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THE CRITICAL CASE FOR A SEMILINEAR WEAKLY
HYPERBOLIC EQUATION

LUCA FANELLI, SANDRA LUCENTE

Abstract. We prove a global existence result for the Cauchy problem, in the

three-dimensional space, associated with the equation

utt − aλ(t)∆xu = −u|u|p(λ)−1

where aλ(t) ≥ 0 and behaves as (t− t0)λ close to some t0 > 0 with a(t0) = 0,
and p(λ) = (3λ + 10)/(3λ + 2) with 3 ≤ p(λ) ≤ 5. This means that we deal
with the superconformal, critical nonlinear case. Moreover we assume a small
initial energy.

1. Introduction

In this work we study the existence of global solutions to the Cauchy Problem

utt(x, t)− a(t)∆xu(x, t) = −u(x, t)|u(x, t)|p−1, x ∈ R3,

u(x, 0) = u0(x), ut(x, 0) = u1(x),
(1.1)

with a(t) ≥ 0. We shall only consider real valued initial data and hence real
solutions.

In the case a(t) ≡ 1 this equation is the standard wave equation for which a great
deal of work has been developed starting from the pioneristic paper by Jörgens [6]
(for a survey of these results see [11]). The interest in variable coefficients case
corresponds to the change of the propagation speed.

In the case a(t) > 0 the global existence for (1.1) can be obtained with the same
technique of the case a(t) = 1. The asymptotic behaviour of the solutions has been
studied in [4] under the small initial data condition.

On the contrary, very few results are known concerning the global existence for
nonlinear weakly hyperbolic equations. To our knowledge the weakly hyperbolic
case with polynomial nonlinear term as been studied only in [2] for the space di-
mension n = 3 and in [3] for the case n = 1, 2. More precisely in [2], D’Ancona
considers a real analytic function a(t) ≥ 0 and a slight general forcing term f(u)
having right sign and polynomial growth at infinity:

uf(u) ≥ 0 and |f(u)| ≤ C|u|p, for |u| ≥ 1.
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In [2], a global existence result of a unique smooth solution is established provided
the initial data are compactly supported, the greatest order of the zeroes of a(t),
λ > 0, is finite and

p <
3λ+ 10
3λ+ 2

. (1.2)

Moreover, it is also possible to obtain D’Ancona result relaxing the analytic assump-
tion on the time-dependent coefficient a(t), assuming a(t) is a positive continuous
function, piecewise C2, with locally finite zeroes and each of them with finite order.
For λ = 0, the restriction (1.2) gives p < 5, the subcritical range for the wave
equations; for this reason it is possible to conjecture that

pc(λ) :=
3λ+ 10
3λ+ 2

is the critical exponent for the semilinear weakly hyperbolic case.
For the critical semilinear wave equation (i.e. λ = 0, pc(λ) = 5) the global

existence result has been proved into three steps. Rauch in [8] established the
global existence for this solution under a smallness assumption for the initial en-
ergy. Struwe in [12] removed this hypothesis requiring radial initial data. Finally,
by means of Strichartz type estimates, the general case was covered by different au-
thors; the interested reader can see for example [10]. A generalization of Strichartz
estimates for some strictly hyperbolic operators with variable coefficients has been
obtained in several works by Reissig, Yagdjian, Hirosawa and others (see the list of
references in [5].) Due to the lack of such estimates for weakly hyperbolic equations
we can not cover the general case and we come back to Rauch’s approach. More
precisely, we establish the following.

Theorem 1.1. Consider (1.1) with initial data u0, u1 ∈ C∞0 (R3). Let λ ≥ 0 and
t0 > 0. Let a(t) be a real continuous function, a ∈ C2([0,+∞) \ {t0}) such that

a(t) = (t0 − t)λb(t) on [0, t0], b ∈ C2, b > 0.

a(t) > 0 on (t0,+∞),
(1.3)

Let the nonlinear exponent satisfy

3 ≤ pc(λ) :=
3λ+ 10
3λ+ 2

≤ 5.

Then, there exists 0 < ε ≤ 1, such that if

a(0)
∫

R3

|∇u0(x)|2

2
dx+

∫
R3

|u1(x)|2

2
dx+

∫
R3

|u0(x)|pc(λ)+1

pc(λ) + 1
dx ≤ ε , (1.4)

then the Cauchy Problem (1.1) has a unique real solution u(x, t) ∈ C2(R3×[0,+∞)).

We notice that 3 ≤ pc(λ) ≤ 5 is equivalent to 0 ≤ λ ≤ 2/3. Since λ belongs
to this finite interval, the smallness rate ε is taken uniform with respect λ. The
restriction 3 ≤ pc(λ) ≤ 5 comes from the employed technique: we obtain a-priori
estimates combining (1.4) with a suitable variant of Hardy’s inequality. However,
3 ≤ pc(λ) means that pc(λ) in the superconformal range, and this is the interesting
case, since the nonlinear exponent is high. Conversely pc(λ) < 5, is the subcritical
assumption also needed in the strictly hyperbolic case. We mention again that our
result for λ = 0 coincides with the existence result given in [8].
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In a final remark we shall see how to extend this theorem to the case in which
a(t) vanishes in more than one point. It is also possible to generalize our result to
a more general nonlinear term, that is to consider the equation

utt − a(t)∆u = −f(u) ,

where

|f(u)|+ |uf ′(u)|+ |u2f ′′(u)| ≤ C(1 + |u|)p,

(1 + |u|)p+1 ≤ C

∫ u

0

f(s) ds.

In the strictly hyperbolic critical case, one also assumes

uf(u)− 4
∫ u

0

f(s) ds ≥ 0 .

In particular this condition implies p ≥ 3 when f(u) = u|u|p−1.
With suitable initial data condition, we can deal with the Grushin type operator

∂tt − |t|λ∆x.

For the corresponding equation ∂ttu − |t|λ∆xu = |u|p, a non-existence result is
known when p ≤ (3λ + 8)/(3λ + 4) (see [1]). Under this restriction on p, such a
result assures that the solution of ∂ttu− |t|λ∆xu = −|u|p−1u, given by D’Ancona’s
result, changes sign.

Notation.
- Given t > 0, we set Bt = {y ∈ R3 : |y| ≤ t}.
- The surface measure on a sphere is denoted by dω. The surface measure

on a truncated cone is denoted by dΣ.
- We omit to write R3 if it is a domain of a function space, denoting by ‖ · ‖p

the Lp(R3)-norm. The homogeneous Sobolev space Ḣk is endowed with
the seminorm

‖f‖Ḣk :=
∑
|α|=k

‖Dαf‖2.

2. Preliminary Lemma

Weighted Hardy’s inequality on the backward cone. In order to pass from
the subcritical result by Jörgens to the critical one by Rauch, Hardy’s inequality
comes into play. In our case we need a weighted localized variant of Hardy’s in-
equality on the backward cone. The unweighted variant of the next lemma on the
ball can be found in [12].

Lemma 2.1. Let ϕ ∈ C1(R3 × R) and t > 0. If α > −1, then∫ t

0

∫
|x−y|=t−s

(t− s)α−2ϕ2(y, s) dωy ds

< CH(α)
∫ t

0

∫
|x−y|=t−s

(t− s)α

∣∣∣∣∇yϕ(y, s)− y − x

|y − x|
∂sϕ(y, s)

∣∣∣∣2 dωy ds

+ CH(α)
∫ t/2

0

∫
|x−y|=t−s

(t− s)α−2ϕ2(y, s) dωy ds,

(2.1)

where CH(α) is given by (2.3).
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Proof. First we observe that the transformation∫ t

0

∫
|x−y|=t−s

v(y, s) dωy ds =
√

2
∫

Bt

v(x+ y, t− |y|) dy (2.2)

gives ∫ t

0

∫
|x−y|=t−s

(t− s)α−2ϕ2(y, s) dωy ds =
√

2
∫

Bt

|y|α−2ψ2
x,t(y) dy,

where ψx,t(y) := ϕ(x+ y, t− |y|). Since α > −1, we can use the following weighted
Hardy’s inequality (see for example [7]):∫

R3
|y|α−2ψ2(y) dy ≤ 4

(α+ 1)2

∫
R3
|y|α|∇ψ(y)|2 dy, ψ ∈ C1

0(R3).

The constant in this inequality is sharp.
To study the noncompactly supported ψ, we use a localizing function. We notice

that for any δ > 0 there exists a C1
0 function η̄δ : [0,+∞) → R such that η̄δ ≡ 1 on

[0, 1], η̄δ ≡ 0 on [2,+∞), 0 ≤ η̄δ ≤ 1 and ‖η̄′δ‖∞ ≤ 1 + δ. In fact, the assumptions
η̄δ ≡ 1 on [0, 1], η̄δ ≡ 0 on [2,+∞) imply ‖η̄′δ‖∞ ≥ 1. Hence is not possible to take
δ = 0 unless η̄δ(s) = 2− s in the interval [1, 2], losing the smoothness requirement.
Let us put ηδ = η̄δ( 2

ρ |x|), then∫
Bρ

|y|α−2ψ(y)2 dy ≤
∫

R3
|y|α−2(ψηδ)2(y) dy +

∫
Bρ\Bρ/2

|y|α−2ψ2(y) dy

≤ 4
(α+ 1)2

∫
R3
|y|α|∇(ψηδ)|2 dy +

∫
Bρ\Bρ/2

|y|α−2ψ2(y) dy.

At this point we use the inequality (a+ b)2 ≤ C1a
2 + C2b

2 which holds for C1 > 1
and (C1 − 1)C2 − C1 ≥ 0. We get∫

Bρ

|y|α−2ψ2(y) dy

≤ 4C1

(α+ 1)2

∫
Bρ

|y|α|∇ψ|2 dy +
(16C2(1 + δ)2

(α+ 1)2
+ 1

) ∫
Bρ\Bρ/2

|y|α−2ψ2(y) dy.

For δ → 0 and 4C1 = 16C2(1 + δ)2 + (α+ 1)2, we can take

CH(α) =

√
(α+ 1)4 + 104(α+ 1)2 + 400

2(α+ 1)2
+

10
(α+ 1)2

+
1
2

(2.3)

arriving to∫
Bρ

|y|α−2ψ2(y) dy < CH(α)
( ∫

Bρ

|y|α|∇ψ(y)|2 dy +
∫

Bρ\Bρ/2

|y|α−2ψ2(y) dy
)
.

This constant is sharp for this kind of localization of Hardy’s inequality on the ball.
Coming back to ψx,t, we see that

∇ψx,t(y, s) = (∇ϕ)(x+ y, t− |y|)− y

|y|
∂sϕ(x+ y, t− |y|).

Applying the inverse transformation of (2.2) we get the estimate (2.1). �
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Reduction to a nonlinear wave equation. A relevant difference between the
wave operator ∂tt −∆ and ∂tt − a(t)∆ is the lack of a representation formula for
the fundamental solution of

utt(x, t)− a(t)∆xu(x, t) = −f(u(x, t)).

In order to overcome this difficulty, it is possible to employ the Liouville transfor-
mation, obtaining a suitable wave equation with a mass term.

Given a(t) : [0, t0] → R, such that a(t) > 0 for t 6= t0, a(t0) = 0 and a ∈
C1([0, t0[), we associate a function φ which satisfies

φ′(s) = a(φ(s))−1/2 s ∈ [0, r0),

φ(0) = 0,
(2.4)

with

r0 =
∫ t0

0

a(s)1/2 ds.

In particular φ ∈ C2([0, r0)) ∩ C([0, r0]) is a strictly increasing function on [0, r0],
and φ(r0) = t0. For t ∈ [0, r0), we define v(x, t) = u(x, φ(t)). We can check that v
is solution of

vtt −∆v = −(φ′)2f(u(x, φ(t))) + vt
φ′′

φ′
. (2.5)

To avoid the term containing vt, we write

w(x, t) = ψ(t)v(x, t) = ψ(t)u(x, φ(t)).

Then w solves the equation

wtt = ψ′′vt + ψ∆v − (φ′)2ψf(u(x, φ(t))) + ψvt
φ′′

φ′
+ 2ψ′vt.

If ψ never vanishes in [0, r0), then

wtt −∆w = −(φ′)2ψf(u(x, φ(t))) +
(ψ′′
ψ
− ψ′

ψ

φ′′

φ′
− 2

(ψ′
ψ

)2
)
w +

(φ′′
φ′

+ 2
ψ′

ψ

)
wt.

In order to erase the term containing wt we choose

ψ(t) = (φ′(t))−1/2 = a(φ(t))1/4.

In this way, if t ∈ [0, t0), we can write

u(x, t) = a(t)−1/4w(x, φ−1(t)). (2.6)

Finally, for t ∈ [0, r0), we obtain

wtt −∆w = ψ′′ψ−1w − ψ−3f(u(x, φ(t)))

with initial data

w(x, 0) = a(0)1/4u0,

wt(x, 0) =
1
4
a(0)−1/4a′(0)u0 + a(0)−1/4u1 .

(2.7)
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We apply Kirchhoff’s formula to get

w(x, t) = w0(x, t) +
1
4π

∫ t

0

ψ′′(s)
ψ(s)(t− s)

∫
|x−y|=t−s

w(y, s) dωy ds

− 1
4π

∫ t

0

1
ψ3(s)(t− s)

∫
|x−y|=t−s

f(u(y, φ(s))) dωy ds

= w0(x, t) + I + II,

(2.8)

here w0(x, t) solves the homogeneous equation wtt − ∆w = 0 with initial data
(2.7). �

3. Proof of main theorem

Reduction to a decay estimate. The local existence result follows from the
strictly hyperbolic case. For other details see pp. 249-250 in [2].

Similarly, still using the linear theory of weakly hyperbolic equations, one can
establish the uniqueness of the smooth solution of (1.1) and the finite speed of
propagation property. We focus our attention on the existence result.

If a′(t) > 0 or a(t) > 0, then the existence result follows from the strictly
hyperbolic case provided 1 ≤ p ≤ 5. Being pc(λ) ≤ 5, it remains to analyze the
case a(t) decreasing and vanishing at the end point of the interval. Hence it suffices
to prove that the solution u(x, t) : R3 × [0, t0[→ R admits a finite limit for t→ t−0 .

Using Sobolev embedding theorem, we see that it is sufficient to show that there
exists a continuous function C(t) > 0 such that, in the close interval [0, t0],

‖u(t)‖H2(R3
x) ≤ C(t). (3.1)

First we prove that if there exists α < (pc(λ)− 1)−1 such that

|u(x, t)| ≤ C(t0 − t)−α, for any 0 ≤ t < t0, x ∈ R3 (3.2)

then (3.1) holds.
Let us introduce the high-order energy

E3(t) =
1
2
‖ut‖2Ḣ2(R3

x)
+

1
2
a(t)‖∇u‖2

Ḣ2(R3
x)

+
1
2
‖u‖2

Ḣ2(R3
x)
.

After integration by parts, we find

E′3(t) =
1
2
a′(t)‖∇u‖2

Ḣ2(R3
x)

+
∑
|α|=2

∫
Dα

xut

(
Dα

xu−Dα
x (u|u|pc(λ)−1)

)
dx.

Recalling a′(t) ≤ 0, we get(√
E3(t)

)′
≤
√

2
2

(
‖u‖Ḣ2(R3

x) + ‖|u|pc(λ)‖Ḣ2(R3
x)

)
.

Due to finite speed of propagation ‖u(t)‖Ḣ2(R3
x) is equivalent to ‖u(t)‖H2(R3

x). We
can apply Moser-type inequality (see [9, Sec. 5.2.5]), obtaining(√

E3(t)
)′
≤ C‖u‖Ḣ2(R3

x)

(
1 + ‖u‖pc(λ)−1

L∞(R3
x)

)
when pc(λ) > 3/2. Suppose we have proved (3.2), we have(√

E3(t)
)′
≤ C

√
E3(t)

(
1 + (t0 − t)−α(pc(λ)−1)

)
.

Gronwall’s lemma gives (3.1) when α < (pc(λ)− 1)−1.
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Energy estimates. In order to establish (3.2), we start deriving the basic a-priori
energy estimate for the C2 solution of the Cauchy Problem (1.1). In what follows
we always denote by u such solution. Let us define the energy density

e[u](x, t) :=
1
2
|ut(x, t)|2 + a(t)

|∇xu(x, t)|2

2
+
|u(x, t)|pc(λ)+1

pc(λ) + 1
;

the corresponding energy is

E(t) :=
∫

R3
e[u](x, t) dx.

We put E0 := E(0). We have

∂te[u] = a(t) div(ut∇xu) + a′(t)
|∇xu|2

2
, (3.3)

hence

E′(t) = a′(t)
∫

R3

|∇xu(x, t)|2

2
dx. (3.4)

The lack of conservation law for the energy is an important difference between the
considered equation and the wave equation. Since a(t) : [0, t0] → R is a decreasing
function, then E(t) is a decreasing function in the same interval, that is

E(t) ≤ E0.

The next point is to associate to a(t) a curved cone. Let φ : [0, r0] → [0, t0] be
defined by means of (2.4); being a(t) decreasing, φ is convex.

Let us fix x̄ ∈ R3 and S, T, t̄ ∈ [0, r0). For z̄ = (x̄, φ(t̄)), S ≤ T ≤ t̄, we introduce
the truncated curved cone

KT
S (z̄) =

{
(x, t) ∈ R3 × R : ∃σ ∈ [S, T ] s.t. φ(σ) = t, |x− x̄| ≤ t̄− σ

}
.

We will use the notation KS(z̄) = K t̄
S(z̄). The mantle of KT

S (z̄) is

MT
S (z̄) =

{
(x, t) ∈ R3 × R : ∃σ ∈ [S, T ] s.t. φ(σ) = t, |x− x̄| = t̄− σ

}
.

The outward normal to the mantle of the cone is
−→n =

1√
1 + φ′(σ)2

(
φ′(σ)

x− x̄

|x− x̄|
, 1

)
.

The standard measure on MT
S (z̄) is given by dΣ =

√
1 + φ′(σ)2 dωx dσ. The

section of K0(z̄) at the time t ∈ [0, φ(t̄)] is denoted by D(t, z̄), that is

D(t, z̄) :=
{
x ∈ R3 | (x, t) ∈ K0(z̄)

}
.

For the local energy at the time t, we set

E(u, t) :=
∫

D(t,z̄)

e[u](x, t) dx.

We shall see that since a(t) is decreasing, then E(u, φ(t)) is decreasing too. To this
aim we introduce the energy flux of u: for any 0 ≤ t < t0, x̄ ∈ R3, we set

dx̄[u](x, t) =
1√

1 + (a(t))−1

(1
2

∣∣ut −
√
a(t)

x− x̄

|x− x̄|
· ∇u

∣∣2 +
|u|pc(λ)+1

pc(λ) + 1

)
.

Lemma 3.1. Let 0 ≤ S < T < r0. Then the following relation holds

E(u, φ(S)) = E(u, φ(T )) +
∫

MT
S (z̄)

dx̄[u] dΣ− 1
2

∫
KT

S (z̄)

a′(t)|∇xu|2 dxdt. (3.5)
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Proof. Explicitly, we have∫
KT

S (z̄)

∂te[u](x, t) dxdt

=
∫

MT
S (z̄)

e[u]nt dΣ +
∫

D(φ(T ),z̄)

e[u](x, φ(T )) dx−
∫

D(φ(S),z̄)

e[u](x, φ(S)) dx.

On the other hand, the relation (3.3) implies∫
KT

S (z̄)

∂te[u](x, t) dx dt =
∫

KT
S (z̄)

a(t)div(ut∇xu) + a′(t)
|∇xu|2

2
dxdt

=
∫

MT
S (z̄)

a ut∇xu · nx dΣ +
∫

KT
S (z̄)

a′(t)
|∇xu|2

2
dx dt.

Then

E(u, φ(T ))− E(u, φ(S))

= −
∫

MT
S (z̄)

(e[u]nt − aut∇xu · nx) dΣ +
∫

KT
S (z̄)

a′(t)
|∇xu|2

2
dxdt.

Being e[u]nt − aut∇xu · nx = dx̄[u] on MT
S (z̄), the proof is complete. �

Corollary 3.2. Let S, T, t̄ ∈ [0, r0). If S < T < t̄, then E(u, φ(T )) ≤ E(u, φ(S)).

In particular, for all t ∈ [0, t0), it holds E(u, t) ≤ E0. In order to control the
nonlinear term, we need to estimate the energy flux of u close to the vertex of the
cone.

Corollary 3.3. Under the same assumptions of the previous corollary, we have

lim
S→t̄

∫
MT

S (z̄)

dx̄[u] dΣ = 0.

Proof. Denoting by χ
A

the characteristic function of a measurable set A, we can
write

E(u, φ(S)) =
∫

R3
χ

D(φ(S),z̄)(x)e[u](x, φ(S)) dx =
∫

R3
g(x, S) dx.

It is evident that limS→t̄ g(x, S) = 0. From E(u, φ(S)) ≤ E0, it follows that
g(·, S) ∈ L1(R3). The Lebesgue convergence theorem gives

E(u, φ(S)) → 0, for S → t̄. (3.6)

On the other hand, we prove that∫
KT

S

−a′(t) |∇u|
2

2
dxdt→ 0, (3.7)

when S → t̄. In fact, employing (3.4), we see that∫
KT

S

−a′(t) |∇u|
2

2
dxdt ≤

∫ φ(T )

φ(S)

−E′(t) dt = E(φ(S))− E(φ(T )).

The convergence (3.7) will be a consequence of the continuity of E(t). Finally,
combining (3.6), (3.7) with (3.5) we get our thesis. �
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Corollary 3.4. Assume that the hypotheses of Corollary 3.2 hold. Then∫
MT

S (z̄)

|u|pc(λ)+1√
1 + φ′(σ)2

dΣ ≤ (pc(λ) + 1)E0. (3.8)

Proof. Being a′(t) ≤ 0 and E(u, φ(T )) ≥ 0, from (3.5), we have

1
pc(λ) + 1

∫
MT

S (z̄)

|u|pc(λ)+1√
1 + φ′(σ)2

dΣ ≤
∫

MT
S (z̄)

dx̄[u] dΣ ≤ E(u, φ(S)) ≤ E0. (3.9)

This is our claim. �

The inequality (3.8) gives the conical energy estimate∫ T

S

∫
|x̄−y|=t̄−s

|u(y, φ(s))|pc(λ)+1 dωy ds ≤ (pc(λ) + 1)E0. (3.10)

We shall often use the explicit version of (3.9):∫ T

S

∫
|x̄−y|=t̄−s

√
1 + φ′(s)2dx̄[u](y, φ(s))) dωy ds ≤ E0. (3.11)

Combining Corollary 3.4 and the weighted Hardy’s inequality we can prove our
main a-priori estimate for the solution of (1.1). Starting from (2.4), we see that
there exists a C1 strictly positive function Kλ : [0, t0] → R such that

a(φ(t)) = Kλ(φ(t))(r0 − t)
2λ

λ+2 . (3.12)

In order to show this we observe that (φ−1(s))′ = a(s)1/2. Hence

r0 − φ−1(s) = (t0 − s)
λ
2 +1

∫ 1

0

τλ/2b1/2(t0 − (t0 − s)τ) dτ. (3.13)

The above identity implies (3.12) with

Kλ(s) =
[ ∫ 1

0

τλ/2b1/2(t0 − (t0 − s)τ) dτ
]−2λ/(λ+2)

b(s).

Finally, we have

m(λ)(r0 − s)
2λ

λ+2 ≤ a(φ(s)) ≤M(λ)(r0 − s)
2λ

λ+2 .

where
0 < m(λ) = min

[0,r0]
Kλ(φ(t)), M(λ) = max

[0,r0]
Kλ(φ(t)). (3.14)

Lemma 3.5. Let h0 ∈ R, h1 ≥ 0, λ ≥ 0. Consider u(x, t) a solution of (1.1). For
any 0 ≤ t ≤ r0, we set

I :=
∫ t

0

∫
|x−y|=t−s

(t− s)−h0a(φ(s))−h1u2(y, φ(s)) dωy ds.

If

− 2λ
λ+ 2

(h1 + 1) + 2− h0 = 0, (3.15)

then there exists a constant C(λ, h1) > 0 such that

I ≤ C(λ, h1)
(
E0 + E

2/(pc(λ)+1)
0

)
. (3.16)
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Proof. Using (3.14), we have

I ≤ m(λ)−h1

∫ t

0

∫
|x−y|=t−s

(t− s)−h0− 2λh1
λ+2 ϕ2(y, s) dωy ds,

where ϕ(y, s) = u(y, φ(s)). Assuming

2− h0 −
2λh1

λ+ 2
> −1, (3.17)

we can apply the Lemma 2.1 obtaining

I ≤ C1(λ, h0, h1)
∫ t

0

∫
|x−y|=t−s

(t− s)2−h0− 2λh1
λ+2

∣∣∣∇ϕ− y − x

|y − x|
∂sϕ

∣∣∣2 dωy ds

+ C1(λ, h0, h1)
∫ t/2

0

∫
|x−y|=t−s

(t− s)−h0− 2λh1
λ+2 ϕ2(y, s) dωy ds

=: C1(λ, h0, h1)[I1 + I2],

where C1(λ, h0, h1) = m(λ)−h1CH(2− h0 − (2λh1)/(λ+ 2)).
In order to estimate I1, we compute∣∣∇ϕ− y − x

|y − x|
∂sϕ

∣∣2 =
∣∣∣∇yu(y, φ(s))− y − x

|y − x|
φ′(s)ut(y, φ(s))

∣∣∣2.
Hence ∣∣∇ϕ− y − x

|y − x|
∂sϕ

∣∣2 ≤ 2[a(φ(s))]−1
√

1 + [φ′(s)]2dx[u](y, φ(s)).

Recalling that t ≤ r0, we have

I1 ≤ 2m(λ)−1

∫ t

0

∫
|x−y|=t−s

(t− s)2−h0− 2λ(h1+1)
λ+2

√
1 + [φ′(s)]2dx[u] dωy ds

≤ 2m(λ)−1t2−h0− 2λ(h1+1)
λ+2 E0.

Here we used (3.11) and the assumption

2− h0 −
2λh1

λ+ 2
≥ 2λ
λ+ 2

. (3.18)

To our aim it is sufficient to take the equality in (3.18). In particular (3.17) is
satisfied. We turn to the estimate of I2 observing that −h0 − 2h1λ/(λ + 2) =
−4/(λ+ 2).

I2 ≤
∫ t/2

0

∫
|x−y|=t−s

(t− s)
−4

λ+2u2(y, φ(s)) dωy ds

≤
( ∫ t/2

0

∫
|x−y|=t−s

(t− s)
−4

λ+2
pc(λ)+1
pc(λ)−1 dωy ds

) pc(λ)−1
pc(λ)+1

×
( ∫ t

0

∫
|x−y|=t−s

|u(y, φ(s)|pc(λ)+1 dωy ds
) 2

pc(λ)+1
.

An explicit computation gives −4
λ+2

pc(λ)+1
pc(λ)−1 + 2 = −1; hence by the aid of (3.10), we

arrive at
I2 ≤ (4π lg 2)

pc(λ)−1
pc(λ)+1 [(pc(λ) + 1)E0]2/(pc(λ)+1).
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In particular we have (3.16) with

C(λ, h1) = m(λ)−h1CH

( 2λ
λ+ 2

)
max

{ 2
m(λ)

, (4π lg 2)
pc(λ)−1
pc(λ)+1 (pc(λ) + 1)

2
pc(λ)+1

}
.

This concludes the proof. �

Proof of the decay estimate. Combining (1.3) and (2.6), we see that the decay
estimate (3.2) is equivalent to

|w(x, t)| ≤ Cb(φ(t))1/4(t0 − φ(t))−α+λ/4,

for any 0 ≤ t < r0, α < (pc(λ) − 1)−1. Recalling that b > 0 and b(t) is bounded
on the close interval [0, t0], by using (3.13), we see that the previous inequality will
follow from

µ(t) ≤ C(r0 − t)−δ, for any 0 ≤ t < r0, 0 < δ < 1/4 (3.19)

where
µ(t) := sup

R3×[0,t]

|w(x, s)|.

From (2.8) we deduce

µ(t) ≤ |w0(x, t)|+
∫ t

0

(t− s)|ψ′′(s)|ψ−1(s)µ(s) ds

+
µ(t)
4π

∫ t

0

(t− s)−1a(φ(s))−1

∫
|x−y|=t−s

|u(y, φ(s)|pc(λ)−1 dωy ds.
(3.20)

Lemma 3.6. Let u(x, t) be a solution of (1.1). Assume 3 ≤ pc(λ) := 3λ+10
3λ+2 ≤ 5.

For any A > 0 there exists 0 < ε(A) ≤ 1, such that if E0 ≤ ε(A), then

II :=
∫ t

0

(t− s)−1a(φ(s))−1

∫
|x−y|=t−s

|u(y, φ(s)|pc(λ)−1 dωy ds ≤ A.

Proof. First, we consider the case pc(λ) = 3, that is λ = 2/3. We can directly use
Lemma 3.5 with h0 = h1 = 1 and get∫ t

0

(t−s)−1a(φ(s))−1

∫
|x−y|=t−s

|u(y, φ(s)|2 dωy ds ≤ C(2/3, 1)(E0+E1/2
0 ). (3.21)

If pc(λ) > 3, we apply Hölder inequality and find

II ≤
( ∫ t

0

∫
|x−y|=t−s

|u(y, φ(s))|pc(λ)+1 dωy ds
)1/p

×
( ∫ t

0

∫
|x−y|=t−s

a(φ(s))−
p

p−1 (t− s)−
p

p−1 |u(y, φ(s))|2 dωy ds
)(p−1)/p

provided p = pc(λ)−1
pc(λ)−3 .

The first term can be directly estimated by means of (3.10); for the second
term, we employ Lemma 3.5 with h0 = h1 = p/(p− 1). The conditions (3.15) and
0 < 1/p < 1 are satisfied if and only if λ < 2/3. Hence we conclude

II ≤ C(λ, 4/(3λ+ 2))
3λ+2

4 (pc(λ) + 1)
pc(λ)−3
pc(λ)−1E

pc(λ)−3
pc(λ)−1
0 (E0 +E

2
pc(λ)+1
0 )

2
pc(λ)−1 . (3.22)

This formula coincides with (3.21) when λ = 2/3.
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It is not difficult to see that C(λ, 4/(3λ+2))
3λ+2

4 (pc(λ)+1)
pc(λ)−3
pc(λ)−1 is a continuous

function of λ, then we can put

M := max
λ∈[0,2/3]

C(λ, 4/(3λ+ 2))
3λ+2

4 (pc(λ) + 1)
pc(λ)−3
pc(λ)−1 .

Moreover 2/(pc(λ)− 1) ≤ 1, hence (3.22) gives

II ≤M(E0 + E
pc(λ)−1
pc(λ)+1
0 ).

Choosing
√
ε ≤ min{1, A

2M}, we find

II ≤M(ε+ ε
4

3λ+6 ) ≤ 2Mmin{1, A

2M
} ≤ A.

This concludes our proof. �

Using this estimate in (3.20), we arrive to(
1− A

4π

)
µ(t) ≤ |w0(x, t)|+

∫ t

0

(t− s)|ψ′′(s)|ψ−1(s)µ(s) ds.

At this point the proof proceeds as in [3] page 20. For sake of completeness we
sketch it. Differentiating twice (3.12), we find

|ψ′′(s)|ψ−1(s) ≤ λ(λ+ 4)
4(λ+ 2)2

(r0 − s)−2(1 + δ(s)).

with δ(t) → 0 as t → r−0 . We can find t̄ ∈ [0, r0) such that δ(s) ≤ 1/9 in [t̄, r0);
moreover we choose A/4π = 1/9; hence

µ(t) ≤ C +
5λ(λ+ 4)
16(λ+ 2)2

∫ t

t̄

(t− s)(r0 − s)−2µ(s) ds t̄ < t < r0.

By comparison with the solution of the Euler type integral-equation

m(t) = C +
5λ(λ+ 4)
16(λ+ 2)2

∫ t

t̄

(t− s)(r0 − s)−2m(s) ds

one finds µ(t) . C(λ, r0)(r0 − t)−γ with

γ =
1
2

√
1 +

5λ(λ+ 4)
4(λ+ 2)2

− 1
2
.

To conclude our proof, it suffices to observe that 0 < γ < 1/4.

Final remark. It is possible to extend our theorem dealing with a positive function
a(t) ∈ C2([0,+∞) \A) with A a discrete set of zeros for a(t):

A = {t1 < t2 < t3 < · · · < tn < . . . }.
We assume that there exists a uniform δ > 0 such that for any tj ∈ A it holds

a(t) = (tj − t)λj bj(t) on [0, tj ], bj ∈ C2, bj > 0 and 3 ≤ p
C
(λj) ≤ 5.

If t1 > 0 the local existence result follows from the strictly hyperbolic case. The
same is true when t1 = 0 since a′(t) > 0 in a suitable neighborhood of zero. So we
can consider t1 > 0. Our theorem is then available when the assumption E0 < ε is
replaced by E(t1 − δ) < ε. This gives a solution on [0, T1] with T1 < t2 − δ. Again
we can apply our theorem assuming E(t2−δ) < ε. Iterating this argument we finds
a global smooth solution of (1.1) provided in each step E(tj − δ) < ε.
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