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ESTIMATES FOR DERIVATIVES OF THE GREEN FUNCTIONS
FOR THE NONCOERCIVE DIFFERENTIAL OPERATORS ON

HOMOGENEOUS MANIFOLDS OF NEGATIVE CURVATURE, II

ROMAN URBAN

Abstract. We consider the Green functions for second order non-coercive
differential operators on homogeneous manifolds of negative curvature, being

a semi-direct product of a nilpotent Lie group N and A = R+. We obtain
estimates for the mixed derivatives of the Green functions that complements

a previous work by the same author [17].

1. Introduction

Let M be a connected and simply connected homogeneous manifold of negative
curvature. Such a manifold is a solvable Lie group S = NA, a semi-direct product
of a nilpotent Lie group N and an Abelian group A = R+. Moreover, for an H
belonging to the Lie algebra a of A, the real parts of the eigenvalues of Adexp H |n,
where n is the Lie algebra of N , are all greater than 0. Conversely, every such
a group equipped with a suitable left-invariant metric becomes a homogeneous
Riemannian manifold with negative curvature (see [8]).

On S we consider a second order left-invariant operator

L =
m∑

j=0

Y 2
j + Y.

We assume that Y0, Y1, . . . , Ym generate the Lie algebra s of S and Y ∈ s. We
can always make Y0, . . . , Ym linearly independent and moreover, we can choose
Y0, Y1, . . . , Ym so that Y1(e), . . . , Ym(e) belong to n. (Write L as

∑dimn
i,j=0 αi,jEiEj +∑dimn

j=0 βjEj , E0 ∈ a, {Ej} is a basis of n, αi,j , βj ∈ R and then rewrite L as a sum
of squares). Let π : S → A = S/N be the canonical homomorphism. Then the
image of L under π is a second order left-invariant operator on R+,

(a∂a)2 − γLa∂a,
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where γL ∈ R. We say that a second order differential operator L on a Riemannian
manifold is noncoercive (coercive resp.) if there is no ε > 0 such that L + εId
admits the Green function (if such an ε exists resp.). It is worth noting that our
definition of coercivity is a little bit different than that used e.g. in [1]. Namely,
for us, L is coercive if it is weakly coercive in Ancona’s terminology. There is a
relation between the notion of coercivity property in the sense used in the theory
of partial differential equations (i.e., that an appropriate bilinear form is coercive,
[9]) and weak coercivity. For this the reader is referred to [1].

In this paper we shall study the operators L that are noncoercive (γL = 0). In
this case L can be written as

L =
m∑

j=1

Φa(Xj)2 + Φa(X) + a2∂2
a + ∂a, (1.1)

and X, X1, . . . , Xm are left-invariant vector fields on N , moreover, the vector fields
X1, . . . , Xm are linearly independent and generate n,

Φa = Adexp(log a)Y0 = e(log a) adY0 = e(log a)D,

where D = adY0 is a derivation of the Lie algebra n of the Lie group N such that
the real parts dj of the eigenvalues λj of D are positive. By multiplying L by a
constant, i.e., changing Y0, we can make dj arbitrarily large (see [5]).

Let G(xa, yb) be the Green function for L. The Green function G is (uniquely)
defined by two conditions:

i) LG(·, yb) = −δyb as distributions (functions are identified with distributions
via the right Haar measure),

ii) for every yb ∈ S, G(·, yb) is a potential for L, i.e., is a positive superharmonic
function such that its largest harmonic minorant is equal to zero (cf. [3]).

Let
G(x, a) := G(xa; e), (1.2)

where e is the identity element of the group S. It is easy to show that

G(xa; yb) = G((yb)−1xa; e) = G((yb)−1xa).

In this paper we refer to G(x, a) defined in (1.2) as the Green function for L.
The main goal of this paper is to prove the following estimates for derivatives of

the Green function (1.2) for the noncoercive operator L, i.e., with γL = 0. For every
neighborhood U of the identity e of the group NA there is a constant C = C(U)
such that we have

|∂l
aX IG(x, a)| ≤


C(|x|+ a)−‖I‖−Qa−l

×(1 + | log(|x|+ a)−1|)‖I‖0 , (x, a) ∈ (Q∪ U)c,
Ca−l, (x, a) ∈ Q \ U .

(1.3)

where | · | stands for a “homogeneous norm” on N , Q = {|x| ≤ 1, a ≤ 1}, ‖I‖ is a
suitably defined length of the multi-index I and ‖I‖0 is a certain number depending
on I and the nilpotent part of the derivation D. In particular, ‖I‖0 is equal to 0 if
the action of A = R+ on N , given by Φa, is diagonal or, if I = 0. X1, . . . ,Xn is an
appropriately chosen basis of n. For the precise definitions of all the notions that
have appeared here see Sect. 2.

Some comments should be made at this moment. First of all, it should be said
that the estimates for the Green function (i.e., when I=0) with γL > 0, also from
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below, was proved by E. Damek in [4] and then by the author for γL = 0 in [15]
but at that time it was impossible to prove analogous estimate for derivatives.
The reason was that we did not have sufficient estimates for the derivatives of the
transition probabilities of the evolution on N generated by an appropriate operator
which appears as the “horizontal” component of the diffusion on N ×R+ generated
by a−2L−γ (cf. [5]). These estimates have been obtained by the author in [16]
and eventually led up to the estimates for derivatives of the Green function G with
respect to the N and A-variables (see [17]). Here we are going to present how to
use the results from [17] in order to get the estimates for the mixed derivatives, i.e.,
not only for N and A = R+-variables separately.

The proof of (1.3) requires both analytic and probabilistic techniques. Some of
them have been introduced in [6, 5] and [15]. This paper also heavily depends on
some results from [17].
Guide to the paper. The structure of the paper is as follows. In Sect. 2 we
set the notation and give all the necessary definitions. In particular, we recall a
definition of the Bessel process which appears as the “vertical” component of the
diffusion generated by a−2L−γ on N×R+ as well as the notion of the evolution on N
generated by an appropriate operator which appears as the “horizontal” component
of the diffusion on N × R+ mentioned in the Introduction above (cf. [5, 17]).

The main tool in the proof of (1.3) is Proposition 3.1. Its proof is given in Sect. 3.
Finally, in Sect. 4 we state the estimates (1.3) precisely (see Theorem (4.1)) and

we give a sketch of its proof.

2. Preliminaries

2.1. NA groups. Good references for this topic are [6, 5] and [7]. Let N be a
connected and simply connected nilpotent Lie group. Let D be a derivation of the
Lie algebra n of N . For every a ∈ R+ we define an automorphism Φa of n by the
formula

Φa = e(log a)D.

Writing x = expX we put
Φa(x) := expΦa(X).

It is clear that Φa : N → N defines an automorphism. Let nC be the complexifica-
tion of n. Define

nC
λ = {X ∈ nC : ∃k > 0 such that (D − λI)k = 0}.

Then
n =

⊕
Im λ≥0

Vλ, (2.1)

where

Vλ =

{
Vλ̄ = (nC ⊕ nC

λ̄
) ∩ n if Im λ 6= 0,

nC
λ ∩ n if Im λ = 0.

We assume that the real parts dj of the eigenvalues λj of the matrix D are strictly
greater than 0. We define the number

Q =
∑

j

Re λj =
∑

j

dj (2.2)



4 ROMAN URBAN EJDE–2003/86

and we refer to this as a “homogeneous dimension” of N . In this paper D = adY0

(see Introduction). Under the assumption on positivity of dj , (2.1) is a gradation
of n.

We consider a group S which is a semi-direct product of N and the multiplicative
group A = R+ = {exp tY0 : t ∈ R}:

S = NA = {xa : x ∈ N, a ∈ A}

with multiplication given by the formula

(xa)(yb) = (xΦa(y) ab).

On N we define a “homogeneous norm”, | · | (cf. [6, 5]) as follows. Let (·, ·) be a
fixed inner product in n. We define a new inner product

〈X, Y 〉 =
∫ 1

0

(
Φa(X),Φa(Y )

)da

a
(2.3)

and the corresponding norm

‖X‖ = 〈X, X〉1/2.

We put

|X| = (inf{a > 0 : ‖Φa(X)‖ ≥ 1})−1
.

One can easily show that for every Y 6= 0 there exists precisely one a > 0 such
that Y = Φa(X) with |X| = 1. Then we have |Y | = a. Finally, we define the
homogeneous norm on N . For x = expX we put

|x| = |X|.

Note that if the action of A = R+ on N (given by Φa) is diagonal the norm we
have just defined is the usual homogeneous norm on N and the number Q in (2.2)
is simply the homogeneous dimension of N (see [7]).

Having all that in mind we define appropriate derivatives (see also [6]). We fix
an inner product (2.3) in n so that Vλj , j = 1, . . . , k are mutually orthogonal and
an orthonormal basis X1, . . . ,Xn of n. The enveloping algebra U(n) of n is identified
with the polynomials in X1, . . . ,Xn. In U(n) we define 〈X1⊗. . .⊗Xr,Y1⊗. . .⊗Yr〉 =∏r

j=1〈Xj ,Yj〉. Let V r
j be the symmetric tensor product of r copies of Vλj

. For
I = (i1, . . . , ik) ∈ (N ∪ {0})k let

X I = X (i1)
1 . . .X (ik)

k , where X (ij)
j ∈ V

ij

j .

Then for X ∈ Vλj
,

‖Φa(X )‖ ≤ c exp(dj log a + Dj log(1 + | log a|)),

where dj = Reλj and Dj = dim Vλj
− 1, and so

‖Φa(X I)‖ ≤ exp
( k∑

j=1

ij(dj log a + Dj log(1 + | log a|))
) k∏

j=1

‖X (ij)
j ‖. (2.4)
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2.2. Bessel process. Let bt denote the Bessel process with a parameter α ≥ 0 (cf.
[11]), i.e., a continuous Markov process with the state space [0,+∞) generated by
∂2

a + 2α+1
a ∂a. The transition function with respect to the measure y2α+1dy is given

(cf. [2, 11]) by:

pt(x, y) =


1
2t exp

(
−x2−y2

4t

)
Iα

(
xy
2t

)
1

(xy)α for x, y > 0,

1
2α(2t)α+1Γ(α+1) exp

(
−y2

4t

)
for x = 0, y > 0,

(2.5)

where

Iα(x) =
∞∑

k=0

(x/2)2k+α

k!Γ(k + α + 1)
(2.6)

is the Bessel function (see [10]). Therefore for x ≥ 0 and a measurable set B ⊂
(0,∞):

Px(bt ∈ B) =
∫

B

pt(x, y)y2α+1dy.

If bt is the Bessel process with a parameter α starting from x, i.e., b0 = x, then we
will write that bt ∈ BESSx(α) or simply bt ∈ BESS(α) if the starting point is not
important or is clear from the context.

Properties of the Bessel process are very well known and their proofs are rather
standard. They can be found e.g. in [11, 5, 14, 13]. However, in our paper we will
not explicitly make use of any particular property of the Bessel process. What we
only need is the possibility of generalization of some lemmas from Section 5 in [17].

2.3. Evolutions. Let X, X1, . . . , Xm be as in (1.1). Let σ : [0,∞) −→ [0,∞) be a
continuous function such that σ(t) > 0 for every t > 0. We consider the family of
evolutions operators Lσ(t) − ∂t, where

Lσ(t) = σ(t)−2
( ∑

j

Φσ(t)(Xj)2 + Φσ(t)(X)
)
. (2.7)

Since we can assume that X1, . . . , Xm are linearly independent, we can select
Xm+1, . . . , Xn so that X1, . . . , Xn form a basis of n. For a multi-index I =
(i1, . . . , in), ij ∈ Z+ and the basis X1, . . . , Xn of the Lie algebra n of N we write:
XI = Xi1

1 . . . Xin
n and |I| = i1 + . . . + in. For k = 0, 1, . . . ,∞ we define:

Ck = {f : XIf ∈ C(N), for |I| < k + 1}
and

Ck
∞ = {f ∈ Ck : lim

x→∞
XIf(x) exists for |I| < k + 1}.

For k < ∞ the space Ck
∞ is a Banach space with the norm

‖f‖Ck
∞

=
∑
|I|≤k

‖XIf‖C(N).

Let {Uσ(s, t) : 0 ≤ s ≤ t} be the unique family of bounded operators on C∞ =
C0
∞ which satisfy

(i) Uσ(s, s) = I,
(ii) Uσ(s, r)Uσ(r, t) = Uσ(s, t), s < r < t,
(iii) ∂sU

σ(s, t)f = −Lσ(s)U
σ(s, t)f for every f ∈ C∞,

(iv) ∂tU
σ(s, t)f = Uσ(s, t)Lσ(t)f for every f ∈ C∞,

(v) Uσ(s, t) : C2
∞ −→ C2

∞.
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The operator Uσ(s, t) is a convolution operator. Namely, Uσ(s, t)f = f ∗ pσ(t, s),
where pσ(t, s) is a smooth density of a probability measure. By ii) we have pσ(t, r)∗
pσ(r, s) = pσ(t, s) for t > r > s. The existence of the family Uσ(s, t) follows from
[12].

3. Probabilistic Lemma

For the rest of this article, as in [17], we consider a Bessel process σt with a
parameter 0, i.e., σt ∈ BESS(0). In other words σt = ‖wt‖, where wt is a standard
Brownian motion on R2. In the whole section we use the following notation. For
every η > 0 and a > 0, Ia,η = [a − η, a + η]. The kernel pσ is the evolution kernel
defined in the previous section and “directed” by the Bessel process σt ∈ BESS(0)
and is fixed for the whole section. Moreover, for every measurable subset B of R+,
m(B) =

∫
B

ydy. For a positive δ < 1/2, let

Tδ = {(x, a) ∈ N × R+ : 1− δ < a < 1 + δ, |x| < δ},
Q = {(x, a) ∈ N × R+ : |x| ≤ 1, a ≤ 1}.

The main probabilistic fact is the following proposition which gives estimates on
the set Q \ Tδ.

Proposition 3.1. Let k ≥ 1 be fixed. For every 1 > δ > 1/2, for every 0 < χ0 ≤ 1,
0 < r0 ≤ 1 and for every multi-index I such that |I| > 0 there exists a constant C
such that for every (x, a) ∈ Q \ Tδ and for every 0 ≤ l ≤ k − 1,

sup
0<η<δ/2

∣∣ ∫ ∞

1

EχXIpσ(t, 0)(x)∂l
am(Ia,η)−1∂k−l

a 1Ia,η (σt)dt
∣∣ ≤ Ca−k.

Sketch of the proof. To prove Proposition 3.1, we divide the set Q \ Tδ into five
subsets as in Lemmas 5.1-5.5 in [17] (in the case χ = 1). The case 0 < χ ≤ χ0 is
done similarly. What we have to notice is the fact that the only difference between
the above proposition and corresponding Lemmas 5.1-5.5 in [17] is the appearance
of derivatives with respect to a variable and in some sense uniform estimate with
respect to the starting point χ ≤ χ0. To overcame this difficulty we notice the
following.

For every η < a we have

∂l
am(Ia,η)−1 = (−1)ll!m(Ia,η)−(l+1)Cl, l ≥ 0 (3.1)

and for every χ > 0,

Eχ∂a1Ia,η (σt) = lim
h→0

h−1(Pχ(a + η ≤ σt ≤ a + η + h)

−Pχ(a− η + h ≤ σt ≤ a− η))

=pt(χ, a + η)(a + η)− pt(χ, a− η)(a− η),

(3.2)

where pt is the transition function (2.5). Formula (3.2) together with (2.5) allow
us to calculate Eχ∂l

a1Ia,η
(σt) for l ≥ 2,

Eχ∂l
a1Ia,η

(σt) =(2t)−1e−χ2/4t∂l−1
a (e−(a+η)2/4tI0(χ(a + η)/2t)(a + η)

− e−(a−η)2/4tI1(χ(a− η)/2t)(a− η)).
(3.3)
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Since we get limη→0
(Cη)l

m(Ia,η)l = ∂l
am(Ia,η). Using (3.2), (3.3) and the following

formulae (cf. [10]):

d

dx
Iα(x) = Iα−1(x)− α

x
Iα(x) = Iα+1(x) +

α

x
Iα(x)

we get, after not difficult but a little tedious computation, that

lim
η→0

|Eχm(Ia,η)−1∂k−l
a 1Ia,η (bt/2)| ≤ Ct−k+l−2a−k+le−χ2/4te−a2/4t

×
∑

(w1,w2,w3,w4)∈W

cw1,w2,w3,w4χ
w1aw2tw3Iw4(χa/2t), (3.4)

where

W =
{
(w1, w2, w3, w4) : 0 ≤ w1 ≤ k − l + 1, 0 ≤ w2 ≤ 2(k − l) + 1,

0 ≤ w3 ≤ k − l, w4 ∈ {0, 1} and w1/2 + w3 < k − l + 1
}

and cw1,w2,w3,w4 are nonnegative real numbers. Assume now that a ≤ 1. Then, by
w1/2 + w3 < k− l + 1, using asymptotic behavior of the Bessel function (2.6), (see
[10]):

Iα(x) �

{
xα

2αΓ(1+α) , x → 0,
exp(x)

(2πx)1/2 , x →∞,

we can estimate (3.4), independently of χ, as follows:

lim
η→0

|Eχm(Ia,η)−1∂k−l
a 1Ia,η

(bt/2)|

≤ Ct−k+l−2a−k+l
∑

(w1,w2,w3,w4)∈A

cw1,w2,w3,w4a
w2tw1/2+w3 ≤ Ct−1a−k+l. (3.5)

Having the above we proceed exactly like in the paper [17]. �

4. The main result and its proof

In this section we obtain pointwise estimates for derivatives of the Green function
(1.2). Recall that for a positive δ < 1/2 we have defined,

Tδ = {(x, a) ∈ N × R+ : 1− δ < a < 1 + δ, |x| < δ},
Q = {(x, a) ∈ N × R+ : |x| ≤ 1, a ≤ 1}.

Theorem 4.1. For a multi-index I = (i1, . . . , ik), for every integer l ≥ 0 and
all operators X I = X (i1)

1 . . .X (ik)
k , where X (ij)

j ∈ V
ij

j , with ‖X I‖ ≤ 1, there are
constants C such that

|∂l
aX IG(x, a)| ≤


C(|x|+ a)−‖I‖−Qa−l

×(1 + | log(|x|+ a)−1|)‖I‖0 , (x, a) ∈ (Q∪ Tδ)c,
Ca−l, (x, a) ∈ Q \ Tδ,

where ‖I‖ =
∑k

j=1 ijdj, dj = Reλj, and ‖I‖0 =
∑k

j=1 ijDj, Dj = dimVλj
− 1.

Proof. Having all the preparatory material from Sect. 3 we proceed exactly as in
the proof of Theorem 6.1 in [17]. �



8 ROMAN URBAN EJDE–2003/86

Acknowledgements. The author wishes to thank Ewa Damek for helpful discus-
sions concerning the content of this paper. The author also thank the referee for
his/her suggestions that improved the presentation of this paper.

References

[1] A. Ancona. Negatively curved manifolds, elliptic operators, and the Martin boundary. Ann.
of Math., 125:495–536, 1987.

[2] A.N. Borodin and P. Salminen. Handbook of Brownian motion - facts and formulae.

Birkhäuser Verlag, 1996.
[3] C. Constantinescu and A. Cornea. Potential theory on harmonic spaces. Springer-Verlag,

New York, 1972. With a preface by H. Bauer, Die Grundlehren der mathematischen Wis-
senschaften, Band 158.

[4] E. Damek. Fundamental solutions of differential operators on homogeneous manifolds of neg-

ative curvature and related Riesz transforms. Coll. Math, 73(2):229–249, 1997.
[5] E. Damek, A. Hulanicki, and R. Urban. Martin boundary for homogeneous Riemannian

manifolds of negative curvature at the bottom of the spectrum. Rev. Mat. Iberoamericana,

17(2):257–293, 2001.
[6] E. Damek, A. Hulanicki, and J. Zienkiewicz. Estimates for the Poisson kernels and their

derivatives on rank one NA groups. Studia Math., 126(2):115–148, 1997.

[7] G.B. Folland and E. Stein. Hardy spaces on homogeneous groups. Princeton Univ. Press,
1982.

[8] E. Heintze. On homogeneous manifolds of negative curvature. Math. Ann., 211:23–34, 1974.

[9] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their
applications. Academic Press, 1980.

[10] N.N. Lebedev. Special functions and their applications. Dover Publications, Inc., 1972.
[11] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer-Verlag, 1991.

[12] H. Tanabe. Equations of evolutions. London, Pitman, 1979.

[13] R. Urban. Estimates for the Poisson kernels on NA groups. A probabilistic method. PhD
thesis, Wroclaw University, 1999.

[14] R. Urban. Estimates for the Poisson kernels on homogeneous manifolds of negative curvature

and the boundary Harnack inequality in the noncoercive case. Probab. Math. Statist., 21(1,
Acta Univ. Wratislav. No. 2298):213–229, 2001.

[15] R. Urban. Noncoercive differential operators on homogeneous manifolds of negative curvature

and their Green functions. Colloq. Math., 88(1):121–134, 2001.
[16] R. Urban. Estimates for derivatives of the Poisson kernels on homogeneous manifolds of

negative curvature. Math. Z., 240(4):745–765, 2002.

[17] R. Urban. Estimates for derivatives of the Green functions for the noncoercive differential
operators on homogeneous manifolds of negative curvature. Potential Analysis, 19(4):317–
339, 2003.

Institute of Mathematics, University of Wroclaw, Pl. Grunwaldzki 2/4, 50-384 Wro-
claw, Poland

E-mail address: urban@math.uni.wroc.pl


