Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems.
Electron. J. Diff. Eqns., Conference 21 (2014), pp. 129-147.

Christopher Grumiau, Christophe Troestler

Abstract:
For a functional E and a peak selection that picks up a global maximum of E on varying cones, we study the convergence up to a subsequence to a critical point of the sequence generated by a mountain pass type algorithm. Moreover, by carefully choosing stepsizes, we establish the convergence of the whole sequence under a "localization" assumption on the critical point. We illustrate our results with two problems: an indefinite Schrodinger equation and a superlinear Schrodinger system.

Published February 10, 2014.
Math Subject Classifications: 35J20, 58E05, 58E30, 35B38.
Key Words: Mountain Pass Algorithm; minimax; steepest descent method; Schrodinger equation; spectral gap; strongly indefinite functional; ground state solutions; Nehari manifold; systems.

Show me the PDF(801 K), TEX and other files for this article.

Christopher Grumiau
Institut Complexys, Département de Mathématique
Université de Mons, 20
Place du Parc B-7000 Mons Belgium
email: christopher.grumiau@umons.ac.be
Christophe Troestler
Institut Complexys, Département de Mathématique
Université de Mons, 20
Place du Parc B-7000 Mons Belgium
email: christophe.troestler@umons.ac.be

Return to the table of contents for this conference.
Return to the EJDE web page