Electron. J. Diff. Eqns., Vol. 2003(2003), No. 86, pp. 1-8.

Estimates for derivatives of the Green functions for the noncoercive differential operators on homogeneous manifolds of negative curvature, II

Roman Urban

Abstract:
We consider the Green functions for second order non-coercive differential operators on homogeneous manifolds of negative curvature, being a semi-direct product of a nilpotent Lie group $N$ and $A=\mathbb{R}^+$. We obtain estimates for the mixed derivatives of the Green functions that complements a previous work by the same author [17].

Submitted February 18, 2003. Published August 15, 2003.
Math Subject Classifications: 11E25, 43A85, 53C30, 31B25.
Key Words: Green function, homogeneous manifolds of negative curvature, NA groups, evolutions on nilpotent Lie groups.

Show me the PDF file (217K), TEX file, and other files for this article.

Roman Urban
Institute of Mathematics
University of Wroclaw
Pl. Grunwaldzki 2/4
50-384 Wroclaw, Poland
email: urban@math.uni.wroc.pl

Return to the EJDE web page