Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems.
Electron. J. Diff. Eqns., Conference 21 (2014), pp. 1-9.

Localization phenomena in a degenerate logistic equation

Jose M. Arrieta, Rosa Pardo, Anibal Rodriguez-Bernal

Abstract:
We analyze the behavior of positive solutions of elliptic equations with a degenerate logistic nonlinearity and Dirichlet boundary conditions. Our results concern existence and strong localization in the spatial region in which the logistic nonlinearity cancels. This type of nonlinearity has applications in the nonlinear Schrodinger equation and the study of Bose-Einstein condensates. In this context, our analysis explains the fact that the ground state presents a strong localization in the spatial region in which the nonlinearity cancels.

Published February 10, 2014.
Math Subject Classifications: 35B32, 35B35, 35B65, 35B40, 35B41, 35B44, 35J25.
Key Words: Logistic equation; positive solution; bifurcation; localization; blow-up.

Show me the PDF(227K), TEX and other files for this article.

José M. Arrieta
Departamento de Matemática Aplicada
Universidad Complutense de Madrid
28040 - Madrid, Spain
email: arrieta@mat.ucm.es
Rosa Pardo
Departamento de Matemática Aplicada
Universidad Complutense de Madrid
28040 - Madrid, Spain
email: rpardo@mat.ucm.es
Anibal Rodríguez-Bernal
Departamento de Matemática Aplicada
Universidad Complutense de Madrid
28040 - Madrid, Spain.
Instituto de Ciencias Matemáticas
CSIC-UAM-UC3M-UCM, 28049--Madrid, Spain
email: arober@mat.ucm.es

Return to the table of contents for this conference.
Return to the EJDE web page