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HARNACK INEQUALITY FOR STRONGLY DEGENERATE
ELLIPTIC OPERATORS WITH NATURAL GROWTH

GIUSEPPE DI FAZIO, MARIA STELLA FANCIULLO, PIETRO ZAMBONI

Abstract. We prove that positive and bounded weak solutions of a strongly

degenerate elliptic equation satisfy the Harnack inequality. The structure of

the differential operator includes a nonlinear term in the gradient with qua-
dratic growth. Moreover, the lower order terms belong to some Stummel

classes defined in term of sum operators introduced in [13].

1. Introduction

Recently the regularity of weak solutions of the equation

−X∗j (aijXiu+ dju) + biXiu+ cu = f −X∗i hi (1.1)

was studied in [6]. Here X = (X1, X2, . . . , Xm) is a system of first-order locally
Lipschitz vector fields in Rn, and the lower order terms belong to suitable Stummel
classes modeled on a special geometry introduced in [13]. Namely, local bounded-
ness and continuity of the weak solutions have been proved. Later, in [7], the results
in [6] were generalized to a class of operators satisfying a weighted degeneracy con-
dition. There, the principal part of (1.1) is controlled by a A2 Muckenhoupt weight,
and the operators considered in [6, 7] have a controlled growth in the gradient. As
it is well known, this implies that any weak solution is locally bounded.

In this note we study an operator that is similar to those in [6, 7] but very
different in the growth. In fact, the operator considered here satisfies a quadratic
growth with respect to the gradient. It is worth to remark that adding such a term
destroy the local boundedness property of the weak solutions. This phenomenon
forces us to assume that the weak solutions are locally bounded and then we can
show regularity only for the bounded solutions.

To state our result, let us consider the equation

−X∗j (aijXiu+ dju) +
b0
λ
w|Xu|2 + biXiu+ cu = f −X∗i hi , (1.2)

where X is as before and the coefficients aij satisfy weighted ellipticity condition
with respect to a Muckenhoupt A2 weight. Assuming the lower order terms in
appropriate weighted Stummel classes (see section 2 for definitions) we prove that
the bounded positive solutions of equation (1.2) satisfy a Harnack inequality. As a
consequence, this will imply that the bounded weak solutions are continuous.
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Some comments are now in order. We assume that X satisfies the following (1-2)
weighted Poincaré inequality

1
w(B)

∫
B

|u− uB |w dy ≤ CP r
( 1
w(B)

∫
B

|Xu|2wd y
)1/2

∀u ∈ C∞ .

As showed by Franchi Perez and Wheeden [13], the above Poincaré inequality
implies the following subrepresentation formula

|u(x)− uB0 | ≤ C
∞∑
j=0

r(Bj(x))
( 1
w(Bj(x))

∫
Bj(x)

|Xu|2w(y)dy
)1/2

where {Bj(x)}∞j=1 is special chain of balls related to a fixed ball B0. The subrep-
resentation formula allowed us to prove a Fefferman type inequality and to define
suitable Stummel classes modeled on the geometry introduced in [13] (for more
details see [5]).

The Fefferman inequality is a fundamental tool in our proof. Indeed, following
the classical pattern in Trudinger paper [18] (analogous results in different settings
are shown in [3, 4, 8, 9]) we are faced with products between lower order terms and
test functions. Due to the low integrability of the lower order terms we use the
Fefferman inequality to complete the iteration process and obtain our results.

2. Stummel type classes and Fefferman inequality

Let X = (X1, X2, . . . , Xm) be a system of locally Lipschitz vector fields in Rn
and d the associated Carnot-Carathéodory distance. We assume that d is finite
for any x, y ∈ Rn and denote by B = Br = B(x, r) the Carnot-Carathéodory ball
centered at x of radius r. Let us recall the definition of Muckenhoupt weight Ap.

Definition 2.1 (Ap Muckenhoupt weights). Let w be a non negative and locally
integrable function in Rn and 1 < p < +∞. We say that w is an Ap weight if

[w]p ≡ sup
B

( 1
|B|

∫
B

w(x) dx
)( 1
|B|

∫
B

[w(x)]
−1
p−1 dx

)p−1

< +∞

where the supremum is taken over all metric balls B in Rn. The number [w]p is
called the Ap constant of w.

Throughout this article we assume the following.
(A1) The distance d is continuous with respect to the Euclidean distance in Rn.
(A2) There exists a positive constant CD such that

|B(x, 2r)| ≤ CD|B(x, r)| ∀x ∈ Rn, r > 0 .

(A3) If B0 is a given ball in Rn and w ∈ A2, there exists a positive constant CP
such that

1
w(B)

∫
B

|u− uB |w dy ≤ CP r
( 1
w(B)

∫
B

|Xu|2w dy
)1/2

for all B ⊂ B0 and all u ∈ C∞(B0). Here uB = 1
w(B)

∫
B
uw dy, w(B) =∫

B
w dy and r is the radius of B.

The number Q = log2 CD will be called homogeneous dimension of Rn.
To state and prove our results we need to define the Sobolev classes with respect

to the measure w dx where w ∈ A2.
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Definition 2.2 (Sobolev spaces). Let w ∈ A2 and Ω be a bounded domain in Rn.
We say that u belongs to W 1,2(Ω, w) if u, Xiu ∈ L2(Ω, w) for any i = 1, . . .m.
Moreover, we denote by W 1,2

0 (Ω, w) the closure of the smooth and compactly sup-
ported functions in W 1,2(Ω, w) with respect to the norm

‖u‖W 1,2(Ω,w) = ‖u‖L2(Ω,w) +
m∑
i=1

‖Xiu‖L2(Ω,w) .

and we say that u belongs to W 1,2
loc (Ω, w) if u ∈W 1,2(Ω′, w) for any Ω′ ⊂⊂ Ω.

We recall the useful embedding Theorem for Sobolev spaces (see [12, 15, 14]).

Theorem 2.3. Let w ∈ A2 and K be a compact subset of Ω. Then there exist
r0 > 0, q0 > 2 and C depending on K, Ω and {Xj} such that for any metric ball
B = B(x, r), x ∈ K, we have( 1

w(B)

∫
B

|u− uB |qw dy
)1/q

≤ Cr
( 1
w(B)

∫
B

|Xu|2w dy
)1/2

, ∀u ∈ C∞(B)

provided 0 < r < r0 and 2 < q < q0.

The following definition is useful for stating the subrepresentation formula that
we will use later (see [13]).

Definition 2.4. Given B0 = B(x0, r) and x ∈ B0, let us denote by {Bi} =
{Bi(x)}∞i=1 a chain of balls, of radius r(Bi), such that

(H1) Bi ⊂ B0 for all i ≥ 0
(H2) r(Bi) ∼ 2−ir(B0) for all i ≥ 0
(H3) ρ(Bi, x) ≤ Cr(Bi) for all i ≥ 0
(H4) for all i ≥ 0, Bi ∩Bi+1 contains a ball Si with r(Si) ∼ r(Bi).

Theorem 2.5. Given a weight w ∈ A2 and a ball B let {Bj(x)}∞j=1 be a chain of
balls as in Definition 2.4. Let u ∈W 1,2(B0, w) be such that for any ball B ⊂ B0

1
w(B)

∫
B

|u− uB |w dx ≤ Cs
( 1
w(B)

∫
B

|Xu|2w dy
)1/2

(2.1)

where s is the radius of B. Then there exists C ′ > 0 such that

|u(x)− uB0 | ≤ C ′
∞∑
j=0

r(Bj(x))
( 1
w(Bj(x))

∫
Bj(x)

|Xu|2w(y)dy
)1/2

where C ′ is a geometric constant which also depends on C.

Since we are interested to prove our result assuming low integrability properties
on the lower order term we introduce the Stummel and Morrey classes adapted to
our setting.

Definition 2.6 (Stummel and Morrey classes). Let w ∈ A2, B0 be a ball and
{Bj(x)}∞j=1 be a chain of balls as in Definition 2.4. We say that V ∈ L1

loc(Rn, w)
belongs to the class S̃(Rn, w) if

ηV (r) ≡ sup
x0∈Rn

sup
y∈B0

∫
B0

∞∑
j=0

r2(Bj(x))|V (x)|
w(Bj(x))

χBj(x)(y)w(x)dx
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is finite for all r > 0. We say that V belongs to S(Rn, w) if, in addition, we have
limr→0 ηV (r) = 0. We say that V ∈ S′(Rn, w) if there exists δ > 0 such that∫ δ

0

ηV (t)
t

dt < +∞.

We say that V belongs to the Morrey space Mσ(Rn, w) if there exist C > 0 such
that ηV (r) ≤ Crσ.

We close this section giving the proof of the weighted embedding result. As we
have already noted, it will allow us to get our main results. The unweighted result
and some corollaries has been proven in [5] (see also [2], [10, 11, 16, 19, 20, 21]).
Here we extend the embedding to the weighted case.

Theorem 2.7. Let w ∈ A2, B0 be a ball and V a function in S̃(Rn, w). Then,
there exists a positive constant C such that∫

B0

|V (x)| |u(x)− uB0 |2w dx ≤ CηV (r)
∫
B0

|Xu(x)|2w dx

for any u ∈ C∞(B0).

Proof. Let u be a smooth function in B0. Theorem 2.5 yields the following subrep-
resentation formula for u

|u(x)− uB0 | ≤ C
∞∑
j=0

r(Bj(x))
( 1
w(Bj(x))

∫
Bj(x)

|Xu|2w(y)dy
)1/2

(2.2)

for a.e. x ∈ B0. Now from (2.2) and Hölder inequality∫
B0

|V (x)||u(x)− uB0 |2w(x)dx

≤
∫
B0

|V (x)||u(x)− uB0 |
∞∑
j=0

r(Bj(x))

×
[ 1
w(Bj(x))

∫
Bj(x)

|Xu(y)|2w(y)dy
]1/2

w(x)dx

≤
[ ∫

B0

|V (x)||u(x)− uB0 |2w(x)dx
]1/2

×
[ ∫

B0

∞∑
j=0

|V (x)|r
2(Bj(x))
w(Bj(x))

∫
Bj(x)

|Xu(y)|2w(y)dyw(x)dx
]1/2

≤
[ ∫

B0

|V (x)||u(x)− uB0 |2w(x)dx
]1/2

×
[ ∫

B0

∞∑
j=0

|V (x)|r
2(Bj(x))
w(Bj(x))

∫
B0

|Xu(y)|2χBj(x)(y)w(y)dyw(x)dx
]1/2

≤
[ ∫

B0

|V (x)||u(x)− uB0 |2w(x)dx
]1/2

×
[ ∫

B0

|Xu(y)|2
∫
B0

∞∑
j=0

|V (x)|r
2(Bj(x))
w(Bj(x))

χBj(x)(y)w(x)dxw(y)dy
]1/2
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≤
[ ∫

B0

|V (x)||u(x)− uB0 |2w(x)dx
]1/2

η
1/2
V (r)

×
[ ∫

B0

|Xu(y)|2w(y)dy
]1/2

from which∫
B0

|V (x)||u(x)− uB0 |2w(x)dx ≤ CηV (r)
∫
B0

|Xu(x)|2w(x)dx .

�

From Theorem 2.7 we obtain the following corollaries.

Corollary 2.8. Let V be a function in S̃(Rn, w). Then, there exists a positive
constant C such that∫

Rn
|V (x)| |u(x)|2w dx ≤ CηV (r)

∫
Rn
|Xu(x)|2w dx

for any compactly supported smooth function u in Rn.

Corollary 2.9. Let Ω ⊂ Rn be a bounded domain and V in S(Ω, w). Then, for any
ε > 0 there exists a positive function K(ε) ∼ ε

[η−1
V (ε)]Q+2 (where η−1

V is the inverse

function of ηV ), such that∫
Ω

|V (x)| |u(x)|2w dx ≤ ε

∫
Ω

|Xu(x)|2 dx+K(ε)
∫

Ω

|u(x)|2 dx (2.3)

for any compactly supported smooth function u in Ω.

3. Harnack inequality for strongly degenerate equations

Let Ω be a bounded domain in Rn. Let X = (X1, X2, . . . , Xm) be a system of
locally Lipschitz vector fields in Rn. For i = 1, 2, . . . ,m we denote by X∗i the formal
adjoint of the vector fields Xi. Let {aij(x)} be a symmetric matrix of measurable
functions in Ω satisfying the weighted ellipticity condition: There exists λ > 0 such
that

λ−1w(x)|ξ|2 ≤ aij(x)ξiξj ≤ λw(x)|ξ|2 a.e. x ∈ Ω and ∀ξ ∈ Rm (3.1)
for some Muckenhoupt weight w ∈ A2.

Let us consider the strongly degenerate elliptic equation in divergence form

−X∗j (aijXiu+ dju) +
b0
λ
w|Xu|2 + biXiu+ cu = f −X∗i hi , (3.2)

where

b0 ∈ R \ {0},
(bi
w

)2
,

c

w
,
(di
w

)2
,

f

w
,
(hi
w

)2 ∈ S′(Ω, w) . (3.3)

To begin with we give the definition of weak super, sub solutions and solutions.

Definition 3.1 (Weak supersolutions, subsolutions, solutions). Let w ∈ A2 and
u ∈W 1,2

loc (Ω, w). We say that u is a local weak supersolution (subsolution) of (3.2)
if for any ϕ ∈W 1,2

0 (Ω, w), ϕ ≥ 0∫
Ω

[
(aijXiu+ dju)Xjϕ+

(b0
λ
w|Xu|2 + biXiu+ cu

)
ϕ
]
dx

≥ (≤)
∫

Ω

(fϕ+ hiXiϕ)dx .
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We say that u ∈ W 1,2
loc (Ω, w) is a local weak solution of (3.2) if it is both a super-

solution and a subsolution.

Our first result is the weak Harnack inequality for supersolutions of (3.2). We
follow the pattern drawn in [18].

Theorem 3.2. Let us assume conditions (3.1) and (3.3) are satisfied, w ∈ A2, and
let u be a weak nonnegative supersolution of equation (3.2) in a ball B3r ⊂⊂ Ω. Let
M > 0 be a constant such that u ≤ M in B3r. Then, there exists C depending on
Q, M , λ and the A2 constant of w, such that

w−1(B2r)
∫
B2r

uwdx

≤ C
{

minBru+ rσ‖ f
w
‖σ,B3r +

(
rσ

n∑
i=1

‖
(hi
w

)2‖σ,B3r

)1/2}
.

Proof. Let

k = ‖ f
w
‖σ,B3r +

( n∑
i=1

‖
(hi
w

)2‖σ,B3r

)1/2

and v = u+ k. For η ∈ C1
0 (B3r), η ≥ 0, we set ϕ(x) = η2(x)vβ(x)e−|b0|v(x), β < 0,

as a test function in (3.2). Since u is a supersolution in B3r of (3.2) we have∫
B3r

[
2η(aijXiu+ dju− hj)Xjηv

βe−|b0|v

+ (−|β|vβ−1 − |b0|vβ)η2e−|b0|v(aijXiu+ dju− hj)Xjv

+
b0
λ
w|Xu|2η2vβe−|b0|v + (biXiu+ cu− f)η2vβe−|b0|v

]
dx ≥ 0

and ∫
B3r

η2e−|b0|v(b0vβ + |β|vβ−1)|Xv|2wdx

≤
∫
B3r

η2e−|b0|v(|b0|vβ + |β|vβ−1)|Xv|2wdx

≤ λ
∫
B3r

η2e−|b0|v(|b0|vβ + |β|vβ−1)aijXivXjv dx

≤ λ
∫
B3r

η2e−|b0|v(|β|vβ−1 + |b0|vβ)(hj − dju)Xjv dx

+ 2λ
∫
B3r

η(aijXiv + dju− hj)Xjηv
βe−|b0|vdx

+
∫
B3r

b0w|Xv|2η2vβe−|b0|vdx

+ λ

∫
B3r

(biXiv + cu− f)η2vβe−|b0|vdx .

From this inequality it follows that∫
B3r

η2e−|b0|v|β|vβ−1|Xv|2wdx

≤ λ
∫
B3r

η2e−|b0|v(|β|vβ−1 + |b0|vβ)(hj − dju)Xjv dx
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+ 2λ
∫
B3r

η(aijXiv + dju− hj)Xjηv
βe−|b0|vdx

+ λ

∫
B3r

(biXiv + cu− f)η2vβe−|b0|vdx .

Since v is bounded, we may drop the exponential to obtain∫
B3r

η2|β|vβ−1|Xv|2wdx

≤ C(M, b0)
[
2λ
∫
B3r

ηaijXivXjηv
βdx+ λ|β|

∫
B3r

|dj ||Xjv|vβη2dx

+ 2λ
∫
B3r

|dj |vβ+1Xjηηdx+ 2λ
∫
B3r

|hj |vβXjηηdx+ λ

∫
B3r

|bi||Xivη
2vβ

+ λ

∫
B3r

|c|η2vβ+1dx+ λ

∫
B3r

|f |η2vβdx

+ λ|β|
∫
B3r

hjXjvv
β−1η2dx+ λ

∫
B3r

|dj ||vxi |η2vβdx
]
.

Now, set

V =
n∑
i=1

|bi|2

w
+ |c|+

n∑
j=1

|dj |2

w
+ k−1|f |+ k−2

n∑
i=1

|hi|2

w
.

Using Young’s inequality yields∫
B3r

η2vβ−1|Xv|2wdx

≤ C(M, b0, λ)
[ |β|+ 1

β2

∫
B3r

vβ+1|Xη|2wdx+
( |β|+ 1

β

)2 ∫
B3r

V η2vβ+1dx
]

≤ C(M, b0, λ)
( |β|+ 1

β

)2[ ∫
B3r

vβ+1|Xη|2wdx+
∫
B3r

V η2vβ+1dx
]
.

(3.4)

Now we set

U(x) =

{
v
β+1
2 (x) if β 6= −1

log v(x) if β = −1

and by (3.4) we have∫
B3r

η2|XU|2w dx

≤ C(β + 1)2
( |β|+ 1

β

)2{∫
B3r

|Xη|2U2w dx+
∫
B3r

V η2U2 dx
}
, β 6= −1

(3.5)

while ∫
B3r

η2|XU|2w dx ≤ C
{∫

B3r

|Xη|2w dx+
∫
B3r

V η2 dx
}

(3.6)

if β = −1.
Let us start with the case β = −1. By Corollary 2.8 we have∫

B3r

η2|XU|2w dx ≤ C
(∫

B3r

|Xη|2w dx+
∫
B3r

η2wdx
)
.
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Let Bh be a ball contained in B2r. Choosing η(x) so that η(x) = 1 in Bh,
0 ≤ η ≤ 1 in B3r \Bh and |Xη| ≤ 3

h , we obtain

‖XU‖L2(Bh,w) ≤ C
w(Bh)1/2

h
.

By Theorem 2.3 and John-Nirenberg lemma (see [1]) we have U(x) = log v(x) ∈
BMO. Then there exist two positive constants p0 and C, such that(

−
∫
B2r

ep0Uw dx
)1/p0(

−
∫
B2r

e−p0Uw dx
)1/p0

≤ C . (3.7)

Let us consider the family of seminorms

Φ(p, h) =
(∫

Bh

|v|pw dx
)1/p

, p 6= 0 .

By (3.7) we have

1
w(B2r)1/p0

Φ(p0, 2r) ≤ Cw(B2r)1/p0Φ(−p0, 2r) .

Now we consider β 6= 1 (see inequality (3.5)). By Corollary 2.9 we obtain∫
B3r

|XU|2η2w dx

≤ C
{[(β + 1

2
)2 + 1

](
1 +

1
|β|
)2 ∫

B3r

|Xη|2U2w dx

+
[ 1

φ−1
(
V
w ;
(
β+1

2

)−2(1 + 1
|β|
)−2
)]Q+2

∫
B3r

η2U2w dx
}
.

(3.8)

By Theorem 2.3 we have(∫
B3r

|ηU|τpw dx
)1/τ

≤ cw(B3r)
1
τ−1

{[(β + 1
2
)2 + 2

](
1 +

1
|β|
)2 ∫

B3r

|Xη|2U2w dx

+
[ 1

φ−1
(
V
w ;
(
β+1

2

)−2(1 + 1
|β|
)−2
)]Q+2

∫
B3r

η2U2w dx
} (3.9)

where c is a positive constant independent of w.
Now we choose the function η. For r1 and r2 such that r ≤ r1 < r2 ≤ 2r we

choose η such that η(x) = 1 in Br1 , 0 ≤ η(x) ≤ 1 in Br2 , η(x) = 0 outside Br2 ,
|Xη| ≤ c

r2−r1 for some fixed constant c. Then we have(∫
Br1

U2τw dx
)1/τ

≤ cw(B3r)
1
τ−1 1

(r2 − r1)2

[(β + 1
2
)2 + 2

]
×
(
1 +

1
|β|
)2[ 1

φ−1
(
V
w ;
(
β+1

2

)−2(1 + 1
|β|
)−2
)]Q+2

∫
Br2

U2w dx .
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Setting γ = β + 1 and recalling that U(x) = v
β+1
2 (x), we obtain

Φ(τγ, r1) ≥ c1/γw(B3r)
1
γ ( 1

τ−1)
[(β + 1

2
)2 + 2

]1/γ
×
[ 1

φ−1
(
V
w ;
(
β+1

2

)−2
)]Q+2

γ 1
(r2 − r1)2/γ

Φ(γ, r2) ,
(3.10)

for negative γ.
We are going to iterate the inequality just obtained. Setting γi = τ ip0 and

ri = r + r
2i , i = 1, 2, . . . iteration of (3.10) and use of [17, Lemma 3.4] yield

Φ(−∞, r) ≥ c
(
φV
w
,diam Ω

)
w(B3r)1/p0Φ(−p0, 2r) .

Therefore, by Hölder inequality,

Φ(p′0, 2r) ≤ Φ(p0, 2r)w(B3r)
1
p′0
− 1
p0 , p′0 ≤ p0

so we obtain
w−1(B2r)Φ(1, 2r) ≤ cΦ(−∞, r)

and the result follows. �

The following weak Harnack inequality for subsolutions can be obtained in a
similar way.

Theorem 3.3. Let u be a weak nonnegative subsolution of (3.2) in B3r ⊂⊂ Ω.
Assume (3.1) and (3.3). Let M > 0 be a constant such that u ≤ M in B3r. Then
there exists C depending on Q, M , λ and the A2 constant of w, such that

max
Br

u ≤ C
{
w−1(B2r)

∫
B2r

uwdx+ rσ‖ f
w
‖σ,B3r

(
rσ

n∑
i=1

‖
(hi
w

)2‖σ,B3r

)1/2}
.

Now, from our previous results, we obtain the Harnack inequality for solutions.

Theorem 3.4. Let us assume conditions (3.1) and (3.3) are satisfied, w ∈ A2, and
let u be a weak nonnegative supersolution of (3.2) in a ball B3r ⊂⊂ Ω. Let M > 0
be a constant such that u ≤ M in B3r. Then, there exists C depending on Q, M ,
λ and the A2 constant of w such that

max
Br

u ≤ C
{

min
Br

u+ rσ‖ f
w
‖σ,B3r +

(
rσ

n∑
i=1

‖
(hi
w

)2‖σ,B3r

)1/2}
.

As a consequence of Harnack inequality we can show that the weak solutions of
(3.2) are continuous with respect to the Carnot-Carathéodory metric.

Theorem 3.5. Let us assume conditions (3.1) and (3.3) are satisfied, w ∈ A2.
Let u be a weak solution of (3.2) in Ω and let supΩ |u| = L < +∞. Then u is
continuous in Ω.

The next result is a natural consequence of the previous one if we assume the
lower order terms to belong to the Morrey classes Mσ.

Theorem 3.6. Let us assume condition (3.1) is satisfied, w ∈ A2. Let u be a weak
solution of (3.2) in Ω, let supΩ |u| = L < +∞ and moreover(bi

w

)2
,

c

w
,
(di
w

)2
,

f

w
,
(hi
w

)2 ∈Mσ(Ω, w) .

Then u is locally Hölder continuous in Ω.
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