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FREE SURFACE DYNAMICS OF THIN MHD SECOND-GRADE
FLUID OVER A HEATED NONLINEAR STRETCHING SHEET

KIRAN KUMAR PATRA, SATYANANDA PANDA, MATHIEU SELLIER

Abstract. This article presents a long-wave theory for the free surface dy-

namics of magnetohydrodynamics (MHD) second-grade fluid over a non-uniform
heated flat elastic sheet. An evolution equation for the film thickness is de-

rived from the instationary Navier-Stokes equations using regular asymptotic

expansion with respect to the small aspect ratio of the flow domain. The de-
rived thin film equation is solved numerically using finite volume method on a

uniform grid system with implicit flux discretization. The finding reveals the

dependency of the thinning behavior of the fluid film on the stretching speed
and the non-Newtonian second-grade parameter.

1. Introduction

Many theoretical studies on the flow of fluid and heat transfer due to stretching
sheet in the context of polymer extrusion, continuous casting, drawing of the plastic
sheets, cable coating, etc., can be found in the literature, about, e.g. Newtonian
fluid [2, 3, 4, 7, 8, 16, 23, 27], non-Newtonian fluid [1, 14, 21, 22] and MHD effect
[13, 17, 18] as well as derivation of boundary layer equations. In general, such
model reductions are based on the uniform film thickness assumption which enables
the similarity transformation. Thereby the set of partial differential equations are
reduced to a more tractable one of ordinary differential equations.

Recognizing the restrictions of the plane interface assumptions, Dandapat and
co-workers were the first to extend the formulation to account for local deformation
of the free surface in [5, 6]. The authors exploit the slenderness of the flow domain
to derive a long-wave approximation of the Navier-Stokes equations and solve the
resulting governing equation using the matched asymptotic method. Lately, this
work was extended to include the heat transfer problem [9, 24]. In this work, the
nonuniform temperature distribution at the stretching sheet induces an inhomoge-
neous temperature field in the film. Consequently, a surface temperature gradient
develops at the film free surface. As a result of the surface tension gradients, the
film thickness varies along the flow, and these deformations are advected in the
stretching direction. Also, a free surface model based on a long-wave theory for
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the thin film dynamics of Casson fluid over a nonlinear stretching sheet including
magnetic effect has been recently deduced in [26].

This work focuses on the systematic derivation, in the spirit of [9], of the thin
film equation for a second-grade non-Newtonian MHD fluid over a heated steady
stretching sheet without the restriction of the plane interface assumption. One
motivation for this study is the flow of mucus in biological tissues which undergo
expansion or contraction. A particular example is pulmonary alveoli which are cov-
ered with a lining of non-Newtonian fluid [15] and which undergo periodic expansion
and contraction.

This article is organized as follows. The mathematical model for the flow of
second-grade fluid is described in Sec. (2). The long-wave theory by using the
standard expansion technique with respect to a small aspect ratio of the flow domain
for model reduction is presented in Sec. (3). The thin film model equation is given
in Sec. (4). The numerical procedure for the numerical solution of the thin film
equation is explained in Sec. (5). In Sec. (6) we discuss the numerical investigation
of the thin film equation, and give some conclusions from this work.

2. Physical model and problem formulation

We consider here an unsteady planar fluid which lies over a heated stretching
sheet in the presence of transverse magnetic field B0 as shown in Figure (1). The
elastic sheet lies at z = 0, and the liquid-gas interface lies at z = h(x, t), where
the x-axis is directed along the stretching layer, and the z-axis is normal to the
sheet in the outward direction toward the fluid. Gravity acts along the negative
z-direction. Further, the surface at z = 0 starts stretching from rest and within
a very short time attains the stretching velocity u = U(x). The evaporation and
buoyancy effects are neglected considering the liquid is non-volatile and thin. The
elastic surface is heated with non-uniform temperature Ts a function of x alone,
and the ambient gas phase is at constant temperature Ta. A constant uniform
magnetic field of strength B0 is applied transversely in the parallel direction to the
z-axis. Since the sheet is nonconducting, an uniform electric field is applied along
the z-direction to generate Lorentz force.

The fluid is assumed to be incompressible and non-Newtonian second-grade fluid
with constant viscosity µ, density ρ, specific heat cp, thermal conductivity k and
the electric conductivity λ. The surface tension of the liquid-gas interface decreases
linearly with temperature T according to

σ = σa
(
1− γ(T − Ta)

)
, (2.1)

where σa is the surface tension at T = Ta, and γ = − 1
σa

(
dσ
dT

)
T=Ta

a positive
constant specific to the fluid.

Neglecting viscous dissipation and radiation effects, the motion of the second-
grade fluid due to the heated stretching sheet is governed by the continuity equation
of mass flow, the momentum equation and the temperature equation.

• Continuity equation:
∇ ·V = 0; (2.2)

• Momentum equation:

ρ
DV
Dt

= ∇ · τ + ρg + F; (2.3)
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Figure 1. Sketch of flow geometry

• Temperature equation:

ρcp
DT

Dt
= k∇2T ; (2.4)

• Free surface boundary conditions i.e. at z = h(x, t):

pa + n̂ · τ · n̂ = −σ(∇ · n̂), (2.5)

n̂ · τ · t̂ = ∇σ · t̂, (2.6)

ht + uhx = w, (2.7)

qi = −k∇T · n̂ = α (T − Ta) (2.8)

• Boundary conditions on the stretching sheet i.e. at z = 0:

u(x, 0, t) = U(x), w(x, 0, t) = 0, T (x, 0, t) = Ts(x); (2.9)

• Initial condition:

u(x, z, 0) = w(x, z, 0) = 0, h(x, 0) = h0 + δ(x) (2.10)

The symbols V(x, z, t) = (u(x, z, t), w(x, z, t)), τ , g and F denote the fluid ve-
locity at position (x, z) and time t, the Cauchy stress tensor, the acceleration due
to gravity and the Lorentz force. The free surface boundary conditions are due
to balance of stresses, the kinematic condition and the convective heat flux at the
interface. Here, n̂ and t̂ are the unit normal and tangential vectors on the surface,
respectively. The pa stands for the atmospheric pressure at the free surface, σ is the
surface tension of the fluid, qi is the heat flux, α is the rate of heat transfer from the
liquid to the ambient gas phase and the symbol ∇ stands for the gradient operator.
The subscripts x and t stand for the partial differentiation with respect to x and t
respectively. The symbol h0 is the characteristic height of the free surface and δ is
the initial small disturbance from h0.
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The Cauchy-stress tensor, given by Rivlin and Ericksen [20] for a second-grade
fluid can be written as

τ = −pI + µA1 + α1A2 + α2A2
1, (2.11)

where p is the pressure, I is the identity tensor. The material constants α1 and α2

are the first and second normal stress coefficients. The quantities A1 and A2 are
the first two Rivlin-Ericksen tensors and they are defined as

A1 = (∇V) + (∇V)∗ , A2 =
D

Dt
A1 + A1 · (∇V) + (∇V)∗ ·A1 , (2.12)

where D/Dt is the material time derivative, and the superscript (∗) is used for the
transpose.

The constitutive model (2.11) is derived by considering second order approxima-
tion of retardation parameter. Dunn and Fosdick [10] have shown that this model
equation is invariant under transformation and therefore the material constants
must meet the following restriction

µ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (2.13)

Fluids characterized by these restrictions (2.13) are called second-grade fluid. The
fluid model represented by (2.11) with the relationship (2.13) is compatible with the
hydrodynamics. The third relations of (2.13) is the consequence of satisfying the
Clausis-Duhem inequality by fluid motion and a second relation arises due to the
assumptions that specific Helmholtz free energy of the fluid takes its minimum value
in equilibrium. The fluid satisfying model (2.11) with αi < 0; (αi = 1, 2) is termed
as second-order fluid and with αi > 0 is termed as second-grade fluid. Although
second-order fluid is obeying model (2.11) with α1 < α2, α1 < 0, exhibits some
undesirable instability characteristic (Fosdick and Rajagopal [12]). The second
order approximation is valid at low shear rate (Dunn and Rajagopal [11]).

The fluid is flowing under the environment of uniform transverse magnetic field,
therefore momentum of the fluid is influenced by the Lorentz force F = λ(E + V×
B0) × B0, where E + V × B0 represents the total current density with magnetic
Reynolds number Rm << 1. The electric field E = 0, as there is no electric current
present during the fluid flow. The term V×B0 is the potential difference across the
fluid. Using basic vector calculus the expression for Lorentz force can be calculated
as follows

F = λ(V ×B0)×B0 = −λ[V(B0 ·B0)−B0(V ·B0)] = −λ
(
uB2

0 , 0, 0
)

(2.14)

Scaling the film thickness with the characteristic height of the flow (h = h0h̃, δ =
h0δ̃), the coordinates by the characteristic length of the domain (x, z) = L(x̃, εz̃)
and the velocity (u,w) = (ν/h0ũ, εν/h0w̃), U = (ν/h0)Ũ , the time t = (h2

0/εν)t̃,
the pressure with p = pa + (ρν2/εh2

0)p̃ and the temperature T = Ta + (Ts0 − Ta) T̃ ,
where ε = h0/L is the aspect ratio, ν = µ/ρ is the kinematic viscosity of the fluid,
Ts0 is the temperature of the sheet at the origin, and using the constitutive relation
(2.11) with Eqs. (??), (2.13), and the external force (2.14), the non-dimensional
form of the governing (2.2)-(2.10), after dropping the tilde symbol in explicit form
are:

ux + wz = 0 (2.15)
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ε (ut + uux + wuz)

= −px + ε2uxx + uzz + K
(
ε3uxxt + εuzzt + ε3uuxxx − εuwzzz

+ ε3uxuxx − εuxuzz + ε3wuxxz + εwuzzz − 4ε3wxwzz − 2ε5wxwxx

+ ε3uzwxx − εuzwzz + 2εwzuzz
)
− εM2u ,

(2.16)

ε3 (wt + uwx + wwz)

= −pz + ε4wxx + ε2wzz + Kε
(
ε4wxxt + ε2wzzt + ε2 uwxzz

+ ε4 uwxxx + 2ε4 ux wxx + ε2 wx uzz − ε4 wx uxx + ε2 wwzzz

− ε4wuxxx + ε2wzwzz − ε4wzwxx − 4ε2uzuxx − 2uzuzz
)
− εFr,

(2.17)

εPr (Tt + uTx + wTz) = ε2Txx + Tzz, (2.18)

εShxx (1−MwCaT ) (ε2h2
x + 1)−1/2

= −(ε2h2
x + 1)p+ 2ε2

(
ε2h2

xux − ε2hxwx − hxuz + wz
)

+Kε3
(
2ε2utxh2

x − 2ε2hxwtx − 2hxutz + 2wtz
)

+Kε
(
ε2h2

x

(
2ε2uuxx + 2ε2 wuxz + u2

z − ε4 w2
x

)
− 2ε2 hx

(
ε2 uwxx + uuxz

+ ε2wwxz + wuzz + ε2 uxwx − ε2wxwz + uzwz − uxuz
)

+ 2ε2uwxz + 2ε2wwzz + ε4w2
x − u2

z

)
,

(2.19)

− εMw (Tx + hxTz)
(
1 + ε2hx

)1/2
= (ε2wx + uz)(1− ε2h2

x) + 2ε2hx(wz − ux) +K
(
(1− ε2h2

x)(ε3wtx + εutz)

+ 2ε3hx(wtz − utx)
)

+K
(

(1− ε2h2
x)
(
ε3uwxx + εuuxz + ε3wwxz

+ εwuzz + ε3uxwx − ε3wxwz + εuzwz − εuxuz
)

+ 2εhx(ε2uwxz

+ ε2wwzz − ε2uuxx − ε2wuxz + ε4w2
x − u2

z)
)
,

(2.20)

ht = w − uhx, (2.21)

Tz − ε2hxTx = −B
(
1 + ε2h2

x

)1/2
T, (2.22)

and at z = 0 : u = U(x), w = 0, T = θ(x), where θ(x) =
Ts − Ta
Ts0 − Ta

(2.23)

The non-dimensional parameters are the second grade parameter K = α1/ρh
2
0,

the Hartmann number M =
√
λB2

0h0L/ρν, the Froude number Fr = gh3
0/ν

2, and
the Prandtl number Pr = ρcpν/k.

The symbol S stands for the non-dimensional surface tension parameter defined
as S = ε2σah0/ρν

2. Here Ca = ε2/S, B = αh0/k and Mw = σah0γ (TS0 − Ta) /ρν2

are the Capillary number, Biot number, and the effective Marangoni number, re-
spectively. Equations (2.19) and (2.20) are obtained after using the expression for
unit normal vector n̂ =

(
− hx/

√
1 + h2

x, 1/
√

1 + h2
x

)
and the unit tangent vector

t̂ =
(
1/
√

1 + h2
x, hx/

√
1 + h2

x

)
.

The initial conditions read:

u = 0, w = 0, h(x, 0) = 1 + δ(x). (2.24)
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3. Long-wave approximation

The derivation of the one-dimensional thin film equation is based on long wave
theory. The stated asymptotic analysis uses the techniques of [9] but extends it to
incorporate the complex rheological effects.

For the underlying velocity and pressure variables, regular power series expansion
in ε are set up. To obtain the equation of the thin film from the above problem, we
expand the variables as follows:

(u,w, p) = (u0, w0, p0) + ε(u1, w1, p1) + ε2(u2, w2, p2) + . . . (3.1)

Then the temperature variable T is expanded as

T = T0 + ε1−nT1 + . . . (3.2)

where 0 < n < 1.
As per the scaling, the Prandtl number is of order O(ε−n), the Froude number Fr

and the second-grade parameter K are of order O(1), the surface tension parameter
S is of order O(ε2), and the capillary number Ca is of order O(1).

Substituting the expansions (3.1) and (3.2) in the dimensionless model equations
(2.15)-(2.23), the leading order equations are

∂u0

∂x
+
∂w0

∂z
= 0, (3.3)

−∂p0

∂x
+
∂2u0

∂z2
= 0, (3.4)

−∂p0

∂z
= 0, (3.5)

−∂
2T0

∂z2
= 0 (3.6)

The corresponding boundary conditions are

at z = h(x, t) : p0 = 0,
∂u0

∂z
= 0,

∂T0

∂z
= −BT0; (3.7)

at z = 0 : u0 = U(x), w0 = 0, T = θ(x) (3.8)

Using the stream function ψ0 = zU(x) the solution of the leading order problem
is

u0 = U, w0 = −zUx, p0 = 0, T0 =
(1 +B(h− z)

1 +Bh

)
θ(x) . (3.9)

For the next order problem, we first solve the temperature equation. With the
results of zeroth-order, the temperature equation at order O(ε1−n) reads

∂T0

∂t
+ u0

∂T0

∂x
+ w0

∂T0

∂z
=
∂2T1

∂z2
(3.10)

with boundary conditions

at z = 0 : T1 = 0, and at z = h(x, t) :
∂T1

∂z
= −BT1. (3.11)
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The solution of (3.10) and (3.11) satisfies

T1 =
Uθx

2

{
z2 − zh

(2 +Bh

1 +Bh

)}
−
{ B2θUxh

(1 +Bh)2
+
B (Uθx − Uxθ)

1 +Bh

}{z3

6
− zh2

6

(3 +Bh

1 +Bh

)} (3.12)

The results (3.12) is similar to the one derived in [24] for the Newtonian fluid.
Using the results of zeroth-order and of order O(ε1−n), the final solution of the

temperature field reads

T =
(1 +B(h− z)

1 +Bh

)
θ(x) + εPr

[Uθx
2

{
z2 − zh

(2 +Bh

1 +Bh

)}
−
{ B2θUxh

(1 +Bh)2
+
B (Uθx − Uxθ)

1 +Bh

}{z3

6
− zh2

6

(3 +Bh

1 +Bh

)}] (3.13)

To close the problem, for the derivation of the free surface equation, we need
to solve the first and second order continuity and momentum equations. The first
order problem reads:

∂u1

∂x
+
∂w1

∂z
= 0, (3.14)

∂u0

∂t
+ u0

∂u0

∂x
+ w0

∂u0

∂z

= −∂p1

∂x
+
∂2u1

∂z2
+K

[ ∂3u0

∂t∂z2
− u0

∂3w0

∂z3
− ∂u0

∂x

∂2u0

∂z2

+ w0
∂3u0

∂z3
− ∂u0

∂z

∂2w0

∂z2
+ 2

∂w0

∂z

∂2u0

∂z2

]
−M2u0,

(3.15)

−∂p1

∂z
− 2K

∂u0

∂z

∂2u0

∂z2
− Fr = 0 (3.16)

with boundary conditions at the free surface z = h(x, t):

−p1 −K
(
∂u0

∂z

)2

= Shxx, (3.17)

∂u1

∂z
+K

[∂2u0

∂t∂z
+ u0

∂2u0

∂x∂z
+ w0

∂2u0

∂z2
+
∂u0

∂z

∂w0

∂z

− ∂u0

∂x

∂u0

∂z
− 2hx

(
∂u0

∂z

)2]
= −Mw

[∂T0

∂x
+ hx

∂T0

∂z

] (3.18)

and at the sheet z = 0,
u1 = 0, w1 = 0 (3.19)

Using the solution of zeroth order problem, the first order solutions for the velocity
and pressure can be found out as follows:

u1 =
(
UUx + Frhx − Shxxx +M2U

) (z2

2
− hz

)
+ zφ(x, t), (3.20)

w1 = −z
3

6
(
UUx + Frhx − Shxxx +M2U

)
x

+
z2

2
∂

∂x

[
h
(
UUx + Frhx − Shxxx +M2U

)
− φ(x, t)

] (3.21)
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p1 = Fr(h− z)− Shxx (3.22)

We introduce for brevity the notation φ(x, t) = −Mw

(
θ

1+Bh

)
x

and f(x, t) = UUx+

Frhx − Shxxx +M2U .
The model equations for second order problem for velocity and pressure are:

∂u2

∂x
+
∂w2

∂z
= 0, (3.23)

∂u1

∂t
+ u0

∂u1

∂x
+ u1

∂u0

∂x
+ w0

∂u1

∂z
+ w1

∂u0

∂z

= −∂p2

∂x
+
∂2u0

∂x2
+
∂2u2

∂z2

+K
[ ∂3u1

∂t∂z2
− u0

∂3w1

∂z3
− u1

∂3w0

∂z3
− ∂u0

∂x

∂2u1

∂z2

− ∂u1

∂x

∂2u0

∂z2
+ w0

∂3u1

∂z3
+ w1

∂3u0

∂z3
− ∂u0

∂z

∂2w1

∂z2
− ∂u1

∂z

∂2w0

∂z2

+ 2
∂w0

∂z

∂2u1

∂z2
+ 2

∂w1

∂z

∂2u0

∂z2

]
−M2u1 ,

(3.24)

−∂p2

∂z
+
∂2w0

∂z2
+K

[
− 2

∂u0

∂z

∂2u1

∂z2
− 2

∂u1

∂z

∂2u0

∂z2

]
= 0 (3.25)

with boundary conditions at z = h(x, t)

−p2 + 2
(
− hx

∂u0

∂z
+
∂w0

∂z

)
+K

(
− 2

∂u0

∂z

∂u1

∂z

)
= 0, (3.26)

∂w0

∂x
+
∂u2

∂z
− h2

x

∂u0

∂z
+ 2hx

(∂w0

∂z
− ∂u0

∂x

)
+K

[∂2u1

∂t∂z
+ u0

∂2u1

∂x∂z
+ u1

∂2u0

∂x∂z
+ w0

∂2u1

∂z2
+ w1

∂2u0

∂z2
+
∂u0

∂z

∂w1

∂z

+
∂u1

∂z

∂w0

∂z
− ∂u0

∂x

∂u1

∂z
− ∂u1

∂x

∂u0

∂z
+ 2hx

(
− 2

∂u0

∂z

∂u1

∂z

)]
= 0,

(3.27)

and at z = 0, i.e.
u2 = 0, w2 = 0 (3.28)

Using the solution of the zeroth-order and first-order problem, the second order
problem satisfies

u2 =
( z4

24
− h3z

6

)
g1(x, t) +

(z3

6
− h2z

2

)
g2(x, t) +

(z2

2
− hz

)
g3(x, t)

+ z
[
Uxxh+ 4Uxhx +Kf (ht + Uhx + Uxh)

+K (−φt − Uφx + 2Uxφ)
]
,

(3.29)

w2 =
(
− z5

120
+
h3z2

12

)∂g1
∂x

+
z2h2hx

4
g1 +

(
− z4

24
+
h2z2

4

)∂g2
∂x

+
z2hhx

2
g2 +

(
− z3

6
+
hz2

2

)∂g3
∂x

+
z2

2
hxg3 −

z2

2
∂

∂x

[
Uxxh

+ 4Uxhx +Kf
(
ht + Uhx + Uxh

)
+K (−φt − Uφx + 2Uxφ)

]
,

(3.30)

p2 = −2Ux, (3.31)
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where g1(x, t) = ft + Ufx − Uxf + M2f , g2(x, t) = −(ht + Uhx + M2h)f − hft −
Uhfx + φt + Uφx +M2φ, and g3(x, t) = −3Uxx −K (ft + Ufx − 3Uxf).

4. Thin film equation

Using the kinematic boundary condition, the free surface evolution equation can
be obtained as follows:

ht +
∂

∂x
F (h) = 0, (4.1)

where

F (h) = Uh+ ε
(
−h

3f

3
+
h2φ

2
)

+ ε2
[−3h5

40
(ft + Ufx − Uxf +M2f)

− 5h4

24
(
−fht − fth− Uhfx − Uhxf + φt + Uφx +M2φ−M2fh

)
− h3

3

(
−3Uxx −Kft −KUfx + 3KUxf

)
+
h2

2
(
Uxxh+ 4Uxhx

+Kf (ht + Uhx + Uxh) +K (−φt − Uφx + 2Uxφ)
)]

with φ(x, t) = −Mw( θ
1+Bh )x and f(x, t) = UUx + Frhx − Shxxx +M2U .

The closure of the thin film equation requires the boundary condition for the film
height. At the origin, we apply the symmetry boundary condition which imposes
that the gradient of the field variable h and its higher derivatives must vanish i.e.

hx = 0, hxxx = 0, hxxxx = 0. (4.2)

At the other end of the domain, we assume that the same sheet stretching rate
continues beyond the computed domain. We also assume that the gradient of the
free surface extends out of the computational domain. These boundary conditions
are consistent with those mentioned in [9, 26]. Finally, the model equation is
supported by the initial condition h(x, 0) = 1 + δ(x).

5. Numerical solution

The transient film thickness (4.1) with supportive boundary and initial condi-
tions are solved using finite volume method. In this paper, we mostly follow the
finite volume technique described in Sellier et al. [25, 19] on a uniform grid system
with implicit flux discretization.

x = 0
x1

x = L
xi

Ui

θi

xN

tn

tn+1

∆xi

∆
tn

+
1

hn+1
i

Figure 2. Typical grid used for the finite volume discretization
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As shown in Figure (2), we discretized the fluid domain using a uniform grid
system. The unknown variable h and the known fields U and θ are located at the
cell centers. The flow domain [0, L] is discretized into N equal size grid cells of size
∆xi = L/N , and define xi = ∆xi/2 + (i− 1)∆xi, i = 1, 2, . . . , N , so that xi is the
center of the cell. The numerical solution is evaluated at the discrete time levels
tn, n = 0, 1, 2, . . . with time step ∆tn+1 = tn+1 − tn. From the given cell averaged
solution hni over the cell [xi, xi+1], the solution at the next time step tn+1 is obtained
by integrating (4.1) over the space and time intervals [xi, xi+1] × [tn, tn+1] which
gives the discretized equation:

(hn+1
i − hni )∆xi + (Fn+1

i+1/2 − F
n+1
i−1/2)∆tn+1 = 0 (5.1)

for nodes i = 1, 2, . . . , N , where the discrete flux function is

Fn+1
i+1/2 = F (xi+1/2, t

n+1). (5.2)

For the internal nodes, the face values are evaluated using linear interpolation
from nodal values and gradients using central differences such as

h(xi+1/2, t
n+1) =

1
2
(
hn+1
i+1 + hn+1

i

)
,

hx(xi+1/2, t
n+1) =

1
∆xi

(
hn+1
i+1 − h

n+1
i

)
Similarly, for other terms, we can derive the expressions like for the second, third
and fourth order derivative terms

hxx(xi+1/2, t
n+1) =

1
∆x2

i

(
hn+1
i+1 − 2hn+1

i + hn+1
i−1

)
,

hxxx(xi+1/2, t
n+1) =

1
∆x3

i

(
hn+1
i+2 − 3hn+1

i+1 + 3hn+1
i − hn+1

i−1

)
,

hxxxx(xi+1/2, t
n+1) =

1
∆x4

i

(
hn+1
i+3 − 4hn+1

i+2 + 6hn+1
i+1 − 4hn+1

i + hn+1
i−1

)
The boundary nodes at the origin are discretized using boundary conditions (4.2)

and at the other end of the domain; we assume that the same sheet temperature
profiles and the sheet stretching rate continues beyond the computed domain. We
also assume that the gradient of the free surface extends out of the computational
domain.

Equation (5.1) describes an implicit time discretization scheme. Since the gov-
erning equation is nonlinear, a system of nonlinear algebraic equations needs to
be solved at each time step. The MATLAB fsolve routine is used for this purpose.
This routine uses a non-linear least-squares algorithm to solve a system of non-linear
equations. A good initial starting guess is required to solve the nonlinear equations.
A reasonable initial guess for the free surface is chosen to be unity throughout the
discrete domain at the first time step. Therefore, the disturbance function to the
initial film thickness δ(x) is considered to be zero throughout the discussion. The
solution from the previous time step can be used otherwise. Convergence is usually
achieved in less than ten iterations, and the convergence criterion is that the norm
of the residuals should be less than 10−7.
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6. Results and discussion

In this section some simulation results of free surface profiles and the temperature
distribution at the free surface are presented at different times and for the different
flow parameters. In Figure (3) the free surface profiles are given at different times
with variation of the second-grade non-Newtonian parameter. The left panel results
are for the fixed Hartmann number M = 2 and the right panel are for M = 4. The
other parameters used for the simulations are mentioned in the figure caption. By
comparing the left and right panels of Figure (3) we can see that with increasing
Hartmann number M the fluid thinning behavior slows down due to the effect of
the Lorentz force. It is further clear that the free surface height is decreasing with
increasing time. Again with increasing second-grade parameter the film thinning
behavior decreases. This is due to the fact that for the higher value of K, the tensile
stress between fluid layer is higher and consequently higher resistance to motion
which decreases the rate of film thinning.

The effect of Marangoni number Mw on the free surface profile is described
in the left panel of Figure (4). The sinusoidal temperature profile θ(x) = 0.6 +
0.5 sin(2πx/10) (right panel of Figure (4)) is imposed at the sheet and the linear
stretching velocity U = 0.1x is considered. The free surface profiles at two different
times are given for different values of Mw with the variation of the second-grade
parameter K. It is clear from Figure (4) that the thermocapillary deforms the
free surface and this deformation is advected downstream by stretching velocity.
The Marangoni number that characterizes the relation between the temperature
dependent surface tension and viscous forces. The high Marangoni number means
the lower the viscous forces and thereby the fluid moves faster and the thinning rate
increases. It can also be observed that the thinning rate is faster near the origin
for lower value of viscoelastic parameter.

The effect of stretching velocity on film height is discussed next. The temperature
profile θ(x) = 1−e−x2/33 was imposed on the sheet and the following three different
stretching velocity distribution is considered:

U(x) = 0.6(0.1x+ 0.01x2), (parabolic concave),

U(x) = 0.1x, (linear),

U(x) = 0.75(1− (0.1x− 1)2), (parabolic convex).

(6.1)

The free surface profiles are given at a fixed time t = 10 (non-dimensional). The
results confirm that the parabolic concave stretching velocity profile makes the film
thinner away from the origin. It is further observed that influence of second grade
parameter decelerate the film thinning behaviour of the fluid.

To explore the effect of stretching rate on the free surface profile with variation
of second-grade parameter, the finite volume scheme was run for the two different
linear stretching velocity, i.e., U = ηx where η ∈ {0.05, 0.1}, and varying the
values of K from K = 0 to K = 10 with an increment of five. The free surface
profile is plotted in Figure (6) at a fixed time t = 10 (non-dimensional) for different
stretching speed with different values of K. For U = ηx where η = 0.1, the rapid
stretching of the film will result in the rapid build-up of stresses. Clearly, the
faster the stretching, the faster the thinning of the fluid. The larger the viscoelastic
parameter K, the larger the departure from the purely viscous case (K = 0) because
the additional stresses the fluid needs to overcome the flow.
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Figure 3. Film thickness profile for S = 2, Fr = 2, B = 1, Mw =
2, ε = 0.1 with U = 0.1x, and θ(x) = e−x

2/33, left: Hartmann
number M = 2, right: Hartmann number M = 4

The effect of Biot number on the temperature profile at the free surface of the thin
film is demonstrated in Figure (7). The temperature profile at the fluid-gas interface
is given at two different times with variation of Biot number (B). The Biot number,
that compares the relative magnitudes of resistances to internal conduction and
surface convection. In a high Biot number flow, the surface convection dominates
the internal conduction and consequently the rate of heat transfer to the fluid
through the sheet is higher. Moreover, temperature increases with increase of time
as film thins faster (right panel of Figure (7)). We have observed that the Biot
number has no significant effect on the thinning behavior of the fluid.
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Corresponding temperature profile θ(x) = 0.6 + 0.5 sin(2πx/10)

Conclusion. A model for the dynamics of thin film over the heated steady stretch-
ing sheet under the uniform transverse magnetic field is derived based on the long-
wave theory. The derivation of the numerical scheme for the unsteady free surface
model by finite volume method and their simulations for the wide range of pa-
rameters provides a deeper understanding of the film thinning process of the non-
Newtonian second-grade fluid. The numerical solution reveals the dependency of
the film thinning behavior on the stretching rate and the second-grade fluid param-
eter. Moreover, the film thinning rate is influenced by the thermocapillary forces
and magnetic parameter. It is hoped that the desired film thickness can be achieved
by controlling the flow parameters. Future work will explore the derivation of free
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K = 10 (black curve)), right: Corresponding stretching velocity
profiles

surface model for the dynamics of film thickness in a similar flow geometry for a
third-grade non-Newtonian fluid.
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