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SOLVABILITY OF NONLINEAR DIFFERENTIAL SYSTEMS
WITH COUPLED NONLOCAL BOUNDARY CONDITIONS

JEONGMI JEONG, CHAN-GYUN KIM, EUN KYOUNG LEE

Abstract. This article shows the existence of at least one solution to non-

linear differential systems with coupled nonlocal boundary conditions on an

infinite interval. Our main tool is the Alternative of Leray-Schauder.

1. Introduction

Boundary value problems on an infinite interval arise quite naturally in the study
of radially symmetric solutions of nonlinear elliptic equations and in various appli-
cations such as an unsteady flow of gas through a semi-infinite porous media and
theory of draining flows (see, e.g., [1, 2, 8]). Nonlocal boundary value problems
also represent a very interesting and important class of problems that have multi-
point and integral boundary conditions as special cases. The study on nonlocal
elliptic boundary value problems was started by Bicadze and Samarskĭı [3], and
later continued by Il’in and Moiseev [13] and Gupta [11]. Since then, the exis-
tence of solutions for nonlocal boundary value problems has received a great deal
of attention in the literature. Recently, Zhang [26] investigated the existence of
positive solutions for multipoint boundary value problems on an infinite interval
with uncoupled boundary conditions in view of cone theory with Mönch fixed point
theorem and a monotone iterative technique. Cui et al [5] studied the existence and
uniqueness of the positive solutions for a singular differential system with coupled
integral boundary conditions by using mixed monotone methods. For more recent
results, we refer the reader to [6, 7, 9, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
and the references therein.

Inspired by the above results, we consider the nonlinear differential system with
coupled nonlocal boundary conditions,

(wiϕp(u′i))
′(t) + fi(t, u1(t), . . . , uN (t), u′1(t), . . . , u′N (t)) = 0, t ∈ (0,∞),

ui(0) =
N∑

j=1

∫ ∞
0

kij(s)uj(s)ds, lim
t→∞

(ϕ−1
p (wi)u′i)(t) = l∞i , 1 ≤ i ≤ N,

(1.1)
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where N ≥ 1, p > 1, ϕp(s) = |s|p−2s for s ∈ (−∞,∞), l∞i ∈ (−∞,∞), wi :
(0,∞) → (0,∞) is a continuous function, fi : [0,∞) × (−∞,∞)2N → (−∞,∞)
is a Carathéodory function, i.e., fi = fi(t, u, v) is Lebesgue measurable in t for all
(u, v) ∈ (−∞,∞)N × (−∞,∞)N and continuous in (u, v) for almost all t ∈ [0,∞),
and kij : (0,∞) → (−∞,∞) is measurable function for 1 ≤ i, j ≤ N . We further
assume the following conditions hold:

(H1) ϕ−1
p

(
1

wi

)
∈ L1

loc[0,∞) \ L1(0,∞) and (1 + θi)kij ∈ L1(0,∞), where i, j =
1, 2, . . . , N and

θi(t) :=
∫ t

0

ϕ−1
p

( 1
wi(s)

)
ds, t ∈ (0,∞);

(H2) det(K) 6= 0, where K = (Kij) ∈MN×N with

Kij =

{
1−

∫∞
0
kii(s)ds for i = j,

−
∫∞

0
kij(s)ds for i 6= j;

(H3) for i = 1, 2, . . . , N , there exist nonnegative measurable functions αi, βi, γ
such that

(1 + θi)p−1αi,
βi

wi
, γ ∈ L1(0,∞)

and, for almost all t ∈ [0,∞) and all u, v ∈ (−∞,∞)N with u = (u1, . . . , uN )
and v = (v1, . . . , vN ),

|fi(t, u, v)| ≤
N∑

j=1

(αj(t)|uj |p−1 + βj(t)|vj |p−1) + γ(t). (1.2)

The main tool of this paper is the following theorem, which is related to the
Leray-Schauder, see, e.g., [10, p.124].

Theorem 1.1. Let C be a convex subset of a Banach space X, and assume that
0 ∈ C. Let L : C → C be a compact operator, and let

E = {x ∈ C : x = λLx for some λ ∈ (0, 1)}.
Then either E is unbounded or L has a fixed point.

By using the above theorem, the existence of solutions for problem (1.1) is in-
vestigated. An example to illustrate the main result is also provided in Section
2.

2. Main result

For i = 1, . . . , N , Xi is the set of the functions ui ∈ C[0,∞) ∩ C1(0,∞) such
that

lim
t→0+

(ϕ−1
p (wi)u′i)(t) and lim

t→∞
(ϕ−1

p (wi)u′i)(t) exist.

Then Xi is the Banach space with norm

‖ui‖i := sup
t∈[0,∞)

|ui(t)|
1 + θi(t)

+ sup
t∈[0,∞)

(ϕ−1
p (wi)|u′i|)(t).

Let

X :=
N∏

i=1

Xi
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be a Banach space with norm

‖(u1, . . . , uN )‖X :=
N∑

i=1

‖ui‖i.

Let Y := L1(0,∞) with norm ‖h‖Y :=
∫∞

0
|h(s)|ds.

For i = 1, 2, . . . , N , we define Pi : Y → Xi by, for hi ∈ Y and t ∈ [0,∞),

Pi(hi)(t) :=
∫ t

0

ϕ−1
p

( 1
wi(s)

(
ϕp(l∞i ) +

∫ ∞
s

hi(τ)dτ
))
ds.

For h = (h1, . . . , hN ) ∈ Y N , we define Fi : Y N → (−∞,∞) by, for i = 1, 2, . . . , N ,

Fi(h) :=
N∑

j=1

∫ ∞
0

kij(s)Pj(hj)(s)ds.

From (H2), K−1 := (aij) ∈MN×N exists and let

Ai(h) :=
N∑

j=1

aijFj(h) for h ∈ Y N and i = 1, 2, . . . , N,

i.e.,
(A1(h), . . . , AN (h))T = K−1(F1(h), . . . , FN (h))T .

Then

Fi(h) = −
N∑

j=1

Aj(h)
∫ ∞

0

kij(s)ds+Ai(h). (2.1)

Define T : Y N → X by, for h ∈ Y N ,

T (h)(t) := (T1(h)(t), T2(h)(t), . . . , TN (h)(t)) for all t ∈ [0,∞).

Here, for i = 1, 2, . . . , N , Ti : Y N → Xi is defined by, for h = (h1, . . . , hN ) ∈ Y N ,

Ti(h)(t) := Ai(h) + Pi(hi)(t) for all t ∈ [0,∞).

For h = (h1, . . . , hN ) ∈ Y N , consider the problem

(wiϕp(u′i))
′(t) + hi(t) = 0, a.e. t ∈ (0,∞),

ui(0) =
N∑

j=1

∫ ∞
0

kij(s)uj(s)ds, lim
t→∞

(ϕ−1
p (wi)u′i)(t) = l∞i , 1 ≤ i ≤ N.

(2.2)

Then we have the following lemma.

Lemma 2.1. Assume that (H1), (H2) hold. For each h = (h1, . . . , hN ) ∈ Y N ,
(2.2) has a unique solution u = T (h) in X.

Proof. Let u = (u1, . . . , uN ) be a solution of (2.2) with a fixed h = (h1, . . . , hN ) ∈
Y N . Then, for j = 1, 2, . . . , N ,

uj(t) = uj(0) + Pj(hj)(t), t ∈ [0,∞).

Thus, for 1 ≤ i, j ≤ N ,∫ ∞
0

kij(s)uj(s)ds = uj(0)
∫ ∞

0

kij(s)ds+
∫ ∞

0

kij(s)Pj(hj)(s)ds,
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which implies

ui(0) =
N∑

j=1

uj(0)
∫ ∞

0

kij(s)ds+ Fi(h), 1 ≤ i ≤ N.

Thus,
K(u1(0), . . . , uN (0))T = (F1(h), . . . , FN (h))T ,

where K is the matrix in the assumption (H2). By (H2), ui(0) = Ai(h) for 1 ≤ i ≤
N , and thus u = T (h). In a similar manner, one can show that T (h) is a solution
to (2.2) for each h ∈ Y N by (2.1). The proof is complete. �

Lemma 2.2. Assume that (H1)–(H3) hold. For h = (h1, . . . , hN ) ∈ Y N ,

‖Tj(h)‖j ≤
N∑

i=1

Cj,i(|l∞i |p−1 + ‖hi‖Y )
1

p−1

where 1 ≤ j, i ≤ N and

Cj,i :=

{∑N
z=1 |aiz|‖kziθi‖Y + 2 if i = j,∑N
z=1 |ajz|‖kziθi‖Y if i 6= j.

Proof. Let h = (h1, . . . , hN ) ∈ Y N be given. Then, for 1 ≤ j, z ≤ N ,

|ajzFz(h)| ≤ |ajz|
N∑

i=1

∫ ∞
0

|kzi(s)Pi(hi)(s)|ds

≤
N∑

i=1

|ajz|‖kziθi‖Y (|l∞i |p−1 + ‖hi‖Y )
1

p−1

which implies

‖Aj(h)‖j = sup
t∈[0,∞)

|Aj(h)|
1 + θj(t)

≤
N∑

z=1

|ajzFz(h)|

≤
N∑

i=1

N∑
z=1

|ajz|‖kziθi‖Y (|l∞i |p−1 + ‖hi‖Y )
1

p−1 ,

(2.3)

and

‖Pj(hj)‖j = sup
t∈[0,∞)

|Pj(hj)(t)|
1 + θj(t)

+ sup
t∈[0,∞)

(ϕ−1
p (wj)|(Pj(hj))′|)(t)

≤ 2(|l∞j |p−1 + ‖hj‖Y )
1

p−1 .

(2.4)

By (2.3) and (2.4),

‖Tj(h)‖j ≤ ‖Aj(h)‖j + ‖Pj(hj)‖j ≤
N∑

i=1

Cj,i(|l∞i |p−1 + ‖hi‖Y )
1

p−1

for 1 ≤ j ≤ N , and thus the proof is complete. �

We define the Nemytskii operators Nfi
: X → Y by, for u = (u1, . . . , uN ) ∈ X,

Nfi
(u)(t) := fi(t, u(t), u′(t)) for almost all t ∈ (0,∞),

and define L : X → X by

L(u) = (L1(u), . . . , LN (u)) := T (Nf1(u), . . . , NfN
(u)) for u ∈ X.
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Then L is well defined, and by Lemma 2.1, problem (1.1) has a solution u in X if
and only if L has a fixed point u in X.

To show the compactness of the operator L, we use the following compactness
criterion:

Theorem 2.3 ([4]). Let Z be the space of all bounded continuous real-valued func-
tions on [0,∞) and S ⊂ Z. Then S is relatively compact in Z if the following
conditions hold:

(i) S is bounded in Z;
(ii) S is equicontinuous on any compact interval of [0,∞);
(iii) S is equiconvergent at ∞, that is, given ε > 0, there exists a T = T (ε) > 0

such that |φ(t)− φ(∞)| < ε for all t > T and all φ ∈ S.

Lemma 2.4. Assume that (H1)–(H3) hold. Then the operator L : X → X is
completely continuous.

Proof. We only prove that L1 : X → X1 is compact, since the compactness of
Li : X → Xi, 2 ≤ i ≤ N , can be proved in a similar manner, and consequently
L : X → X is compact. Recall that L1(u) = T1(Nf1(u), . . . , NfN

(u)) for u ∈ X.
Let Σ be bounded in X, i.e., there exists R1 > 0 such that ‖u‖X ≤ R1 for all

u = (u1, . . . , uN ) ∈ Σ. Let Z = (C[0,∞)∩L∞(0,∞))× (C[0,∞)∩L∞(0,∞)) with
norm ‖(u, v)‖Z = ‖u‖L∞(0,∞) + ‖v‖L∞(0,∞), and

S =
{(L1(u)

1 + θ1
, ϕ−1

p (w1)(L1(u))′
)
∈ Z : u ∈ Σ

}
.

Set, for almost all t ∈ [0,∞),

hΣ(t) :=
N∑

j=1

(
(1 + θj(t))p−1αj(t) +

βj(t)
wj(t)

)
Rp−1

1 + γ(t).

By (H3), hΣ ∈ Y and, for each 1 ≤ i ≤ N ,

|Nfi
(u)(t)| ≤ hΣ(t) (2.5)

for almost all t ∈ [0,∞) and all u ∈ Σ. Indeed, for u ∈ Σ and for almost all
t ∈ [0,∞), by (H3),

|Nfi(u)(t)| ≤
N∑

j=1

(αj(t)|uj(t)|p−1 + βj(t)|u′j(t)|p−1) + γ(t)

≤
N∑

j=1

(
(1 + θj(t))p−1αj(t) +

βj(t)
wj(t)

)
‖u‖p−1

X + γ(t) = hΣ(t).

Thus Nfi(Σ) is bounded in Y for all 1 ≤ i ≤ N . It follows from Lemma 2.2 that S
is bounded in Z.

Let R > 0 be fixed and t1, t2 ∈ [0, R] with t1 < t2, for u ∈ Σ,∣∣∣T1(Nf1(u), . . . , NfN
(u))(t1)

1 + θ1(t1)
− T1(Nf1(u), . . . , NfN

(u))(t2)
1 + θ1(t2)

∣∣∣
≤ |A1(Nf1(u), . . . , NfN

(u))|
∣∣ 1
1 + θ1(t1)

− 1
1 + θ1(t2)

∣∣
+
∣∣P1(Nf1(u))(t1)

1 + θ1(t1)
− P1(Nf1(u))(t2)

1 + θ1(t2)

∣∣



40 J. JEONG, C.-G. KIM, E. K. LEE EJDE-2016/CONF/23

≤ |A1(Nf1(u), . . . , NfN
(u))|(θ1(t2)− θ1(t1))

+
( 1

1 + θ1(t1)
− 1

1 + θ1(t2)

)
|P1(Nf1(u))(t1)|

+
1

1 + θ1(t2)
|P1(Nf1(u))(t2)− P1(Nf1(u))(t1)|

≤ |A1(Nf1(u), . . . , NfN
(u))|(θ1(t2)− θ1(t1)) + |P1(Nf1(u))(R)|(θ1(t2)− θ1(t1))

+ |P1(Nf1(u))(t2)− P1(Nf1(u))(t1)|

≤
[

sup
u∈Σ
{|A1(Nf1(u), . . . , NfN

(u))|}

+ (θ1(R) + 1)(|l∞1 |p−1 + ‖hΣ‖Y )
1

p−1

]
(θ1(t2)− θ1(t1))

+ |P1(Nf1(u))(t2)− P1(Nf1(u))(t1)|
and ∣∣(ϕ−1

p (w1)(T1(Nf1(u), . . . , NfN
(u)))′)(t1)

− (ϕ−1
p (w1)(T1(Nf1(u), . . . , NfN

(u)))′)(t2)
∣∣

=
∣∣∣ϕ−1

p

(
ϕp(l∞1 ) +

∫ ∞
t1

Nf1(u)(s)ds
)

− ϕ−1
p

(
ϕp(l∞1 ) +

∫ ∞
t2

Nf1(u)(s)ds
)∣∣∣,

which yield that S is equicontinuous on any finite subinterval of [0,∞) by (H1) and
(2.5).

For u ∈ Σ, by L’Hospital’s rule,

lim
t→∞

T1(Nf1(u), . . . , NfN
(u))(t)

1 + θ1(t)
= lim

t→∞
ϕ−1

p

(
ϕp(l∞1 ) +

∫ ∞
t

Nf1(u)(τ)dτ
)

and

lim
t→∞

(ϕ−1
p (w1)(T1(Nf1(u), . . . , NfN

(u)))′)(t)

= lim
t→∞

ϕ−1
p

(
ϕp(l∞1 ) +

∫ ∞
t

Nf1(u)(τ)dτ
)
.

It follows from (2.5) that, as t→∞,

T1(Nf1(u), . . . , NfN
(u))(t)

1 + θ1(t)
→ l∞1

and
(ϕ−1

p (w1)(T1(Nf1(u), . . . , NfN
(u)))′)(t)→ l∞1

uniformly on Σ. Then, S is equiconvergent at ∞. Thus, in view of Theorem 2.3, S
is relatively compact in Z, i.e., L1 : X → X1 is compact. �

Now we give the main result in this paper.

Theorem 2.5. Assume that (H1)–(H3) hold. Then problem (1.1) has at least one
solution u = (u1, . . . , uN ) in X provided that, for each 1 ≤ i ≤ N ,

N∑
j=1

κpD
p−1
j,i ‖(1 + θj)p−1αj‖Y + ‖ βi

wi
‖Y <

1
N

(2.6)
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holds. Here κp = max{1, 2(N−1)(p−2)}, and for 1 ≤ j, i ≤ N ,

Dj,i :=

{
Cj,i − 1 if j = i,

Cj,i if j 6= i.

Proof. Let u = (u1, . . . , uN ) ∈ X satisfying u = λL(u) for some λ ∈ (0, 1). Then

ui = λTi(Nf1(u), . . . , NfN
(u)).

It is well known that, for q > 0 and for any am ∈ (−∞,∞) for 1 ≤ m ≤ N ,∣∣∣ N∑
m=1

am

∣∣∣q ≤ max{1, 2(N−1)(q−1)}
N∑

m=1

|am|q. (2.7)

By the same arguments as in the proof of Lemma 2.2, for 1 ≤ j ≤ N ,

sup
t∈[0,∞)

|Tj(Nf1(u), . . . , NfN
(u))(t)|

1 + θj(t)
≤

N∑
m=1

Dj,m(|l∞m |p−1 + ‖Nfm
(u)‖Y )

1
p−1

and

sup
t∈[0,∞)

∣∣(ϕ−1
p (wj)(Tj(Nf1(u), . . . , NfN

(u)))′)(t)
∣∣ ≤ (|l∞j |p−1 + ‖Nfj

(u)‖Y )
1

p−1 .

Then, using the assumption (H3) and the inequality (2.7) with q = p− 1 and am =
Dj,m(|l∞m |p−1 + ‖Nfm

(u)‖Y )
1

p−1 , for almost all t ∈ (0,∞) and for all 1 ≤ i ≤ N ,

|Nfi
(u)(t)|

≤
N∑

j=1

(αj(t)|uj(t)|p−1 + βj(t)|u′j(t)|p−1) + γ(t)

=
N∑

j=1

(
(1 + θj(t))p−1αj(t)

( |uj(t)|
1 + θj(t)

)p−1

+
βj(t)
wj(t)

|(ϕ−1
p (wj)u′j)(t)|p−1

)
+ γ(t)

≤
N∑

j=1

[
(1 + θj(t))p−1αj(t)

( |Tj(Nf1(u), . . . , NfN
(u))(t)|

1 + θj(t)

)p−1]

+
N∑

j=1

[ βj(t)
wj(t)

∣∣(ϕ−1
p (wj)(Tj(Nf1(u), . . . , NfN

(u)))′)(t)
∣∣p−1

]
+ γ(t)

≤
N∑

j=1

[
(1 + θj(t))p−1αj(t)

( N∑
m=1

Dj,m(|l∞m |p−1 + ‖Nfm(u)‖Y )
1

p−1

)p−1]

+
N∑

j=1

[ βj(t)
wj(t)

(|l∞j |p−1 + ‖Nfj (u)‖Y )
]

+ γ(t)

≤
N∑

m=1

N∑
j=1

κpD
p−1
j,m (1 + θj(t))p−1αj(t)(|l∞m |p−1 + ‖Nfm(u)‖Y )

+
N∑

m=1

βm(t)
wm(t)

(|l∞m |p−1 + ‖Nfm(u)‖Y ) + γ(t)
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=
N∑

m=1

[ N∑
j=1

κpD
p−1
j,m (1 + θj(t))p−1αj(t) +

βm(t)
wm(t)

]
‖Nfm

(u)‖Y

+
N∑

m=1

[ N∑
j=1

κpD
p−1
j,m (1 + θj(t))p−1αj(t) +

βm(t)
wm(t)

]
|l∞m |p−1 + γ(t).

Thus, for each 1 ≤ i ≤ N ,

‖Nfi
(u)‖Y

≤
N∑

m=1

( N∑
j=1

κpD
p−1
j,m ‖(1 + θj)p−1αj‖Y + ‖ βm

wm
‖Y
)
‖Nfm(u)‖Y

+
N∑

m=1

( N∑
j=1

κpD
p−1
j,m ‖(1 + θj)p−1αj‖Y + ‖ βm

wm
‖Y
)
|l∞m |p−1 + ‖γ‖Y .

Consequently,
N∑

i=1

‖Nfi
(u)‖Y

≤ N
[ N∑

m=1

( N∑
j=1

κpD
p−1
j,m ‖(1 + θj)p−1αj‖Y + ‖ βm

wm
‖Y
)
‖Nfm

(u)‖Y
]

+N
[ N∑

m=1

( N∑
j=1

κpD
p−1
j,m ‖(1 + θj)p−1αj‖Y + ‖ βm

wm
‖Y
)
|l∞m |p−1 + ‖γ‖Y

]

≤
N∑

i=1

N
( N∑

j=1

κpD
p−1
j,i ‖(1 + θj)p−1αj‖Y + ‖ βi

wi
‖Y
)
‖Nfi

(u)‖Y

+N
[ N∑

i=1

( N∑
j=1

κpD
p−1
j,i ‖(1 + θj)p−1αj‖Y + ‖ βi

wi
‖Y
)
|l∞i |p−1 + ‖γ‖Y

]
,

and it follows from (2.6) that there exists a constant C > 0 such that, for all
1 ≤ i ≤ N ,

‖Nfi
(u)‖Y ≤ C.

By Lemma 2.2, there exists R > 0 such that ‖u‖X < R for all u satisfying u = λL(u)
for some λ ∈ (0, 1). Thus problem (1.1) has at least one solution u in X in view of
Theorem 1.1. �

Finally, we give an example to illustrate the main result.

Example 2.6. Consider the system

(|u′1(t)|u′1(t))′ + f1(t, u1(t), u2(t), u′1(t), u′2(t)) = 0, t ∈ (0,∞),

(|u′2(t)|u′2(t))′ + f2(t, u1(t), u2(t), u′1(t), u′2(t)) = 0, t ∈ (0,∞),

u1(0) =
∫ ∞

0

(
−e−su1(s) + 2e−su2(s)

)
ds, lim

t→∞
u′1(t) = l∞1 ,

u2(0) =
∫ ∞

0

(
e−su1(s) + e−2su2(s)

)
ds, lim

t→∞
u′2(t) = l∞2 ,

(2.8)
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where l∞1 , l
∞
2 ∈ (−∞,∞). Corresponding to the problem (1.1), p = 3, N = 2,

k11(t) = −e−t, k12(t) = 2e−t, k21(t) = e−t, k22(t) = e−2t, w1(t) = 1, and w2(t) = 1.
Then θ1(t) = t, θ2(t) = t and

K =
(

2 −2
−1 1/2

)
,

and thus (H1) and (H2) hold. Then

K−1 =
(
−1/2 −2
−1 −2

)
=
(
a11 a12

a21 a22

)
,

(
D1,1 D1,2

D2,1 D2,2

)
=
(

7/2 3/2
3 7/2

)
.

Let

f1(t, u, v, y, z) = α1(t)u sin(tv) +α2(t)v2
( y2

1 + y2

)
+β1(t)y2 +β2(t)z cos (yz) + γ1(t)

and

f2(t, u, v, y, z) = α1(t)u2 + α2(t)v + β1(t)y2
( y2 + z2

1 + y2 + z2

)
+ β2(t)z2 + γ2(t),

where α1(t) = 10−2e−t(1 + t)−2, α2(t) = 10−2e−2t(1 + t)−2,

β1(t) =

{
10−2t−

1
2 , t ∈ (0, 1)

10−2t−2, t ∈ [1,∞)
, β2(t) =

{
10−1t−

1
5 , t ∈ (0, 1)

10−1t−5, t ∈ [1,∞)
,

and γ1, γ2 are any functions in Y . Then

|f1(t, u, v, y, z)| ≤ α1(t)u2 + α2(t)v2 + β1(t)y2 + β2(t)z2 + α1(t) + β2(t) + |γ1(t)|

and

|f2(t, u, v, y, z)| ≤ α1(t)u2 + α2(t)v2 + β1(t)y2 + β2(t)z2 + α2(t) + |γ2(t)|.

Taking γ(t) = α1(t) + α2(t) + β2(t) + |γ1(t)|+ |γ2(t)|, then (H3) holds, and

‖(1 + θ1)2α1‖Y =
1

100
, ‖(1 + θ2)2α2‖Y =

1
200

, ‖ β1

w1
‖Y =

3
100

, ‖ β2

w2
‖Y =

3
20
.

By direct calculation, κ3 = 2,

2D2
1,1‖(1 + θ1)2α1‖Y + 2D2

2,1‖(1 + θ2)2α2‖Y + ‖ β1

w1
‖Y <

1
2
,

2D2
1,2‖(1 + θ1)2α1‖Y + 2D2

2,2‖(1 + θ2)2α2‖Y + ‖ β2

w2
‖Y <

1
2
.

Consequently, (2.6) holds for i = 1, 2. By Theorem 2.5, the system (2.8) has at
least one solution for any l∞1 , l

∞
2 ∈ (−∞,∞).
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