Electron. J. Diff. Eqns., Vol. 2004(2004), No. 101, pp. 1-13.

The critical case for a semilinear weakly hyperbolic equation

Luca Fanelli, Sandra Lucente

Abstract:
We prove a global existence result for the Cauchy problem, in the three-dimensional space, associated with the equation
$$
 u_{tt}-a_\lambda(t) \Delta_x u=-u|u|^{p(\lambda)-1}
 $$
where $a_\lambda(t)\ge 0$ and behaves as $(t-t_0)^\lambda$ close to some $t_0$ greater than 0 with $a(t_0)=0$, and $p(\lambda)=(3\lambda+10)/(3\lambda+2)$ with $3\le p(\lambda)\le 5$. This means that we deal with the superconformal, critical nonlinear case. Moreover we assume a small initial energy.

Submitted July 22, 2004. Published August 24, 2004.
Math Subject Classifications: 35L70, 35L15, 35L80.
Key Words: Global existence; semilinear wave equations.

Show me the PDF file (265K), TEX file, and other files for this article.

Luca Fanelli
Dipartimento di Matematica
Universita "La Sapienza" di Roma
Piazzale Aldo Moro 2, I-00185 Roma, Italy
email: fanelli@mat.uniroma1.it
Sandra Lucente
Dipartimento di Matematica
Universita degli Studi di Bari
Via E. Orabona 4, I-70125 Bari, Italy
email: lucente@dm.uniba.it

Return to the EJDE web page