Two nonlinear days in Urbino 2017,
Electronic Journal of Differential Equations, Conference 25 (2018), pp. 55-63.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

REGULARITY OF TRANSMISSION PROBLEMS FOR UNIFORMLY ELLIPTIC FULLY NONLINEAR EQUATIONS

DANIELA DE SILVA, FAUSTO FERRARI, SANDRO SALSA
Dedicated to our loved Anna Aloe

Abstract

We investigate the regularity of transmission problems for a general class of uniformly elliptic fully non linear equations. We prove that, if the forcing term is Lipschitz, then viscosity solution are $C^{1, \gamma}$.

1. Introduction and main results

In this article we consider viscosity solutions to the transmission problem

$$
\begin{gather*}
\mathcal{F}^{+}\left(D^{2} u\right)=f^{+} \quad \text { in } B_{1}^{+}:=B_{1}(0) \cap\left\{x_{n}>0\right\} \\
\mathcal{F}^{-}\left(D^{2} u\right)=f^{-} \quad \text { in } B_{1}^{-}:=B_{1}(0) \cap\left\{x_{n}<0\right\} \tag{1.1}\\
a\left(u_{n}\right)^{+}-b\left(u_{n}\right)^{-}=0 \quad \text { on } B_{1}^{\prime}:=B_{1}(0) \cap\left\{x_{n}=0\right\},
\end{gather*}
$$

where $\left(u_{n}\right)^{+}$and $\left(u_{n}\right)^{-}$denote the derivatives in the e_{n} direction of u restricted to the upper and lower half ball, respectively. Here $a>0, b \geq 0$ and $\mathcal{F}^{ \pm}$are fully nonlinear uniformly elliptic operators, with ellipticity constants $\Lambda \geq \lambda>0$ and $\mathcal{F}^{ \pm}(0)=0$. That is, for every $M, N \in \mathcal{S}^{n}$,

$$
\mathcal{M}_{\lambda, \Lambda}^{-}(N) \leq \mathcal{F}^{ \pm}(M+N)-\mathcal{F}^{ \pm}(M) \leq \mathcal{M}_{\lambda, \Lambda}^{+}(N)
$$

where \mathcal{S}^{n} denotes the set of square symmetric $n \times n$ matrices and $\mathcal{M}_{\lambda, \Lambda}^{-}, \mathcal{M}_{\lambda, \Lambda}^{+}$are the extremal Pucci operators defined by

$$
\begin{gathered}
\mathcal{M}_{\lambda, \Lambda}^{-}(N)=\inf _{A \in \mathcal{A}_{\lambda, \Lambda}} \operatorname{Tr}(A N), \quad \mathcal{M}_{\lambda, \Lambda}^{+}(N)=\sup _{A \in \mathcal{A}_{\lambda, \Lambda}} \operatorname{Tr}(A N), \\
\\
\mathcal{A}_{\lambda, \Lambda}=\left\{A \in \mathcal{S}^{n}: \lambda I \leq A \leq \Lambda I\right\} .
\end{gathered}
$$

In the sequel we write $\mathcal{F}^{ \pm}\left(D^{2} u\right)=f^{ \pm}$, in $B_{1}^{ \pm}$to denote both interior equations in (1.1). Now we define viscosity solution for problem (1.1).

Definition 1.1. We say that $u \in C\left(B_{1}\right)$ is a viscosity subsolution (supersolution) to (1.1) if
(i) $\mathcal{F}^{ \pm}\left(D^{2} u\right) \geq f^{ \pm}\left(\leq f^{ \pm}\right)$in $B_{1}^{ \pm}$in the viscosity sense;

[^0](ii) Let $x_{0} \in\left\{x_{n}=0\right\}, \delta>0$ small, and $\varphi \in C^{2}\left(\bar{B}_{\delta}^{+}\left(x_{0}\right)\right) \cap C\left(\bar{B}_{\delta}^{-}\left(x_{0}\right)\right)$. If φ touches u from above (below) at x_{0}, then
$$
a\left(\varphi_{n}\right)^{+}\left(x_{0}\right)-b\left(\varphi_{n}\right)^{-}\left(x_{0}\right) \geq 0 \quad(\leq 0)
$$

We say that u is a viscosity solution if it is both a viscosity subsolution and supersolution.

It is easily seen that condition (ii) in Definition 1.1 can be replaced by the following condition
(ii') Let

$$
\psi(x)=P\left(x^{\prime}\right)+p x_{n}^{+}-q x_{n}^{-}
$$

where P is a quadratic polynomial. If ψ touches from above (below) u at $x_{0} \in\left\{x_{n}=0\right\}$, then

$$
a p-b q \geq 0 \quad(\leq 0)
$$

Transmission problems as (1.1) play a key role for example in the regularity theory for two-phase free boundary problems developed by the authors in [2, 3, 4]. Our purpose here is to review and extend to the case of distributed sources the regularity results about transmission problems provided in [4] for the homogeneous case. Our main result is the following one.
Theorem 1.2. Let u be a viscosity solution to (1.1) in B_{1}. Assume that $f^{ \pm} \in$ $C^{0,1}\left(B_{1}^{ \pm}\right) \cap L^{\infty}\left(B_{1}\right)$. Then, for any $\rho<1, u \in C^{1, \alpha}\left(\bar{B}_{\rho}^{ \pm}\right)$with norm bounded by a constant depending on $n, \lambda, \Lambda, \rho,\|u\|_{\infty},\|f\|_{\infty}$ and $\left\|f^{ \pm}\right\|_{C^{0,1}}$. In particular the transmission condition is satisfied in the classical sense.

2. HÖLDER CONTINUITY

In this section we prove the Hölder continuity of a solution u to problem (1.1). Here we only need $f^{ \pm} \in C\left(B_{1}^{ \pm}\right) \cap L^{\infty}\left(B_{1}\right)$. We introduce a special class of functions, based on the extremal Pucci operators, in the spirit of [1]. Since $a>0$ and $b \geq 0$ are defined up to a multiplicative constant and the problem is invariant under reflection with respect to $\left\{x_{n}=0\right\}$, we can assume that $a=1,0 \leq b \leq 1$.

We denote by $\underline{\mathcal{S}}_{\lambda, \Lambda}\left(f^{ \pm}\right)$the class of continuous functions u in B_{1} such that

$$
\begin{gathered}
\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} u\right) \geq f^{ \pm} \quad \text { in } B_{1}^{ \pm}, \quad \text { and } \\
\left(u_{n}\right)^{+}-b\left(u_{n}\right)^{-} \geq 0 \quad \text { on } B_{1}^{\prime}
\end{gathered}
$$

in the sense of Definition 1.1 with comparison functions touching u from above.
Analogously, we denote by $\overline{\mathcal{S}}_{\lambda, \Lambda}\left(f^{ \pm}\right)$the class of continuous functions u in B_{1} such that

$$
\begin{gathered}
\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq f^{ \pm} \quad \text { in } B_{1}^{ \pm}, \quad \text { and } \\
\left(u_{n}\right)^{+}-b\left(u_{n}\right)^{-} \leq 0 \quad \text { on } B_{1}^{\prime}
\end{gathered}
$$

in the sense of Definition 1.1 with comparison functions touching u from below. Finally we set

$$
\mathcal{S}_{\lambda, \Lambda}^{*}\left(f^{ \pm}\right)=\underline{\mathcal{S}}_{\lambda, \Lambda}\left(-\left|f^{ \pm}\right|\right) \cap \overline{\mathcal{S}}_{\lambda, \Lambda}\left(\left|f^{ \pm}\right|\right)
$$

Theorem 2.1. Let $u \in \mathcal{S}_{\lambda, \Lambda}^{*}\left(f^{ \pm}\right)$with $f^{ \pm} \in C\left(B_{1}^{ \pm}\right) \cap L^{\infty}\left(B_{1}\right)$. Then $u \in C^{\alpha}\left(B_{1 / 2}\right)$ with α and $\|u\|_{C^{\alpha}\left(B_{1 / 2}\right)}$ depending on $n, \lambda, \Lambda,\left\|f^{ \pm}\right\|_{\infty}$ and $\|u\|_{\infty}$.

It is sufficient to show that $u \in C^{\alpha}\left(B_{\rho_{0}}\right)$ with ρ_{0} small depending only on $\left\|f^{ \pm}\right\|_{\infty}$. Then after the rescaling $u(x) \rightarrow u(r x)$, the theorem follows easily from the iteration of the following lemma. Here constants depending on n, λ, Λ are called universal.

Lemma 2.2. Let $u \in \mathcal{S}_{\lambda, \Lambda}^{*}\left(f^{ \pm}\right)$with $\|u\|_{\infty} \leq 1$ and $\left\|f^{ \pm}\right\|_{\infty} \leq \varepsilon_{0}$ in B_{1}, ϵ_{0} small universal. Assume that at $\bar{x}=\frac{1}{5} e_{n}$

$$
\begin{equation*}
u(\bar{x})>0 . \tag{2.1}
\end{equation*}
$$

Then $u \geq-1+c$ in $B_{1 / 3}$ with $0<c<1$ universal.
Proof. By Harnack inequality, if ε_{0} is small enough depending on the Harnack constant, and by assumption 2.1), we deduce that (c_{0} universal)

$$
\begin{equation*}
u \geq-1+c_{0} \quad \text { in } B_{1 / 20}(\bar{x}) \tag{2.2}
\end{equation*}
$$

Let $r=|x-\bar{x}|$ and

$$
w=\eta\left(\Gamma^{\gamma}(r)+\delta x_{n}^{+}\right)+\frac{\varepsilon_{0}}{2 \lambda} x_{n}^{2}, \Gamma^{\gamma}(r)=r^{-\gamma}-(2 / 3)^{-\gamma}, \quad \delta=-\frac{1}{2} \Gamma^{\gamma}\left(\frac{3}{4}\right)
$$

be defined in the ring $D=B_{3 / 4}(\bar{x}) \backslash B_{1 / 20}(\bar{x})$, with $\gamma>\max \left\{0, \frac{\Lambda}{\lambda}(n-1)-1\right\}$ and η to be chosen later. Since Γ^{γ} is a radial function, in an appropriate system of coordinates

$$
D^{2} w=\eta \gamma r^{-\gamma-2} \operatorname{diag}\{(\gamma+1),-1, \ldots,-1\} .
$$

Hence, in D,

$$
\begin{equation*}
\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} w\right) \geq \eta\left(\gamma r^{-\gamma-2}(\lambda(\gamma+1)-\Lambda(n-1))\right)+\varepsilon_{0} \geq\left\|f^{ \pm}\right\|_{\infty} \tag{2.3}
\end{equation*}
$$

Since $\partial_{n} \Gamma^{\gamma}>0$ on $\left\{x_{n}=0\right\}$, the transmission condition

$$
\begin{equation*}
\left(w_{n}\right)^{+}-b\left(w_{n}\right)^{-}>0 \quad \text { on }\left\{x_{n}=0\right\} \tag{2.4}
\end{equation*}
$$

is satisfied. Now choose η, ϵ_{0} small universal so that

$$
w \leq c_{0} \quad \text { on } \partial B_{1 / 20}(\bar{x})
$$

Then, by choosing ϵ_{0} possibly smaller, we also have $w \leq 0$ on $\partial B_{3 / 4}(\bar{x})$. Thus, in view of 2.2 we obtain that

$$
w \leq u+1 \quad \text { on } \partial D
$$

From (2.3), (2.4) w is a strict classical subsolution of the transmission problem for the operator $\mathcal{M}_{\lambda, \Lambda}^{-}$with right hand sides $\left|f^{ \pm}\right|$. By the definition of viscosity solution, we conclude that it must be

$$
w \leq u+1 \quad \text { in } D
$$

Since $w \geq c$ in $B_{1 / 3}$ the proof is complete.

3. Upper and lower envelopes

Given a continuous function u in $B_{1}(0)$ and $\bar{B}_{\rho} \subset B_{1}(0)$ we define for $\varepsilon>0$ the upper ε-envelope of u in the x^{\prime}-direction,

$$
u^{\varepsilon}\left(y^{\prime}, y_{n}\right)=\sup _{x \in \bar{B}_{\rho} \cap\left\{x_{n}=y_{n}\right\}}\left\{u\left(x^{\prime}, y_{n}\right)-\frac{1}{\varepsilon}\left|x^{\prime}-y^{\prime}\right|^{2}\right\} \quad y=\left(y^{\prime}, y_{n}\right) \in B_{\rho}
$$

Note that there is $y_{\varepsilon} \in \bar{B}_{\rho} \cap\left\{x_{n}=y_{n}\right\}$ such that

$$
u^{\varepsilon}(y)=u\left(y_{\varepsilon}\right)-\frac{1}{\varepsilon}\left|y_{\varepsilon}^{\prime}-y^{\prime}\right|^{2}
$$

with $\left|y^{\prime}-y_{\varepsilon}^{\prime}\right| \leq \sqrt{2 \varepsilon\|u\|_{\infty}}$, since $u^{\varepsilon}(y) \geq u(y)$ and

$$
\frac{1}{\varepsilon}\left|y_{\varepsilon}^{\prime}-y^{\prime}\right|^{2}=u\left(y_{\varepsilon}\right)-u^{\varepsilon}(y) \leq u\left(y_{\varepsilon}\right)-u(y)
$$

Lemma 3.1. The following properties hold:
(1) $u^{\varepsilon} \in C\left(B_{\rho}\right)$ and $u^{\varepsilon} \downarrow u$ uniformly in B_{ρ} as $\varepsilon \rightarrow 0$.
(2) u^{ε} is $C^{1,1}$ in the x^{\prime}-direction by below in B_{ρ}. Thus u^{ε} is pointwise second order differentiable in the x^{\prime}-direction al almost every point of B_{ρ}.
(3) If u is a viscosity solution to (1.1), then, in a smaller ball $B_{r}, r \leq \rho-$ $2 \sqrt{\varepsilon\|u\|_{\infty}}, u^{\varepsilon}$ is a viscosity subsolution to

$$
\begin{gather*}
\mathcal{F}^{ \pm}\left(D^{2} u^{\epsilon}\right)=f^{ \pm}-\omega_{f \pm}\left(\sqrt{2 \varepsilon\|u\|_{\infty}}\right) \quad \text { in } B_{r}^{ \pm} \tag{3.1}\\
\left(u_{n}^{\varepsilon}\right)^{+}-b\left(u_{n}^{\varepsilon}\right)^{-}=0 \quad \text { on } B_{r}^{\prime}
\end{gather*}
$$

where $\omega_{f^{ \pm}}$denotes the modulus of continuity of $f^{ \pm}$.
Proof. (1) follows from

$$
\left|u^{\varepsilon}\left(y_{0}\right)-u^{\varepsilon}\left(y_{1}\right)\right| \leq \frac{6 \rho}{\varepsilon}\left|y_{0}^{\prime}-y_{1}^{\prime}\right|
$$

and

$$
0 \leq u^{\varepsilon}(y)-u(y)=u\left(y_{\varepsilon}\right)-\frac{1}{\varepsilon}\left|y_{\varepsilon}^{\prime}-y^{\prime}\right|^{2}-u(y) \leq \omega_{u}\left(\sqrt{2 \varepsilon\|u\|_{\infty}}\right)
$$

where ω_{u} is the modulus of continuity of u.
(2) follows from Alexandrov Theorem on concave/convex functions, since

$$
u^{\varepsilon}\left(y^{\prime}, y_{n}\right)+\frac{1}{\varepsilon}\left|y^{\prime}\right|^{2}=\sup _{x \in \bar{B}_{\rho} \cap\left\{x_{n}=y_{n}\right\}}\left\{u\left(x^{\prime}, y_{n}\right)-\frac{1}{\varepsilon}\left|x^{\prime}\right|^{2}+\frac{2}{\varepsilon}\left\langle x^{\prime}, y^{\prime}\right\rangle\right\}
$$

is convex, being the supremum of a family of affine functions of y^{\prime}.
(3) Let $\varphi \in C^{2}\left(B_{r}\right)$ touch from above u^{ε} at a point $\bar{x} \in B_{r}^{+}$. Then (ε small)

$$
u^{\varepsilon}(\bar{x})=u\left(\bar{x}_{\varepsilon}\right)-\frac{1}{\varepsilon}\left|\bar{x}_{\varepsilon}^{\prime}-\bar{x}^{\prime}\right|^{2}
$$

with $\left|\bar{x}_{\varepsilon}^{\prime}-\bar{x}^{\prime}\right|^{2} \leq 2 \varepsilon\|u\|_{\infty}$. Consider the function

$$
\Phi(y)=\varphi\left(y+\bar{x}-\bar{x}_{\varepsilon}\right)+\frac{1}{\varepsilon}\left|\bar{x}_{\varepsilon}^{\prime}-\bar{x}_{\varepsilon}^{\prime}\right|^{2}
$$

With our choice of r and $y \in B_{\rho}^{+}$close enough to \bar{x}_{ϵ}, the point $y+\bar{x}-\bar{x}_{\varepsilon} \in B_{\rho}^{+}$. Thus, by the definition of u^{ε},

$$
u(y) \leq u^{\varepsilon}\left(y+\bar{x}-\bar{x}_{\varepsilon}\right)+\frac{1}{\varepsilon}\left|\bar{x}^{\prime}-\bar{x}_{\varepsilon}^{\prime}\right|^{2}
$$

and therefore

$$
u(y) \leq \varphi\left(y+\bar{x}-\bar{x}_{\varepsilon}\right)+\frac{1}{\varepsilon}\left|\bar{x}^{\prime}-\bar{x}_{\varepsilon}^{\prime}\right|^{2} .
$$

with equality at $y=\bar{x}_{\varepsilon}$, since $\varphi(\bar{x})=u^{\varepsilon}(\bar{x})$. Thus the function Φ touches from above u at \bar{x}_{ε}. Therefore

$$
\mathcal{F}^{+}\left(D^{2} \varphi(\bar{x})\right)=\mathcal{F}^{+}\left(D^{2} \Phi\left(\bar{x}_{\varepsilon}\right)\right) \geq f^{+}\left(x_{\varepsilon}\right) \geq f^{+}(\bar{x})-\omega_{f^{+}} \operatorname{big}\left(\sqrt{2 \varepsilon\|u\|_{\infty}}\right)
$$

Similarly, we can check the transmission condition

$$
\left(u_{n}^{\varepsilon}\right)^{+}-b\left(u_{n}^{\varepsilon}\right)^{-} \geq 0 \quad \text { on } B_{r}^{\prime} .
$$

Let

$$
\varphi(x)=P\left(x^{\prime}\right)+p x_{n}^{+}-q x_{n}^{-}
$$

touch from above u^{ε} at a point $\bar{x}=\left(\bar{x}^{\prime}, 0\right) \in B_{r}^{\prime}$, with P quadratic polynomial. Then

$$
P\left(x^{\prime}\right)+p x_{n}^{+}-q x_{n}^{-} \geq u^{\varepsilon}(x)
$$

near \bar{x} and

$$
P\left(\bar{x}^{\prime}\right)=u^{\varepsilon}(\bar{x})=u\left(\bar{x}_{\varepsilon}\right)-\frac{1}{\varepsilon}\left|\bar{x}^{\prime}-\bar{x}_{\varepsilon}^{\prime}\right|^{2} .
$$

Then, for r small and y close enough to \bar{x}_{ϵ}

$$
\begin{aligned}
u(y) & \leq u^{\varepsilon}\left(y+\bar{x}-\bar{x}_{\varepsilon}\right)+\frac{1}{\varepsilon}\left|\bar{x}^{\prime}-\bar{x}_{\varepsilon}^{\prime}\right|^{2} \\
& \leq \varphi\left(y+\bar{x}-\bar{x}_{\varepsilon}\right)+\frac{1}{\varepsilon}\left|\bar{x}_{\varepsilon}^{\prime}-\bar{x}_{\varepsilon}^{\prime}\right|^{2}
\end{aligned}
$$

with equality at $y=\bar{x}_{\varepsilon}$ since $P\left(\bar{x}^{\prime}\right)=u^{\varepsilon}(\bar{x})$. Hence $\varphi\left(y+\bar{x}-\bar{x}_{\varepsilon}\right)+\frac{1}{\varepsilon}\left|\bar{x}_{\varepsilon}^{\prime}-\bar{x}_{\varepsilon}^{\prime}\right|^{2}$ touches from above u at $y=\bar{x}_{\varepsilon}$ and therefore $p-b q \geq 0$, as desired.

Analogously we can define

$$
u_{\varepsilon}\left(y^{\prime}, y_{n}\right)=\inf _{x \in \bar{B}_{\rho} \cap\left\{x_{n}=y_{n}\right\}}\left\{u\left(x^{\prime}, y_{n}\right)+\frac{1}{\varepsilon}\left|x^{\prime}-y^{\prime}\right|^{2}\right\} \quad y=\left(y^{\prime}, y_{n}\right) \in B_{\rho}
$$

the lower ε-envelope of u in the x^{\prime}-direction. Properties (1)-(3) hold with obvious changes:
(1') $u_{\varepsilon} \in C\left(B_{\rho}\right)$ and $u_{\epsilon} \uparrow u$ uniformly in B_{ρ} as $\varepsilon \rightarrow 0$.
(2') u_{ε} is $C^{1,1}$ in the x^{\prime}-direction by above in B_{ρ}. Thus u_{ε} is pointwise second order differentiable in the x^{\prime}-direction al almost every point of B_{ρ}.
(3') If u is a viscosity solution to (1.1), then, in a smaller ball $B_{r}, r \leq \rho-$ $2 \sqrt{\varepsilon\|u\|_{\infty}}, u_{\varepsilon}$ is a viscosity supersolution to

$$
\begin{gather*}
\mathcal{F}^{ \pm}\left(D^{2} u_{\epsilon}\right)=f^{ \pm}+\omega_{f^{ \pm}}\left(\sqrt{2 \varepsilon\|u\|_{\infty}}\right) \quad \text { in } B_{r}^{ \pm} \tag{3.2}\\
\left(\left(u_{\epsilon}\right)_{n}\right)^{+}-b\left(\left(u_{\epsilon}\right)_{n}\right)^{-}=0 \quad \text { on } B_{r}^{\prime} .
\end{gather*}
$$

4. Proof of Theorem 1.2

For the proof of Theorem 1.2 we use the following pointwise regularity result (see [5]).

Theorem 4.1. Let \mathcal{F} be a uniformly elliptic operator and u be a viscosity solution to the Dirichlet problem

$$
\mathcal{F}\left(D^{2} u\right)=f \text { in } B_{1}^{+}, \quad u\left(x^{\prime}, 0\right)=g\left(x^{\prime}\right) \text { on } B_{1}^{\prime} .
$$

Assume that g is pointwise $C^{1, \alpha}$ at 0 and $f \in L^{\infty}\left(B_{1}^{+}\right)$. Then u is poinwise $C^{1, \alpha}$ at 0 , that is there exists a linear function L_{u} such that for all r small

$$
\left|u-L_{u}\right| \leq C r^{1+\alpha} \quad \text { in } \bar{B}_{r}^{+}
$$

with C depending only on $n, \lambda, \Lambda,\|f\|_{\infty}$ and the pointwise $C^{1, \alpha}$ bound of g at 0 .
Our main lemma reads as follows.
Lemma 4.2. Let $f^{ \pm} \in C^{0,1}\left(B_{1}^{ \pm}\right)$and u be a viscosity solution to (1.1) in B_{1}. Then, for any $\sigma>0$ small, and any unit vector e^{\prime} in the x^{\prime} direction,

$$
u\left(x+\sigma e^{\prime}\right)-u(x) \in S_{\lambda, \Lambda}^{*}\left(\omega_{f^{ \pm}}(\sigma)\right)
$$

Proof. Let $v=u\left(x+\sigma e^{\prime}\right), w=v-u$. Following the proof of [1, Theorem 5.3], with minor modification, it follows that

$$
\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} w\right) \geq-\omega_{f^{ \pm}}(\sigma) \quad \text { and } \quad \mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} w\right) \leq \omega_{f \pm}(\sigma)
$$

in $B_{1}^{ \pm}$.
To show that the free boundary condition is satisfied in the viscosity sense, we slightly modify the technique in 4 for the homogeneous case.

$$
\varphi(x)=P\left(x^{\prime}\right)+p x_{n}^{+}-q x_{n}^{-}-C x_{n}^{2}
$$

touch w from above at $x_{0}=\left(x_{0}^{\prime}, 0\right)$, where P is a quadratic polynomial. Choosing suitably C and possibly restricting the neighborhood around x_{0}, we can assume that

$$
\begin{equation*}
\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} \varphi\right) \leq-2 \omega_{f^{ \pm}}(\sigma)-2 \omega_{f^{ \pm}}\left(\sqrt{2\|u\|_{\infty}}\right) \tag{4.1}
\end{equation*}
$$

Assume by contradiction that

$$
p-b q<0
$$

Let $\delta>0$ small, and consider the ring $A_{\delta}\left(x_{0}\right)=\bar{B}_{2 \delta}\left(x_{0}\right) \backslash B_{\delta}\left(x_{0}\right)$. Without loss of generality we can assume that φ touches w strictly from above and therefore that $\varphi-w \geq \eta>0$ on $A_{\delta}\left(x_{0}\right)$. Since $w_{\varepsilon}=u^{\varepsilon}-v_{\varepsilon}$ converges uniformly to $u-v$, for ε small enough (up to adding a small constant), we have that φ touches w_{ε} from above at some point x_{ε} and $\varphi-w_{\varepsilon} \geq \eta / 2$ on $\partial B_{\delta}\left(x_{\varepsilon}\right)$. In view of 4.1, we have

$$
\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} w_{\varepsilon}\right) \geq-\omega_{f^{ \pm}}(\sigma)-2 \omega_{f^{ \pm}}\left(\sqrt{2 \varepsilon\|u\|_{\infty}}\right)>\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} \varphi\right)
$$

and therefore $x_{\varepsilon} \in\left\{x_{n}=0\right\}$. Call

$$
\psi=\varphi-w_{\varepsilon}-\eta / 2
$$

Since $\psi \geq 0$ on $\partial B_{\delta}\left(x_{\varepsilon}\right), \psi\left(x_{\varepsilon}\right)<0$ and φ touches w_{ε} from above at x_{ε}, from ABP estimates ([1, Lemma 3.5]) it follows that the set of points in $B_{\delta}\left(x_{\varepsilon}\right) \cap\left\{x_{n}=0\right\}$ where ψ admits a touching plane $l\left(x^{\prime}\right)$ from below, in the x^{\prime} direction, of slope less than some arbitrary small number has positive measure. We choose the slope of l small enough to have that $\bar{\varphi}=\varphi-l-\eta / 2 \geq w_{\varepsilon}$ on $\partial B_{\delta}\left(x_{\varepsilon}\right)$ and hence in the interior. By property (2) in Lemma 3.1 we can deduce that $\bar{\varphi}\left(y_{\varepsilon}\right)=w_{\varepsilon}\left(y_{\varepsilon}\right)$ for some $y_{\varepsilon}=\left(y_{\varepsilon}^{\prime}, 0\right)$ where both v^{ε} and u_{ε} are twice pointwise differentiable in the x^{\prime} direction.

Now we call \bar{u}^{ε} the solution to

$$
\mathcal{F}^{ \pm}\left(D^{2} \bar{u}^{\epsilon}(x)\right)=f^{ \pm}(x)-\omega_{f^{ \pm}}\left(\sqrt{2 \varepsilon\|u\|_{\infty}}\right) \quad \text { in } B_{\delta}^{ \pm}\left(x_{\varepsilon}\right)
$$

with $w=u^{\varepsilon}$ on $\partial B_{\delta}\left(x_{\varepsilon}\right)$, and similarly let \bar{v}_{ϵ} the solution to

$$
\mathcal{F}^{ \pm}\left(D^{2} \bar{v}_{\epsilon}(x)\right)=f^{ \pm}\left(x+\sigma e^{\prime}\right)+\omega_{f \pm}\left(\sqrt{2 \varepsilon\|u\|_{\infty}}\right) \quad \text { in } B_{\delta}^{ \pm}\left(x_{\varepsilon}\right)
$$

with $w=v_{\varepsilon}$ on $\partial B_{\delta}\left(x_{\varepsilon}\right)$, Set

$$
\bar{w}_{\varepsilon}=\bar{u}^{\varepsilon}-\bar{v}_{\varepsilon} .
$$

Then $\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} \bar{w}_{\varepsilon}\right) \geq-\omega_{f^{ \pm}}(\sigma)-2 \omega_{f^{ \pm}}\left(\sqrt{2 \varepsilon\|u\|_{\infty}}\right)>\mathcal{M}_{\lambda, \Lambda}^{+}\left(D^{2} \bar{\varphi}\right)$ in $B_{\delta}\left(x_{\varepsilon}\right)$ with $\bar{\varphi} \geq w_{\varepsilon}$ on the boundary. Thus, by comparison, we deduce that $\bar{\varphi} \geq \bar{w}_{\varepsilon} \geq w_{\varepsilon}$ also in the interior with contact from above at y_{ε}.

Also note that, by comparison, the replacements \bar{u}^{ε} and \bar{v}_{ε} are sub and super solution of the transmission condition on $\left\{x_{n}=0\right\}$, respectively.

By the pointwise $C^{1, \alpha}$ differentiability at y_{ε} of the boundary data, we conclude the $C^{1, \alpha}$ differentiability of \bar{v}^{ε} and \bar{u}_{ε} up to y_{ε}. Thus there are linear functions L_{v}, L_{u} such that, for all small r,

$$
\begin{aligned}
& \left|\bar{v}_{\varepsilon}-L_{v}\right| \leq C r^{1+\alpha} \\
& \left|\bar{u}^{\varepsilon}-L_{u}\right| \leq C r^{1+\alpha}
\end{aligned}
$$

in $B_{r}^{+}\left(y_{\varepsilon}\right)$. Since $\bar{\varphi}$ touches \bar{w}_{ε} from above, we get $p \geq p_{u}^{+}-p_{v}^{+}$, where

$$
p_{u}^{+}=\left(\bar{u}^{\varepsilon}\right)_{n}^{+}\left(y_{\varepsilon}\right), \quad p_{v}^{+}=\left(\bar{v}_{\varepsilon}\right)_{n}^{+}\left(y_{\varepsilon}\right)
$$

Arguing similarly in $B_{r}^{-}\left(y_{\varepsilon}\right)$ we infer $q \leq q_{u}^{-}-q_{v}^{-}$, where

$$
q_{u}^{-}=\left(\bar{u}^{\varepsilon}\right)_{n}^{-}\left(y_{\varepsilon}\right), \quad q_{v}^{-}=\left(\bar{v}_{\varepsilon}\right)_{n}^{-}\left(y_{\varepsilon}\right) .
$$

In the next lemma we show that

$$
p_{u}^{+}-p_{v}^{+}-b\left(q_{u}^{-}-q_{v}^{-}\right) \geq 0
$$

thus reaching a contradiction.
Lemma 4.3. Let $g^{ \pm} \in C\left(B_{1}^{ \pm}\right)$and u be a viscosity solution to $(0 \leq b \leq 1)$

$$
\begin{gather*}
\mathcal{F}^{ \pm}\left(D^{2} u\right)=g^{ \pm} \quad \text { in } B_{1}^{ \pm} \tag{4.2}\\
\left(u_{n}\right)^{+}-b\left(u_{n}\right)^{-} \geq 0 \quad(\leq 0) \quad \text { on } B_{1}^{\prime}
\end{gather*}
$$

Assume that u is twice differentiable at $x=0$ in the x^{\prime}-direction. Then u is differentiable at 0 and

$$
u_{n}^{+}(0)-b u_{n}^{-}(0) \geq 0 \quad(\leq 0)
$$

Proof. From Theorem 4.1 there exists a linear function L_{u} such that, for all small r,

$$
\left|u-L_{u}\right| \leq C r^{1+\alpha} \quad \text { in } \bar{B}_{r}^{+}
$$

Without loss of generality, by subtracting a linear function, we may assume that

$$
L_{u}=\left(u_{n}\right)^{+}(0) x_{n}:=d^{+} x_{n}
$$

Let w be the solution to

$$
\mathcal{F}^{+}\left(D^{2} w\right)=g^{+} \text {in } B_{r}^{+}, \quad w=\varphi_{r} \text { on } \partial B_{r}^{+}
$$

where

$$
\varphi_{r}= \begin{cases}2 C|x|^{1+\alpha} & \text { on } \partial B_{r}^{+} \cap\left\{x_{n}>0\right\} \\ 2 C r^{\alpha-1}\left|x^{\prime}\right|^{2} & \text { on } B_{r}^{\prime}\end{cases}
$$

Since u is twice pointwise differentiable at 0 , we get, for r small enough,

$$
u-d^{+} x_{n} \leq \varphi_{r} \quad \text { on } \partial B_{r}^{+}
$$

and, by comparison,

$$
\begin{equation*}
u-d^{+} x_{n} \leq w \quad \text { in } B_{r}^{+} \tag{4.3}
\end{equation*}
$$

Now, the rescaling $W_{r}(x)=r^{-1-\alpha} w(r x)$ solves

$$
\mathcal{G}\left(D^{2} W_{r}\right)=r^{1-\alpha} g^{+}(r x) \quad \text { in } B_{1}^{+}, \quad W_{r}\left(x^{\prime}\right)=2 C\left|x^{\prime}\right|^{2} \text { on } B_{1}^{\prime}
$$

where $\mathcal{G}(M)=r^{1-\alpha} \mathcal{F}^{+}\left(r^{\alpha-1} M\right)$ has the same ellipticity constants of \mathcal{F}^{+}.
By boundary $C^{1, \alpha}$ estimates we obtain that

$$
\left\|W_{r}\right\|_{C^{1, \alpha}\left(B_{1 / 2}^{+}\right)} \leq \bar{C}
$$

for a universal \bar{C}. In particular

$$
W_{r}(x) \leq 2 C\left|x^{\prime}\right|^{2}+\bar{C} x_{n} \quad \text { in } \bar{B}_{1 / 2}^{+}
$$

Rescaling back we get

$$
w(x) \leq 2 C r^{\alpha-1}\left|x^{\prime}\right|^{2}+\bar{C} r^{\alpha} x_{n} \quad \text { in } \bar{B}_{r / 2}^{+}
$$

From 4.3),

$$
u \leq 2 C r^{\alpha-1}\left|x^{\prime}\right|^{2}+\bar{C} r^{\alpha} x_{n}+d^{+} x_{n} \quad \text { in } B_{r / 2}^{+}
$$

Arguing similarly in B_{r}^{-}we find

$$
u \leq 2 C r^{\alpha-1}\left|x^{\prime}\right|^{2}+\bar{C} r^{\alpha} x_{n}+d^{-} x_{n} \quad \text { in } B_{r / 2}^{-}
$$

with $d^{-}=\left(u_{n}\right)^{+}(0)$. Thus

$$
\varphi(x)=2 C r^{\alpha-1}\left|x^{\prime}\right|^{2}+\left(\bar{C} r^{\alpha}+d^{+}\right) x_{n}^{+}-\left(-\bar{C} r^{\alpha}+d^{-}\right) x_{n}^{-}
$$

touches u by above at zero. Therefore

$$
\left(\bar{C} r^{\alpha}+d^{+}\right)-b\left(-\bar{C} r^{\alpha}+d^{-}\right) \geq 0
$$

for all small r so that $d^{+}-b d^{-} \geq 0$.
From Theorem 4.1 and the arguments in Chapter 5 in [1] we deduce the following result.
Corollary 4.4. Let u be a viscosity solution to 1.1. Then $u \in C^{1, \alpha}$ in the x^{\prime} direction in $B_{3 / 4}$ with norm bounded by a constant depending on $n, \lambda, \Lambda,\|u\|_{\infty}$ and $\left\|f^{ \pm}\right\|_{C^{0,1}}$.

We are now ready to give the proof of our main Theorem 1.2 ,
Proof of Theorem 1.2. Let, say $\rho=1 / 2$. The $C^{1, \alpha}$ regularity and the bounds on $\|u\|_{C^{1, \alpha}\left(B_{1 / 2}\right)}$ follow from Corollary 4.4 and the regularity theory for fully nonlinear uniformly elliptic equations in [5] or [6]. It remains to show that the transmission condition is satisfied in the classical sense. Let us prove that at $x=0, a p-b q \leq 0$ where $p=\left(u_{n}\right)^{+}(0), q=\left(u_{n}\right)^{-}(0)$. By the $C^{1, \alpha}$ regularity of u, after possibly subtracting the linear function $u(0)+\nabla_{x^{\prime}} u(0) \cdot x^{\prime}$, we can write

$$
\begin{equation*}
\left|u(x)-\left(p x_{n}^{+}-q x_{n}^{-}\right)\right| \leq C r^{1+\alpha} \quad|x| \leq r . \tag{4.4}
\end{equation*}
$$

For r small, define

$$
w_{r}(x)=C r^{\alpha-1}\left(-|x|^{2}+K x_{n}^{2}\right)-2 r^{\alpha} C K\left|x_{n}\right|+p x_{n}^{+}-q x_{n}^{-}
$$

Choose K large to have

$$
\begin{equation*}
\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} w_{r}\right) \geq C(2 \lambda(K-1)-2 \Lambda n)>\left\|f^{ \pm}\right\|_{\infty} \tag{4.5}
\end{equation*}
$$

Using (4.4), we get $w_{r}<u$ on ∂B_{r}. Let

$$
m=\min _{\bar{B}_{r}}\left(u-w_{r}\right)=\left(u-w_{r}\right)\left(x_{0}\right)
$$

Since $\mathcal{M}_{\lambda, \Lambda}^{-}\left(D^{2} u\right) \leq \mathcal{F}^{ \pm}\left(D^{2} u\right)=f^{ \pm}$, from 4.5 we deduce that $x_{0} \notin B_{r}^{ \pm}$. Also, since $\left(u-w_{r}\right)(0)=0$ it follows that $m \leq 0$, hence $x_{0} \notin \partial B_{r}$. Thus $x_{0} \in B_{r}^{\prime}$ and $w_{r}+m$ touches u at x_{0} from below. By definition it follows that

$$
a\left(p-2 r^{\alpha} C K\right)-b\left(q+2 r^{\alpha} C K\right) \leq 0
$$

Letting $r \rightarrow 0$ we get $a p-b q \leq 0$.

Acknowledgments. F. Ferrari was supported by INDAM-GNAMPA 2017: Regolarità delle soluzioni viscose per equazioni a derivate parziali non lineari degeneri.

References

[1] L. A. Caffarelli, X. Cabré; Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, RI, 1995.
[2] D. De Silva, F. Ferrari, S. Salsa; Two-phase problems with distributed source: regularity of the free boundary, Anal. PDE, 7 (2014), no. 2, 267-310.
[3] D. De Silva, F. Ferrari, S. Salsa; Perron'ssolutions for two-phase free boundary problems with distributed sources, Nonlinear Anal., 121 (2015), 382-402.
[4] D. De Silva, F. Ferrari, S. Salsa; Free boundary regularity for fully nonlinear non-homogeneous two-phase problems, J. Math. Pures Appl., (9) 103 (2015), no. 3, 658-694.
[5] F. Ma, L. Wang; Boundary first order derivative estimates for fully nonlinear elliptic equations, J. Differential Equations, 252 (2012), no. 2, 988-1002.
[6] E. Milakis, L.E. Silvestre; Regularity for fully nonlinear elliptic equations with Neumann boundary data, Comm. Partial Differential Equations, 31 (2006), no. 7-9, 1227-1252

Daniela De Silva
Department of Mathematics, Barnard College, Columbia University, New York, Ny 10027, USA

E-mail address: desilva@math.columbia.edu
Fausto Ferrari
Dipartimento di Matematica dell'Università di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy

E-mail address: fausto.ferrari@unibo.it
Sandro Salsa
Dipartimento di Matematica del Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

E-mail address: sandro.salsa@polimi.it

[^0]: 2010 Mathematics Subject Classification. 35J60, 35B65.
 Key words and phrases. Transmission problems; fully nonlinear equations;
 regularity of solutions.
 (C) 2018 Texas State University.

 Published September 15, 2018.

