-equivariants $(\Gamma, 2)$-nodal solutions which satisfy

$$
2 \ell_{f}^{\Gamma}-\delta^{\prime} \leq\|u\|_{\lambda, \mu}^{2}<2 \ell_{f}^{\Gamma}
$$

2.3. Non symmetric properties for solutions. Let $\Gamma \subset \widetilde{\Gamma} \subset O(N)$. Next we give sufficient conditions for the existence of many solutions which are Γ-invariant but are not $\widetilde{\Gamma}$-invariant.
Theorem 2.4. Let $N \geq 4$ and assume that f satisfies (F1), (F2), (A1) and $\ell_{f}^{\Gamma} \leq$ $S_{\mu}^{N / 2}$. Let $\widetilde{\Gamma}$ be a closed subgroup of $O(N)$ containing Γ, for which Ω and f are $\widetilde{\Gamma}$-invariant and

$$
\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{\frac{N-2}{2}}}<\min _{x \in \bar{\Omega}} \frac{\# \widetilde{\Gamma} x}{f(x)^{(N-2) / 2}}
$$

Given $\delta, \delta^{\prime}>0$ there exist $\lambda^{*} \in\left(0, \lambda_{1}\right), \mu^{*} \in(0, \bar{\mu})$ such that for all $\lambda \in\left(0, \lambda^{*}\right)$, $\mu \in\left(0, \mu^{*}\right)$ the problem 2.1) has at least

$$
\operatorname{cat}_{B_{\delta}(M) / \Gamma}\left(M_{\delta}^{-} / \Gamma\right)
$$

positive solutions which are not $\widetilde{\Gamma}$-invariant and satisfy

$$
2 \ell_{f}^{\Gamma}-\delta^{\prime} \leq\|u\|_{\lambda, \mu}^{2}<2 \ell_{f}^{\Gamma}
$$

3. The variational problem

Let $\tau: G \rightarrow \mathbb{Z} / 2$ be a homomorphism defined on a closed subgroup G of $O(N)$, and $\Gamma:=\operatorname{ker} \tau$. Consider the problem

$$
\begin{gather*}
-\Delta u-\mu \frac{u}{|x|^{2}}-\lambda u=f(x)|u|^{2^{*}-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{3.1}\\
u(g x)=\tau(g) u(x) \quad \forall x \in \Omega, g \in G
\end{gather*}
$$

where Ω is a G-invariant bounded smooth subset of \mathbb{R}^{N}, and $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a G-invariant continuous function which satisfies (F1).

If $\tau \equiv 1$ then the problems 2.10 and 2.1 coincide. If τ is an epimorphism then a solution of 2.10 is a solution of 2.1 with the additional property $u(g x)=-u(x)$ for all $x \in \Omega$ and $g \in \tau^{-1}(-1)$. So every non trivial solution of 2.10 is a sign changing solution for 2.1).

The homomorphism τ induces the action of G on $H_{0}^{1}(\Omega)$ given by

$$
(g u)(x):=\tau(g) u\left(g^{-1} x\right) .
$$

The fixed point space of the action is given by

$$
\begin{aligned}
H_{0}^{1}(\Omega)^{\tau} & :=\left\{u \in H_{0}^{1}(\Omega): g u=u \quad \forall g \in G\right\} \\
& =\left\{u \in H_{0}^{1}(\Omega): u(g x)=\tau(g) u(x) \quad \forall g \in G, \quad \forall x \in \Omega\right\}
\end{aligned}
$$

is the space of τ-equivariant functions. The fixed point space of the restriction of this action to Γ

$$
H_{0}^{1}(\Omega)^{\Gamma}=\left\{u \in H_{0}^{1}(\Omega): u(g x)=\tau(g) u(x), \forall g \in \Gamma, \forall x \in \Omega\right\}
$$

are the Γ-invariant functions of $H_{0}^{1}(\Omega)$. The norms $\|\cdot\|_{\lambda, \mu},\|\cdot\|$ on $H_{0}^{1}(\Omega)$ and $|\cdot|_{2^{*}},|\cdot|_{f, 2^{*}}$ on $L^{2^{*}}(\Omega)$ are G-invariant with respect to the action induced by τ; therefore, the functional

$$
\begin{aligned}
E_{\lambda, \mu, f}(u) & :=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}-\mu \frac{u^{2}}{|x|^{2}}-\lambda|u|^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} f(x)|u|^{2^{*}} d x \\
& =\frac{1}{2}\|u\|_{\lambda, \mu}^{2}-\frac{1}{2^{*}}|u|_{f, 2^{*}}^{2^{*}}
\end{aligned}
$$

is G-invariant, with derivative

$$
D E_{\lambda, \mu, f}(u) v=\int_{\Omega}\left(\nabla u \cdot \nabla v-\mu \frac{u v}{|x|^{2}}-\lambda u v\right) d x-\int_{\Omega} f(x)|u|^{2^{*}-2} u v d x
$$

By the principle of symmetric criticality [12], the critical points of its restriction to $H_{0}^{1}(\Omega)^{\tau}$ are the solutions of 2.10 , and all non trivial solutions lie on the Nehari manifold

$$
\begin{aligned}
\mathcal{N}_{\lambda, \mu, f}^{\tau} & :=\left\{u \in H_{0}^{1}(\Omega)^{\tau}: u \neq 0, D E_{\lambda, \mu, f}(u) u=0\right\} \\
& =\left\{u \in H_{0}^{1}(\Omega)^{\tau}: u \neq 0,\|u\|_{\lambda, \mu}^{2}=|u|_{f, 2^{*}}^{2^{*}}\right\}
\end{aligned}
$$

which is of class C^{2} and radially diffeomorphic to the unit sphere in $H_{0}^{1}(\Omega)^{\tau}$ by the radial projection

$$
\pi_{\lambda, \mu, f}: H_{0}^{1}(\Omega)^{\tau} \backslash\{0\} \rightarrow \mathcal{N}_{\lambda, \mu, f}^{\tau} \quad \pi_{\lambda, \mu, f}(u):=\left(\frac{\|u\|_{\lambda, \mu}^{2}}{|u|_{f, 2^{*}}^{2^{*}}}\right)^{(N-2) / 4} u
$$

Therefore, the nontrivial solutions of 2.10 are precisely the critical points of the restriction of $E_{\lambda, \mu, f}$ to $\mathcal{N}_{\lambda, \mu, f}^{\tau}$. If $\tau \equiv 1$ we write $\mathcal{N}_{\lambda, \mu, f}^{\Gamma}$ and if G is a trivial group $\mathcal{N}_{\lambda, \mu, f}$. Note that

$$
\begin{equation*}
E_{\lambda, \mu, f}(u)=\frac{1}{N}\|u\|_{\lambda, \mu}^{2}=\frac{1}{N}|u|_{f, 2^{*}}^{2^{*}} \quad \forall u \in \mathcal{N}_{\lambda, \mu, f}^{\tau} \tag{3.2}
\end{equation*}
$$

and

$$
E_{\lambda, \mu, f}\left(\pi_{\lambda, \mu, f}(u)\right)=\frac{1}{N}\left(\frac{\|u\|_{\lambda, \mu}^{2}}{|u|_{f, 2^{*}}^{2}}\right)^{N / 2} \quad \forall u \in H_{0}^{1}(\Omega)^{\tau} \backslash\{0\}
$$

We define

$$
\begin{aligned}
m(\lambda, \mu, f) & :=\inf _{\mathcal{N}_{\lambda, \mu, f}} E_{\lambda, \mu, f}(u)=\inf _{\mathcal{N}_{\lambda, \mu, f}} \frac{1}{N}\|u\|_{\lambda, \mu}^{2} \\
& =\inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{1}{N}\left(\frac{\|u\|_{\lambda, \mu}^{2}}{|u|_{f, 2^{*}}^{2}}\right)^{N / 2}
\end{aligned}
$$

In particular, $E_{\lambda, \mu, f}$ are bounded below on $\mathcal{N}_{\lambda, \mu, f}$. We denote by

$$
m^{\Gamma}(\lambda, \mu, f):=\inf _{\mathcal{N}_{\lambda, \mu, f}^{\tau}} E_{\lambda, \mu, f}, \quad m^{\tau}(\lambda, \mu, f):=\inf _{\mathcal{N}_{\lambda, \mu, f}^{\tau}} E_{\lambda, \mu, f}
$$

3.1. Estimates for the infimum.

Proposition 3.1. $m^{\Gamma}(\lambda, \mu, f)>0$.
Proof. Assume that $m^{\Gamma}(\lambda, \mu, f)=0$. Then there exist a sequence $\left(u_{n}\right)$ on $\mathcal{N}_{\lambda, \mu, f}^{\Gamma}$ such that

$$
E_{\lambda, \mu, f}\left(u_{n}\right) \rightarrow m^{\Gamma}(\lambda, \mu, f)=0
$$

So $E_{\lambda, \mu, f}\left(u_{n}\right)=\frac{1}{N}\left\|u_{n}\right\|_{\lambda, \mu}^{2}$. Since $\|\cdot\|_{\lambda, \mu}$ and $\|\cdot\|$ are equivalent norms of $H_{0}^{1}(\Omega)$ we have that $u_{n} \rightarrow 0$ strongly in $H_{0}^{1}(\Omega)$; but $\mathcal{N}_{\lambda, \mu, f}^{\Gamma}$ is closed in $H_{0}^{1}(\Omega)$ then $0 \in \mathcal{N}_{\lambda, \mu, f}^{\Gamma}$ which is a contradiction.
Proposition 3.2. Let $0<\lambda \leq \lambda^{\prime}<\lambda_{1}, 0<\mu \leq \mu^{\prime}<\bar{\mu}$ and $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ a continuous function Σ-invariant, such that f satisfies (F1), and Σ is a closed subgroup of $O(N)$. Then $\|u\|_{\lambda^{\prime}, \mu^{\prime}}^{2} \leq\|u\|_{\lambda, \mu}^{2}$,

$$
m\left(\lambda^{\prime}, \mu^{\prime}, f\right) \leq m(\lambda, \mu, f) \quad \text { and } \quad m^{\Sigma}\left(\lambda^{\prime}, \mu^{\prime}, f\right) \leq m^{\Sigma}(\lambda, \mu, f)
$$

Proof. By definition of $\|\cdot\|_{\lambda, \mu}$ we obtain the first inequality. Let $u \in H_{0}^{1}(\Omega) \backslash\{0\}$, then

$$
\begin{aligned}
m\left(\lambda^{\prime}, \mu^{\prime}, f\right) & \leq E_{\lambda^{\prime}, \mu^{\prime}, f}\left(\pi_{\lambda^{\prime}, \mu^{\prime}, f}(u)\right) \\
& =\frac{1}{N}\left(\frac{\|u\|_{\lambda^{\prime}, \mu^{\prime}}^{2}}{|u|_{f, 2^{*}}^{2}}\right)^{N / 2} \\
& \leq \frac{1}{N}\left(\frac{\|u\|_{\lambda, \mu}^{2}}{|u|_{f, 2^{*}}^{2}}\right)^{N / 2} \\
& =E_{\lambda, \mu, f}\left(\pi_{\lambda, \mu, f}(u)\right) .
\end{aligned}
$$

From this inequality there proof follows.
We denote by λ_{1} the first Dirichlet eigenvalue of $-\Delta-\frac{\mu}{|x|^{2}}$ in $H_{0}^{1}(\Omega)$.
Lemma 3.3. For all $\lambda \in\left(0, \lambda_{1}\right), \mu \in(0, \bar{\mu}), u \in H_{0}^{1}(\Omega)^{\tau}$, it follows that

$$
E_{0,0, f}\left(\pi_{0,0, f}(u)\right) \leq\left(\frac{\bar{\mu}}{\bar{\mu}-\mu}\right)^{\frac{N}{2}}\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda}\right)^{\frac{N}{2}} E_{\lambda, \mu, f}\left(\pi_{\lambda, \mu, f}(u)\right)
$$

Proof. Since

$$
E_{\lambda, \mu, f}\left(\pi_{\lambda, \mu, f}(u)\right)=\frac{1}{N}\left(\frac{\|u\|_{\lambda, \mu}^{2}}{|u|_{f, 2^{*}}^{2}}\right)^{N / 2}=\frac{1}{N}\left(\frac{\|u\|_{\lambda, \mu}^{N}}{|u|_{f, 2^{*}}^{N}}\right),
$$

and by 2.7

$$
\left(1-\frac{\mu}{\bar{\mu}}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|^{2} \leq\|u\|_{\lambda, \mu}^{2}
$$

then

$$
\begin{gathered}
\left(1-\frac{\mu}{\bar{\mu}}\right)^{\frac{N}{2}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{N}{2}}\|u\|^{N} \leq\|u\|_{\lambda, \mu}^{N} \\
\left(1-\frac{\mu}{\bar{\mu}}\right)^{\frac{N}{2}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{N}{2}} \frac{1}{N} \frac{\|u\|^{N}}{|u|_{f, 2^{*}}^{N}} \leq E_{\lambda, \mu, f}\left(\pi_{\lambda, \mu, f}(u)\right)
\end{gathered}
$$

so

$$
E_{0,0, f}\left(\pi_{0,0, f}(u)\right) \leq\left(\frac{\bar{\mu}}{\bar{\mu}-\mu}\right)^{\frac{N}{2}}\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda}\right)^{\frac{N}{2}} E_{\lambda, \mu, f}\left(\pi_{\lambda, \mu, f}(u)\right)
$$

which concludes the proof.
As a immediately consequence we have the following result.

Corollary 3.4.

$$
m^{\tau}(0,0, f) \leq\left(\frac{\bar{\mu}}{\bar{\mu}-\mu}\right)^{\frac{N}{2}}\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda}\right)^{\frac{N}{2}} m^{\tau}(\lambda, \mu, f)
$$

For the proof of the next lemma we refer the reader to [3].
Lemma 3.5. If $\Omega \cap M \neq \emptyset$ then
(a) $m^{\Gamma}(0,0, f) \leq \frac{1}{N} \ell_{f}^{\Gamma}$.
(b) if there exists $y \in \Omega \cap M$ with $\Gamma x \neq G y$, then $m^{\tau}(0,0, f) \leq \frac{2}{N} \ell_{f}^{\Gamma}$.

3.2. A compactness result.

Definition 3.6. A sequence $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ satisfying

$$
E_{\lambda, \mu, f}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad \nabla E_{\lambda, \mu, f}\left(u_{n}\right) \rightarrow 0
$$

is called a Palais-Smale sequence for $E_{\lambda, \mu, f}$ at c. We say that $E_{\lambda, \mu, f}$ satisfies the Palais-Smale condition $(P S)_{c}$ if every Palais-Smale sequence for $E_{\lambda, \mu, f}$ at c has a convergent subsequence. If $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)^{\tau}$ then $\left\{u_{n}\right\}$ is a τ-equivariant Palais-Smale sequence and $E_{\lambda, \mu, f}$ satisfies the τ-equivariant Palais-Smale condition, $(P S)_{c}^{\tau}$. If $\tau \equiv 1\left\{u_{n}\right\}$ is a Γ-invariant Palais-Smale sequence and $E_{\lambda, \mu, f}$ satisfies the Γ-invariant Palais-Smale condition $(P S)_{c}^{\Gamma}$.

The next theorem, proved by Guo-Niu [8], describes the τ-equivariant PalaisSmale sequence for $E_{\lambda, \mu, f}$.

Theorem 3.7. Let $\left(u_{n}\right)$ be a Palais-Smale in $H_{0}^{1}(\Omega)^{\tau}$, for $E_{\lambda, \mu, f}$ at $c \geq 0$. Then there exist a solution u of $2.10, m, l \in \mathbb{N}$; a closed subgroup G^{i} of finite index in G, sequences $\left\{y_{n}^{i}\right\} \subset \Omega,\left\{r_{n}^{i}\right\} \subset(0,+\infty)$; a solution \widehat{u}_{0}^{i} of 2.2), for $i=1, \ldots, m$; and $\left\{R_{n}^{j}\right\} \subset \mathbb{R}^{+}$, a solution \widehat{u}_{μ}^{j} of 2.4 for $j=1, \ldots$, . Such that
(i) $G_{y_{n}^{i}}=G^{i}$
(ii) $\left(r_{n}^{i}\right)^{-1} \operatorname{dist}\left(y_{n}^{i}, \partial \Omega\right) \rightarrow \infty, y_{n}^{i} \rightarrow y^{i}$, if $n \rightarrow \infty$, for $i=1, \ldots, m$.
(iii) $\left(r_{n}^{i}\right)^{-1}\left|g y_{n}^{i}-g^{\prime} y_{n}^{i}\right| \rightarrow \infty$, if $n \rightarrow \infty$, and $[g] \neq\left[g^{\prime}\right] \in G / G^{i}$, for $i=1, \ldots, m$,
(iv) $\widehat{u}_{0}^{i}(g x)=\tau(g) \widehat{u}_{0}^{i}(x) \forall z \in \mathbb{R}^{N}$ and $g \in G^{i}$,
(v) $\widehat{u}_{\mu}^{j}(g x)=\tau(g) \widehat{u}_{\mu}^{j}(x) \forall z \in \mathbb{R}^{N}$ and $g \in G, R_{n}^{j} \rightarrow 0$ for $j=1, \ldots, l$
(vi)

$$
\begin{aligned}
u_{n}(x)= & u(x)+\sum_{i=1}^{m} \sum_{[g] \in G / G^{i}}\left(r_{n}^{i}\right)^{\frac{2-N}{2}} f\left(y^{i}\right)^{\frac{2-N}{4}} \tau(g) \widehat{u}_{0}^{i}\left(g^{-1}\left(\frac{x-g y_{n}^{i}}{r_{n}^{i}}\right)\right) \\
& +\sum_{j=1}^{l}\left(R_{n}^{j}\right)^{\frac{2-N}{2}} \widehat{u}_{\mu}^{i}\left(\frac{x}{R_{n}^{j}}\right)+o(1),
\end{aligned}
$$

(vii) $\begin{aligned} E_{\lambda, \mu, f}\left(u_{n}\right) \rightarrow E_{\lambda, \mu, f}(u)+\sum_{i=1}^{m}\left(\frac{\#\left(G / G^{i}\right)}{f\left(y^{i}\right)^{\frac{N-2}{2}}}\right) E_{0,0,1}^{\infty}\left(\widehat{u}_{0}^{i}\right)+\sum_{j=1}^{l} E_{0, \mu, 1}^{\infty}\left(\widehat{u}_{\mu}^{j}\right) \text {, as } \\ n \rightarrow \infty\end{aligned}$ $n \rightarrow \infty$

Corollary 3.8. $E_{\lambda, \mu, f}$ satisfies $(P S)_{c}^{\tau}$ at every

$$
c<\min \left\{\#(G / \Gamma) \frac{\ell_{f}^{\Gamma}}{N}, \frac{\#(G / \Gamma)}{N} S_{\mu}^{N / 2}\right\}
$$

4. The bariorbit map

We will assume the nonexistence condition
(NE) The infimum of $E_{0,0, f}$ is not achieved in $\mathcal{N}_{0,0, f}^{\Gamma}$.
Corollary 3.8 and Lemma 3.5 imply

$$
\begin{equation*}
m^{\Gamma}(0,0, f):=\inf _{\mathcal{N}_{0,0, f}^{\Gamma}} E_{0,0, f}=\left(\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{(N-2) / 2}}\right) \frac{1}{N} S^{N / 2} \tag{4.1}
\end{equation*}
$$

if (NE) is assumed. It is well known that $(N E)$ holds, if $\Gamma=\{1\}$ and f is constant (see [14, Cap. III, Teorema 1.2]). Set

$$
M:=\left\{y \in \bar{\Omega}: \frac{\# \Gamma y}{f(y)^{(N-2) / 2}}=\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{(N-2) / 2}}\right\}
$$

For every $y \in \mathbb{R}^{N}, \gamma \in \Gamma$, the isotropy subgroups satisfy $\Gamma_{\gamma y}=\gamma \Gamma_{y} \gamma^{-1}$. Therefore the set of isotropy subgroups of Γ-invariant subsets consists of complete conjugacy classes. We choose $\Gamma_{i} \subset \Gamma, i=1, \ldots, m$, one in each conjugacy class of an isotropy subgroup of M. Set

$$
V^{i}:=\left\{z \in V: \gamma z=z \quad \forall \gamma \in \Gamma_{i}\right\}
$$

the fixed point space of $V \subset \mathbb{R}^{N}$ under the action of Γ_{i}. Set

$$
\begin{gathered}
M^{i}:=\left\{y \in M: \Gamma_{y}=\Gamma_{i}\right\} \\
\Gamma M^{i}:=\left\{\gamma y: \gamma \in \Gamma, y \in M^{i}\right\}=\left\{y \in M:\left(\Gamma_{y}\right)=\left(\Gamma_{i}\right)\right\} .
\end{gathered}
$$

By definition of M it follows that f is constant on each ΓM^{i}. Set

$$
f_{i}:=f\left(\Gamma M^{i}\right) \in \mathbb{R}
$$

Fix $\delta_{0}>0$ such that

$$
\begin{gather*}
|y-\gamma y| \geq 3 \delta_{0} \quad \forall y \in M, \gamma \in \Gamma \text { if } \gamma y \neq y \\
\operatorname{dist}\left(\Gamma M^{i}, \Gamma M^{j}\right) \geq 3 \delta_{0} \quad \forall i, j=1, \ldots, m \text { if } i \neq j \tag{4.2}
\end{gather*}
$$

and such that the isotropy subgroup of each point in $M_{\delta_{0}}^{i}:=\left\{z \in V^{i}: \operatorname{dist}\left(z, M^{i}\right) \leq\right.$ $\left.\delta_{0}\right\}$ is precisely Γ_{i}. Define

$$
W_{\varepsilon, z}:=\sum_{[g] \in \Gamma / \Gamma_{i}} f_{i}^{\frac{2-N}{4}} U_{\varepsilon, g z} \quad \text { if } z \in M_{\delta_{0}}^{i}
$$

where $U_{\varepsilon, y}:=U_{0}^{\varepsilon, y}$ as in 2.3). For each $\delta \in\left(0, \delta_{0}\right)$ define

$$
\begin{gathered}
M_{\delta}:=M_{\delta}^{1} \cup \cdots \cup M_{\delta}^{m} \\
B_{\delta}:=\left\{(\varepsilon, z): \varepsilon \in(0, \delta), z \in M_{\delta}\right\} \\
\Theta_{\delta}:=\left\{ \pm W_{\varepsilon, z}:(\varepsilon, z) \in B_{\delta}\right\}, \quad \Theta_{0}:=\Theta_{\delta_{0}} .
\end{gathered}
$$

For the proof of next proposition see 3].

Proposition 4.1. Let $\delta \in\left(0, \delta_{0}\right)$, and assume that $(N E)$ holds. There exists $\eta>$ $m^{\Gamma}(0,0, f)$ with following properties: For each $u \in \mathcal{N}_{0,0, f}^{\Gamma}$ such that $E_{0,0, f}(u) \leq \eta$ we have

$$
\inf _{W \in \Theta_{0}}\|u-W\|<\sqrt{\frac{1}{2} N m^{\Gamma}(0,0, f)}
$$

and there exist precisely one $\nu \in\{-1,1\}$, one $\varepsilon \in\left(0, \delta_{0}\right)$ and one Γ-orbit $\Gamma z \in M_{\delta_{0}}$ such that

$$
\left\|u-\nu W_{\varepsilon, z}\right\|=\inf _{W \in \Theta_{0}}\|u-W\| .
$$

Moreover $(\varepsilon, z) \in B_{\delta}$.
4.1. Definition of the bariorbit map. Fix $\delta \in\left(0, \delta_{0}\right)$ and choose $\eta>m^{\Gamma}(0,0, f)$ as in Proposition 4.1. Define

$$
\begin{aligned}
& E_{0,0, f}^{\eta}:=\left\{u \in H_{0}^{1}(\Omega): E_{0,0, f}(u) \leq \eta\right\}, \\
& B_{\delta}(M):=\left\{z \in \mathbb{R}^{N}: \operatorname{dist}(z, M) \leq \delta\right\},
\end{aligned}
$$

and the space of Γ-orbits of $B_{\delta}(M)$ by $B_{\delta}(M) / \Gamma$.
From Proposition 4.1 we can define
Definition 4.2. The bariorbit map

$$
\beta^{\Gamma}: \mathcal{N}_{0,0, f}^{\Gamma} \cap E_{0,0, f}^{\eta} \rightarrow B_{\delta}(M) / \Gamma
$$

is defined by

$$
\beta^{\Gamma}(u)=\Gamma y \stackrel{\text { def }}{\Longleftrightarrow}\left\|u \pm W_{\varepsilon, y}\right\|=\min _{W \in \Theta_{0}}\|u-W\| .
$$

This map is continuous and $\mathbb{Z} / 2$-invariant by the compactness of M_{δ}.
If Γ is the kernel of an epimorphism $\tau: G \rightarrow \mathbb{Z} / 2$, choose $g_{\tau} \in \tau^{-1}(-1)$. Let $u \in \mathcal{N}_{0,0, f}^{\tau}$ then u changes sign and $u^{-}(x)=-u^{+}\left(g_{\tau}^{-1} x\right)$. Therefore, $\left\|u^{+}\right\|^{2}=\left\|u^{-}\right\|^{2}$ and $\left|u^{+}\right|_{f, 2^{*}}^{2^{*}}=\left|u^{-}\right|_{f, 2^{*}}^{2^{*}}$. So

$$
\begin{equation*}
u \in \mathcal{N}_{0,0, f}^{\tau} \Longrightarrow u^{ \pm} \in \mathcal{N}_{0,0, f}^{\Gamma} \quad \text { and } \quad E_{0,0, f}(u)=2 E_{0,0, f}\left(u^{ \pm}\right) \tag{4.3}
\end{equation*}
$$

Lemma 4.3. If $E_{0,0, f}$ does not achieve its infimum at $\mathcal{N}_{0,0, f}^{\tau}$, then

$$
m^{\tau}(0,0, f):=\inf _{\mathcal{N}_{0,0, f}^{\tau}} E_{0,0, f}=\left(\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{(N-2) / 2}}\right) \frac{2}{N} S^{N / 2}=2 m^{\Gamma}(0,0, f)
$$

Proof. By contradiction. Suppose that there exists $u \in \mathcal{N}_{0,0, f}^{\tau}$ such that $E_{0,0, f}(u)=$ $m^{\tau}(0,0, f)$. Then $u^{+} \in \mathcal{N}_{0,0, f}^{\Gamma}$ and

$$
m^{\tau}(0,0, f) \leq\left(\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{(N-2) / 2}}\right) \frac{2}{N} S^{N / 2}
$$

Hence

$$
m^{\Gamma}(0,0, f) \leq E_{0,0, f}\left(u^{+}\right)=\frac{1}{2} m^{\tau}(0,0, f) \leq\left(\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{\frac{N-2}{2}}}\right) \frac{1}{N} S^{N / 2}=m^{\Gamma}(0,0, f)
$$

Thus u^{+}is a minimum of $E_{0,0, f}$ on $\mathcal{N}_{0,0, f}^{\Gamma}$, which contradicts (NE). The corollary 3.8 implies

$$
m^{\tau}(0,0, f)=\left(\min _{x \in \bar{\Omega}} \frac{\# \Gamma x}{f(x)^{(N-2) / 2}}\right) \frac{2}{N} S^{N / 2}
$$

Then property (4.3) implies

$$
u^{ \pm} \in \mathcal{N}_{0,0, f}^{\Gamma} \cap E_{0,0, f}^{\eta} \quad \forall u \in \mathcal{N}_{0,0, f}^{\tau} \cap E_{0,0, f}^{2 \eta},
$$

so

$$
\begin{equation*}
\left\|u^{+}-\nu W_{\varepsilon, y}\right\|=\min _{W \in \Theta_{0}}\left\|u^{+}-W\right\| \Leftrightarrow\left\|u^{-}+\nu W_{\varepsilon, g_{\tau} y}\right\|=\min _{W \in \Theta_{0}}\left\|u^{-}-W\right\| . \tag{4.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\beta^{\Gamma}\left(u^{+}\right)=\Gamma y \Longleftrightarrow \beta^{\Gamma}\left(u^{-}\right)=\Gamma\left(g_{\tau} y\right) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta^{\Gamma}\left(u^{+}\right) \neq \beta^{\Gamma}\left(u^{-}\right) \quad \forall u \in \mathcal{N}_{0,0, f}^{\tau} \cap E_{0,0, f}^{2 \eta} . \tag{4.6}
\end{equation*}
$$

Set

$$
B_{\delta}(M)^{\tau}:=\left\{z \in B_{\delta}(M): G z=\Gamma z\right\}
$$

Proposition 4.4. The map

$$
\beta^{\tau}: \mathcal{N}_{0,0, f}^{\tau} \cap E_{0,0, f}^{2 \eta} \rightarrow\left(B_{\delta}(M) \backslash B_{\delta}(M)^{\tau}\right) / \Gamma, \quad \beta^{\tau}(u):=\beta^{\Gamma}\left(u^{+}\right)
$$

is well defined, continuous and $\mathbb{Z} / 2$-equivariant; i.e.,

$$
\beta^{\tau}(-u)=\Gamma\left(g_{\tau} y\right) \Longleftrightarrow \beta^{\tau}(u)=\Gamma y .
$$

Proof. If $u \in \mathcal{N}_{0,0, f}^{\tau} \cap E_{0,0, f}^{2 \eta}$ and $\beta^{\tau}(u)=\Gamma y \in B_{\delta}(M)^{\tau} / \Gamma$ then $\beta^{\Gamma}\left(u^{+}\right)=\Gamma y=$ $\Gamma\left(g_{\tau} y\right)=\beta^{\Gamma}\left(u^{-}\right)$, this is a contradiction to 4.6. We conclude that $\beta^{\tau}(u) \notin$ $B_{\delta}(M)^{\tau} / \Gamma$. The continuity and $\mathbb{Z} / 2$-equivariant properties follows by β^{Γ} ones.

5. Multiplicity of solutions

5.1. Lusternik-Schnirelmann theory. An involution on a topological space X is a map $\varrho_{X}: X \rightarrow X$, such that $\varrho_{X} \circ \varrho_{X}=i d_{X}$. Given an involution we can define an action of $\mathbb{Z} / 2$ on X and viceversa. The trivial action is given by the identity $\varrho_{X}=i d_{X}$, the action of $G / \Gamma \simeq \mathbb{Z} / 2$ on the orbit space \mathbb{R}^{N} / Γ where $G \subset O(N)$ and Γ is the kernel of an epimorphism $\tau: G \rightarrow \mathbb{Z} / 2$, and the antipodal action $\varrho(u)=-u$ on $\mathcal{N}_{\lambda, \mu, f}^{\tau}$. A map $f: X \rightarrow Y$ is called $\mathbb{Z} / 2$-equivariant (or a $\mathbb{Z} / 2$-map) if $\varrho_{Y} \circ f=f \circ \varrho_{X}$, and two $\mathbb{Z} / 2$-maps, $f_{0}, f_{1}: X \rightarrow Y$, are said to be $\mathbb{Z} / 2$ homotopic if there exists a homotopy $\Theta: X \times[0,1] \rightarrow Y$ such that $\Theta(x, 0)=f_{0}(x)$, $\Theta(x, 1)=f_{1}(x)$ and $\Theta\left(\varrho_{X} x, t\right)=\varrho_{Y} \Theta(x, t)$ for every $x \in X, t \in[0,1]$. A subset A of X is $\mathbb{Z} / 2$-equivariant if $\varrho_{X} a \in A$ for every $a \in A$.

Definition 5.1. The $\mathbb{Z} / 2$-category of a $\mathbb{Z} / 2$-map $f: X \rightarrow Y$ is the smallest integer $k:=\mathbb{Z} / 2$-cat (f) with following properties
(i) There exists a cover of $X=X_{1} \cup \cdots \cup X_{k}$ by k open $\mathbb{Z} / 2$-invariant subsets,
(ii) The restriction $\left.f\right|_{X_{i}}: X_{i} \rightarrow Y$ is $\mathbb{Z} / 2$-homotopic to the composition $\kappa_{i} \circ \alpha_{i}$ of a $\mathbb{Z} / 2$-map $\alpha_{i}: X_{i} \rightarrow\left\{y_{i}, \varrho_{Y} y_{i}\right\}, y_{i} \in Y$, and the inclusion $\kappa_{i}:\left\{y_{i}, \varrho_{Y} y_{i}\right\} \hookrightarrow$ Y.
If not such covering exists, we define $\mathbb{Z} / 2-\operatorname{cat}(f):=\infty$.
If A is a $\mathbb{Z} / 2$-invariant subset of X and $\iota: A \hookrightarrow X$ is the inclusion we write

$$
\mathbb{Z} / 2-\operatorname{cat}_{X}(A):=\mathbb{Z} / 2-\operatorname{cat}(\iota), \quad \mathbb{Z} / 2-\operatorname{cat}_{X}(X):=\mathbb{Z} / 2-\operatorname{cat}(X)
$$

Note that if $\varrho_{x}=i d_{X}$ then

$$
\mathbb{Z} / 2-\operatorname{cat}_{X}(A):=\operatorname{cat}_{X}(A), \quad \mathbb{Z} / 2-\operatorname{cat}(X):=\operatorname{cat}(X),
$$

are the usual Lusternik-Schnirelmann category (see [17, definition 5.4]).

Theorem 5.2. Let $\phi: M \rightarrow \mathbb{R}$ be an even functional of class C^{1}, and $M a$ submanifold of a Hilbert space of class C^{2}, symmetric with respect to the origin. If ϕ is bounded below and satisfies $(P S)_{c}$ for each $c \leq d$, then ϕ has at least $\mathbb{Z} / 2$ $\operatorname{cat}\left(\phi^{d}\right)$ pairs critical points such that $\phi(u) \leq d$.
5.2. Proof of Theorems. We prove Theorem 2.3 only; the proof of Theorem 2.1 is analogous. Recall that if τ is the identity or an epimorphism then $\#(G / \Gamma)$ is 1 or 2 .

Proof of Theorem 2.3. By Corollary 3.8. $E_{\lambda, \mu, f}$ satisfies $(P S)_{\theta}^{\tau}$ for

$$
\theta<\min \left\{\#(G / \Gamma) \frac{\ell_{f}^{\Gamma}}{N}, \frac{\#(G / \Gamma)}{N} S_{\mu}^{N / 2}\right\}
$$

By Lusternik-Schnirelmann theory $E_{\lambda, \mu, f}$ has at least $\mathbb{Z} / 2-\operatorname{cat}\left(\mathcal{N}_{\lambda, \mu, f}^{\tau} \cap E_{\lambda, \mu, f}^{\theta}\right)$ pairs $\pm u$ of critical points in $\mathcal{N}_{\lambda, \mu, f}^{\tau} \cap E_{\lambda, \mu, f}^{\theta}$. We are going to estimate this category for an appropriate value of θ.

Without lost of generality we can assume that $\delta \in\left(0, \delta_{0}\right)$, with δ_{0} as in (4.2). Let $\eta>\frac{\ell_{f}^{\Gamma}}{N}, \mu^{*} \in(0, \bar{\mu})$ and $\lambda^{*} \in\left(0, \lambda_{1}\right)$ such that

$$
\left(\frac{\bar{\mu}}{\bar{\mu}-\mu^{*}}\right)^{N / 2}\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda^{*}}\right)^{N / 2}=\min \left\{2, \frac{N \eta}{\#(G / \Gamma) \ell_{f}^{\Gamma}}, \frac{\ell_{f}^{\Gamma}}{\ell_{f}^{\Gamma}-\delta^{\prime}}\right\} .
$$

By Lemma 3.3. if $u \in \mathcal{N}_{\lambda, \mu, f}^{\tau} \cap E_{\lambda, \mu, f}^{\theta}, \mu \in\left(0, \mu^{*}\right), \lambda \in\left(0, \lambda^{*}\right)$ we have

$$
\begin{aligned}
E_{0,0, f}\left(\pi_{0,0, f}(u)\right) & \leq\left(\frac{\bar{\mu}}{\bar{\mu}-\mu}\right)^{\frac{N}{2}}\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda}\right)^{\frac{N}{2}} E_{\lambda, \mu, f}(u) \\
& <\left(\frac{\bar{\mu}}{\bar{\mu}-\mu}\right)^{\frac{N}{2}}\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda}\right)^{\frac{N}{2}} \#(G / \Gamma) \frac{\ell_{f}^{\Gamma}}{N} \\
& \leq \#(G / \Gamma) \eta .
\end{aligned}
$$

Let β^{τ} be the τ-bariorbit function, defined in Proposition 4.4. Hence the composition map

$$
\beta^{\tau} \circ \pi_{0,0, f}: \mathcal{N}_{\lambda, \mu, f}^{\tau} \cap E_{\lambda, \mu, f}^{\theta} \rightarrow\left(B_{\delta}(M) \backslash B_{\delta}(M)^{\tau}\right) / \Gamma
$$

is a well defined $\mathbb{Z} / 2$-invariant continuous function.
By the [3, Proposition 3] using (F2) we can choose $\varepsilon>0$ small enough and $\theta:=\theta_{\varepsilon}<\#(G / \Gamma) \frac{\ell_{f}^{\Gamma}}{N}$ such that

$$
E_{\lambda, \mu, f}\left(\pi_{\lambda, \mu, f}\left(w_{\varepsilon, y}^{\tau}\right)\right) \leq \theta<\#(G / \Gamma) \frac{\ell_{f}^{\Gamma}}{N}, \quad \forall y \in M_{\delta}^{-}
$$

where $w_{\varepsilon, y}^{\tau}=w_{\varepsilon, y}^{\Gamma}-w_{\varepsilon, g_{\tau} y}^{\Gamma}, \tau\left(g_{\tau}\right)=-1$, and

$$
w_{\varepsilon, y}^{\Gamma}(x)=\sum_{[\gamma] \in \Gamma / \Gamma_{y}} f(y)^{(2-N) / 4} U_{\varepsilon, \gamma y}(x) \varphi_{\gamma y}(x) .
$$

Thus the map

$$
\begin{gathered}
\alpha_{\delta}^{\tau}: M_{\tau, \delta}^{-} / \Gamma \rightarrow \mathcal{N}_{\lambda, \mu, f}^{\tau} \cap E_{\lambda, \mu, f}^{\theta}, \\
\alpha_{\delta}^{\tau}(\Gamma y):=\pi_{\lambda, \mu, f}\left(w_{\varepsilon, y}^{\tau}\right),
\end{gathered}
$$

is a well defined $\mathbb{Z} / 2$-invariant continuous function. Moreover, $\beta^{\tau}\left(\pi_{0,0, f}\left(\alpha_{\delta}^{\tau}(\Gamma y)\right)\right)=$ Γy for all $y \in M_{\tau, \delta}^{-}$. Therefore,

$$
\mathbb{Z} / 2-\operatorname{cat}\left(\mathcal{N}_{\lambda, \mu, f}^{\tau} \cap E_{\lambda, \mu, f}^{\theta}\right) \geq \operatorname{cat}_{\left(\left(B_{\delta}(M) \backslash B_{\delta}(M)^{\tau}\right) / \Gamma\right)}\left(M_{\tau, \delta}^{-} / \Gamma\right)
$$

So 2.10 has at least

$$
\operatorname{cat}_{\left(\left(B_{\delta}(M) \backslash B_{\delta}(M)^{\tau}\right) / G\right)}\left(M_{\tau, \delta}^{-} / G\right)
$$

pairs $\pm u$ solution which satisfy

$$
E_{\lambda, \mu, f}(u)<\#(G / \Gamma) \frac{\ell_{f}^{\Gamma}}{N}
$$

By the choice of λ^{*} and μ^{*} we have

$$
\left(\frac{\bar{\mu}}{\bar{\mu}-\mu^{*}}\right)^{N / 2}\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda^{*}}\right)^{N / 2} \leq \frac{\ell_{f}^{\Gamma}}{\ell_{f}^{\Gamma}-\delta^{\prime}}
$$

Then

$$
\begin{aligned}
\#(G / \Gamma) \frac{\ell_{f}^{\Gamma}-\delta^{\prime}}{N} & \leq\left(\frac{\bar{\mu}-\mu}{\bar{\mu}}\right)^{N / 2}\left(\frac{\lambda_{1}-\lambda}{\lambda_{1}}\right)^{N / 2} \#(G / \Gamma) \frac{\ell_{f}^{\Gamma}}{N} \\
& \leq m^{\tau}(\lambda, \mu, f) \leq E_{\lambda, \mu, f}(u) \\
& =\frac{1}{N}\|u\|_{\lambda, \mu}^{2}<\#(G / \Gamma) \frac{\ell_{f}^{\Gamma}}{N}
\end{aligned}
$$

therefore

$$
\#(G / \Gamma) \ell_{f}^{\Gamma}-\delta^{\prime \prime} \leq\|u\|_{\lambda, \mu}^{2}<\#(G / \Gamma) \ell_{f}^{\Gamma}
$$

Proof of Theorem 2.4. By Theorem 2.1 there exist λ and μ sufficiently close to zero such that the problem (2.1) has at least $\operatorname{cat}_{B_{\delta}(M) / \Gamma}\left(M_{\delta}^{-} / \Gamma\right)$ positive solutions such that $E_{\lambda, \mu, f}(u)<\frac{\ell_{f}^{\Gamma}}{N}$.

We will prove that $\frac{\ell_{f}^{\Gamma}}{N}<m^{\widetilde{\Gamma}}(0,0, f)$. First suppose that $m^{\widetilde{\Gamma}}(0,0, f)$ does not achieve then by the hypothesis $m^{\widetilde{\Gamma}}(0,0, f)=\frac{\ell_{f}^{\widetilde{\Gamma}}}{N}>\frac{\ell_{f}^{\Gamma}}{N}$. If $m^{\widetilde{\Gamma}}(0,0, f)$ is achieved there exists $u \in \mathcal{N}_{0,0, f}^{\widetilde{\Gamma}} \subset \mathcal{N}_{0,0, f}^{\Gamma}$ and

$$
\frac{\ell_{f}^{\Gamma}}{N}=m^{\Gamma}(0,0, f)<m^{\widetilde{\Gamma}}(0,0, f)=E_{0,0, f}(u)
$$

By (3.4) there exist $\hat{\lambda} \in\left(0, \lambda_{1}\right)$ and $\widehat{\mu} \in(0, \bar{\mu})$ such that for each $\lambda \in(0, \widehat{\lambda})$ and $\mu \in(0, \widehat{\mu})$ such that

$$
\frac{\ell_{f}^{\Gamma}}{N}<m^{\tilde{\Gamma}}(0,0, f) \leq\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda}\right)^{N / 2}\left(\frac{\bar{\mu}}{\bar{\mu}-\mu}\right)^{N / 2} m^{\tilde{\Gamma}}(\lambda, \mu, f)
$$

Then

$$
E_{\lambda, \mu, f}(u)<\frac{\ell_{f}^{\Gamma}}{N}<m^{\tilde{\Gamma}}(\lambda, \mu, f)
$$

Therefore, u is not $\tilde{\Gamma}$-invariant solution.

References

[1] Th. Aubin; Problèmes isopérimétriques et espaces de Sobolev, J. Diff. Geom. 11 (1976), 573-598.
[2] H. Brezis, L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983), 437-477.
[3] A. Cano, M. Clapp; Multiple positive and 2-nodal symmetric solutions of elliptic problems with critical nonlinearity, J. Differential Equations 237 (2007) 133-158.
[4] D. M. Cao, S. J. Peng; A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations 193 (2003), 424-434.
[5] A. Castro, M. Clapp; The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003), 579-590.
[6] G. Cerami, S. Solimini, M. Struwe; Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), 289-306.
[7] J. Q. Chen; Multiplicity result for a singular elliptic equation with indefinite nonlinearity, J. Math. Anal. Appl. 337 (2008), 493-504.
[8] Q. Guo, P. Niu; Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains, J. Differential Equations 245 (2008) 3974-3985.
[9] P. G. Han, Z. X. Liu; Solution for a singular critical growth problem with weight, J. Math. Anal. Appl. 327 (2007) 1075-1085.
[10] E. Janelli; The role played by space dimension in elliptic critical problems, J. Differential Equations 156, (1999) 407-426
[11] M. Lazzo; Solutions positives multiples pour une é quation elliptique non linéaire avec l'exposant critique de Sobolev, C.R. Acad. Sci. Paris 314, Série I (1992), 61-64.
[12] R. Palais; The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30.
[13] O. Rey; A multiplicity result for a variational problem with lack of compactness, Nonl. Anal. T.M.A. 133 (1989), 1241-1249.
[14] M. Struwe; Variational methods, Springer-Verlag, Berlin-Heidelberg 1996.
[15] G. Talenti; Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110, (1976), 353-372.
[16] S. Terracini; On positive entire solutions to a class of equations with a singular coefficient and critical exponente, Adv. Differential Equations 2 (1996) 241-264.
[17] M. Willem; Minimax theorems, PNLDE 24, Birkhäuser, Boston-Basel-Berlin 1996.
Alfredo Cano Rodríguez
Universidad Autónoma del Estado de México, Facultad de Ciencias, Departamento de Matemáticas, Campus El Cerrillo Piedras Blancas, Carretera Toluca-Ixtlahuaca, Km 15.5, Toluca, Estado de México, México

E-mail address: calfredo420@gmail.com
Sergio Hernández-Linares
Universidad Autónoma Metropolitana, Cuajimalpa, Departamento de Matemáticas Aplicadas y Sistemas, Artificios No. 40, Col. Hidalgo, Del. Álvaro Obregón, C.P. 01120, México D.F., México

E-mail address: slinares@correo.cua.uam.mx
Eric Hernández-Martínez
Universidad Autónoma de la Ciudad de México, Colegio de Ciencia y Tecnología.
Academia de Matemáticas, Calle Prolongación San Isidro No. 151, Col. San Lorenzo
Tezonco, Del. Iztapalapa, C.P. 09790, México D.F., México
E-mail address: ebric2001@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J25, 49J52, 58E35,74G35.
 Key words and phrases. Critical points; critical Sobolev exponent; multiplicity of solutions; invariant under the action of a orthogonal group; Palais-Smale condition;
 singular semilinear elliptic problem; relative category.
 (c) 2010 Texas State University - San Marcos.

 Submitted November 15, 2009. Published August 16, 2010.
 This work was presented in the Poster Sessions at the III CLAM Congreso Latino
 Americano de Matemáticos, 2009, Santiago, Chile.

