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MODIFIED QUASI-REVERSIBILITY METHOD FOR
NONAUTONOMOUS SEMILINEAR PROBLEMS

MATTHEW A. FURY

Abstract. We prove regularization for the ill-posed, semilinear evolution

problem du/dt = A(t,D)u(t) + h(t, u(t)), 0 ≤ s ≤ t < T , with initial con-

dition u(s) = χ in a Hilbert space where D is a positive, self-adjoint operator
in the space. As in recent literature focusing on linear equations, regular-

ization is established by approximating a solution u(t) of the problem by the

solution of an approximate well-posed problem. The approximate problem will
be defined by one specific approximation of the operator A(t,D) which extends

a recently introduced, modified quasi-reversibility method by Boussetila and

Rebbani. Finally, we demonstrate our theory with applications to a wide class
of nonlinear partial differential equations in L2 spaces including the nonlinear

backward heat equation with a time-dependent diffusion coefficient.

1. Introduction

During the previous several decades, much focus has been placed on approx-
imating solutions of ill-posed problems such as the backward heat equation. In
such problems, solutions do not depend continuously on initial data forcing numer-
ical estimates of the solutions to become difficult. In general, many authors have
established the “regularization” of the ill-posed Cauchy problem

du

dt
= Au(t) 0 ≤ t < T

u(0) = χ
(1.1)

for some prescribed operator A in a Banach space X, in which a known solution
u(t) of (1.1) is estimated to be close to the solution of a corresponding well-posed
problem. For instance, first introduced by Lattes and Lions [12] and Miller [15],
and later studied by Mel’nikova and Filinkov [14, Chapter 3.1.1] (cf. also [13, 16,
17, 1, 10, 20]), the approximate well-posed problem

dv

dt
= fβ(A)v(t) 0 ≤ t < T

v(0) = χ
(1.2)
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is used to regularize (1.1) where for β > 0, fβ(A) is defined by the quasi-reversibility
method fβ(A) = A − βA2. Another well-known approximation introduced by
Showalter [19] may be used where fβ(A) = A(I + βA)−1 (cf. also [1, 11]). Under
these circumstances, approximation results are obtained in the following manner.

Definition 1.1 ([11, Definition 3.1]). Let u(t) be a solution of (1.1) with initial
data χ ∈ X and let vδβ(t) be the solution of the well-posed problem (1.2) with initial
data χδ. Problem (1.1) is regularized if for any δ > 0, there exists β = β(δ) > 0
such that

(i) β → 0 as δ → 0,
(i) ‖u(t)− vδβ(t)‖ → 0 as δ → 0 for 0 ≤ t ≤ T whenever ‖χ− χδ‖ ≤ δ.

Regularization results (cf. [13, 14, 1, 10, 11]) and numerical estimates (cf. [20,
21]) for these results have been calculated in both Hilbert space and Banach space,
and also for different variations of (1.1). For instance, regularization has been
applied to backward or final value problems (cf. [23, 24]), nonlinear problems (cf.
[22, 3]), and also nonautonomous problems where the operator A in (1.1) is replaced
by the time-dependent operator A(t) (cf. [7, 5]).

This paper extends recent regularization results for nonlinear ill-posed problems
in [22] to regularization for the nonautonomous semilinear evolution problem

du

dt
= A(t,D)u(t) + h(t, u(t)) 0 ≤ s ≤ t < T

u(s) = χ
(1.3)

in a Hilbert space H where D is a positive, self-adjoint operator in H and A(t,D) =∑k
j=1 aj(t)D

j where aj ∈ C([0, T ] : R+) ∩ C1([0, T ]) for each 1 ≤ j ≤ k. Under
certain conditions on the function h : [s, T ] × H → H, we prove that the ill-
posed problem (1.3) may be regularized as in Definition 1.1, by considering the
approximate well-posed problem

dv

dt
= fβ(t,D)v(t) + h(t, v(t)) 0 ≤ s ≤ t < T

v(s) = χ
(1.4)

where

fβ(t,D) = − 1
T − s

ln(β + e−(T−s)A(t,D)), 0 ≤ t ≤ T.

The approximation fβ(t,D) of A(t,D) extends the approximation

fβ(A) = − 1
pT

ln(β + e−pTA), β > 0, p ≥ 1

recently introduced by Boussetila and Rebanni [2] as a modified quasi-reversibility
method and employed by Huang [9] and Trong and Tuan [22] in the case of the
autonomous problem (1.1). As is discussed in [2], [9], and [22], one advantage of this
more recent approximation is that the amplification factor of the error between the
operators A and fβ(A) is milder than if the approximations A−βA2 or A(I+βA)−1

were used, both of which induce an error of order eC/β . Results in the current paper
may analogously be compared to regularization estimates recently established for
nonautonomous problems in which the approximation fβ(t,D) = A(t,D)− βDk+1

of A(t,D) is used (cf. [6] and also [7]).
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The paper is organized as follows. In Section 2, we prove that the approximate
problem (1.4) is well-posed with unique classical solution for every χ ∈ H, that
is a function vβ : [s, T ] → H such that vβ(t) ∈ Dom(fβ(t,D)) for s < t < T ,
vβ ∈ C([s, T ] : H) ∩ C1((s, T ) : H), and vβ satisfies (1.4) in H (cf. [18, Chapter
5.1 p. 126]). We also in Section 2 discuss the nature in which the operators
fβ(t,D) approximate the operators A(t,D) and in Section 3, we use these results
to show that the solution of (1.4) may be used to regularize the ill-posed problem
(1.3). Finally, in Section 4, we apply our theory to a wide class of nonlinear partial
differential equations in L2(Rn) with a simple application to the nonlinear backward
heat equation with a time-dependent diffusion coefficient.

Below, ρ(D) will denote the resolvent set of the operator D which consists of all
complex numbers λ such that (λI −D)−1 exists as an everywhere-defined bounded
operator. The set σ(D) will denote the spectrum of D which is defined as the
complement of ρ(D).

2. Semilinear Evolution Equations

Consider the generally ill-posed, semilinear evolution equation (1.3) where D is
a positive, self-adjoint operator in a Hilbert space H and A(t,D) =

∑k
j=1 aj(t)D

j

with aj ∈ C([0, T ] : R+) ∩ C1([0, T ]) for each 1 ≤ j ≤ k. Also, let 0 < β < 1 and
consider the approximate problem (1.4) where

fβ(t,D) = − 1
T − s

ln(β + e−(T−s)A(t,D)), 0 ≤ t ≤ T. (2.1)

We note that for t ∈ [0, T ], fβ(t,D) is defined by means of the functional cal-
culus for self-adjoint operators in the Hilbert space H. Specifically, since D is
positive, self-adjoint, the spectrum σ(D) of D is contained in [0,∞). Further-
more, for t ∈ [0, T ], since the function fβ(t, λ) = − 1

T−s ln(β + e−(T−s)A(t,λ)) is
a Borel function defined for λ ∈ [0,∞), the operator fβ(t,D) is then defined by
fβ(t,D)x =

∫∞
0
fβ(t, λ)dE(λ)x for

x ∈ Dom(fβ(t,D)) = {x ∈ H :
∫ ∞

0

|fβ(t, λ)|2d(E(λ)x, x) <∞} (2.2)

where {E(·)} denotes the resolution of the identity, that is the unique spectral
measure associated with the operator D satisfying the equations Dom(D) = {x ∈
H :

∫∞
0
|λ|2d(E(λ)x, x) < ∞} and Dx =

∫∞
0
λdE(λ)x for x ∈ Dom(D) (cf. [4,

Theorem XII.2.3, Theorem XII.2.6]).
Note that for (t, λ) ∈ [0, T ]× [0,∞), since A(t, λ) ≥ A(t, 0) = 0,

lnβ ≤ ln(β + e−(T−s)A(t,λ)) ≤ ln(β + 1).

Multiplying through by −(T − s)−1 yields

− 1
T − s

ln(β + 1) ≤ fβ(t, λ) ≤ − 1
T − s

ln β. (2.3)

Hence by (2.2) and (2.3), we see that Dom(fβ(t,D)) = H and fβ(t,D) is a bounded,
everywhere-defined operator on H for each t ∈ [0, T ].

Since fβ(t,D) is a bounded operator on H for each t ∈ [0, T ], the linear version
of (1.4) is easily well-posed meaning that a unique classical solution exists for each
χ in a dense subset of X and solutions depend continuously on the initial data
(cf. [8, Chapter 2.13, p. 140]). In order to show that the nonlinear problem (1.4)
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is well-posed and to ultimately prove regularization for (1.3), we will also require
special conditions on the function h : [s, T ]×H → H. We have

Proposition 2.1. Let H be a Hilbert space and for 0 < β < 1, let the operators
fβ(t,D), 0 ≤ t ≤ T be defined by (2.1). Assume the function h : [s, T ] × H → H
satisfies the following conditions.

(i) h is uniformly Lipschitz in H, i.e. ‖h(t, x1) − h(t, x2)‖ ≤ L‖x1 − x2‖ for
some constant L > 0 independent of t ∈ [s, T ] and every x1, x2 ∈ H,

(ii) for each x ∈ H, h(t, x) is continuous from [s, T ] into H.

Then (1.4) is well-posed, with unique classical solution vβ(t) for every χ ∈ H
satisfying the integral equation

vβ(t) = e
R t
s
fβ(τ,D)dτχ+

∫ t

s

e
R t
r
fβ(τ,D)dτh(r, vβ(r))dr. (2.4)

Proof. We first note that, as previously discussed, the inequality (2.3) implies that
fβ(t,D) is a bounded operator on H for each t ∈ [0, T ]. Also, by the assumption on
the functions aj , it may be shown that for each x ∈ H, the function t 7→ fβ(t,D)x
is a continuously differentiable function. These properties together imply that the
linear, homogeneous version of (1.4) is well-posed, and also provides the existence
of an evolution system Vβ(t, s) = e

R t
s
fβ(τ,D)dτ , 0 ≤ s ≤ t ≤ T associated with

the operators fβ(t,D), 0 ≤ t ≤ T (cf. [18, Theorem 5.4.8, Theorem 5.4.3], [6,
Proposition 2.10]).

As (t, s) 7→ Vβ(t, s) is continuous in the strong operator topology (cf. [18, Theo-
rem 5.4.8]), and by the assumptions on the function h : [s, T ]×H → H, following
[18, Theorem 6.1.7], we define the mapping F : C([s, T ] : H)→ C([s, T ] : H) by

(Fv)(t) = Vβ(t, s)χ+
∫ t

s

Vβ(t, r)h(r, v(r))dr.

Using properties of the bounded operators Vβ(t, s) and the Lipschitz condition on
h, it follows from an application of the Contraction Mapping Theorem that F has
a unique fixed point vβ ∈ C([s, T ] : H) (cf. [18, Proof of Theorem 6.1.2]).

Next, define G(t) = h(t, vβ(t)) and consider the linear evolution problem

dw

dt
= fβ(t,D)w(t) +G(t) 0 ≤ s ≤ t < T

w(s) = χ.
(2.5)

Note G(t) is continuous from [s, T ] into H by the following calculation which follows
from our assumptions on h and continuity of vβ(t):

‖G(t)−G(t0)‖ = ‖h(t, vβ(t))− h(t0, vβ(t0))‖
≤ ‖h(t, vβ(t))− h(t, vβ(t0))‖+ ‖h(t, vβ(t0))− h(t0, vβ(t0))‖
≤ L‖vβ(t)− vβ(t0)‖+ ‖h(t, vβ(t0))− h(t0, vβ(t0))‖
→ 0 as t→ t0.

Hence, by [18, Theorem 5.5.2], (2.5) is well-posed with unique classical solution

wβ(t) = Vβ(t, s)χ+
∫ t

s

Vβ(t, r)G(r)dr,
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implying that

wβ(t) = Vβ(t, s)χ+
∫ t

s

Vβ(t, r)h(r, vβ(r))dr = vβ(t)

since vβ is a fixed point of F . Because wβ(t) is a classical solution of (2.5), vβ(t)
must then be a classical solution of (1.4). Uniqueness follows from uniqueness of
the fixed point since any classical solution of (1.4) satisfies the integral equation
(2.4).

Finally, continuous dependence on initial data holds by the following calculua-
tion. By (2.3), consider for 0 ≤ s ≤ t ≤ T and x ∈ H,

‖Vβ(t, s)x‖2 = ‖e
R t
s
fβ(τ,D)dτx‖2

=
∫ ∞

0

|e
R t
s
fβ(τ,λ)dτ |2d(E(λ)x, x)

≤
∫ ∞

0

|e−
t−s
T−s lnβ |2d(E(λ)x, x)

=
∫ ∞

0

|β
s−t
T−s |2d(E(λ)x, x)

= (β
s−t
T−s ‖x‖)2

(2.6)

which implies ‖Vβ(t, s)‖ ≤ β
s−t
T−s . Now, let v1 and v2 be classical solutions of (1.4)

corresponding to initial data χ1 and χ2 respectively. Then, as v1 and v2 each satisfy
(2.4), and since 0 < β < 1, we have

‖v1(t)− v2(t)‖

≤ ‖Vβ(t, s)χ1 − Vβ(t, s)χ2‖+
∫ t

s

‖Vβ(t, r)h(r, v1(r))− Vβ(t, r)h(r, v2(r))‖dr

≤ β
s−t
T−s ‖χ1 − χ2‖+

∫ t

s

β
r−t
T−s ‖h(r, v1(r))− h(r, v2(r))‖dr

≤ β−1‖χ1 − χ2‖+ Lβ−1

∫ t

s

‖v1(r)− v2(r)‖dr.

Gronwall’s Inequality (cf. [18, Proof of Theorem 6.1.2]) then implies

‖v1(t)− v2(t)‖ ≤ β−1‖χ1 − χ2‖eLβ
−1(T−s)

→ 0 as ‖χ1 − χ2‖ → 0 for each t ∈ [s, T ].

�

We have shown that under the assumptions of Proposition 2.1, the approximate
problem (1.4) is well-posed with unique classical solution vβ(t). In order that the
solution vβ(t) of (1.4) is used to regularize problem (1.3), we will examine the
difference between the operators A(t,D) and the approximate operators fβ(t,D).
The following lemma demonstrates this and is motivated by the approximation
condition, Condition A, of Ames and Hughes (cf. [1, Definition 1], and also [22,
Definition p. 4]).

Lemma 2.2. Let H be a Hilbert space and for 0 < β < 1, let the operators
fβ(t,D), 0 ≤ t ≤ T be defined by (2.1). Define B(λ) =

∑k
j=1Bjλ

j where Bj =
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maxt∈[0,T ] aj(t) for each 1 ≤ j ≤ k. Then for each t ∈ [0, T ],

Dom(e(T−s)B(D)) ⊆ Dom(A(t,D)) ∩Dom(fβ(t,D))

and

‖(−A(t,D) + fβ(t,D))ψ‖ ≤ β

T − s
‖e(T−s)B(D)ψ‖

for all ψ ∈ Dom(e(T−s)B(D)).

Proof. Let t ∈ [0, T ] and ψ ∈ Dom(e(T−s)B(D)). Then since (T − s)A(t, λ) ≤
(T − s)B(λ) ≤ e(T−s)B(λ) for λ ≥ 0, we have ψ ∈ Dom(A(t,D)) by (2.2), and so
ψ ∈ Dom(A(t,D)) ∩Dom(fβ(t,D)) since Dom(fβ(t,D)) = H. Next,

‖(−A(t,D) + fβ(t,D))ψ‖2

=
∫ ∞

0

| −A(t, λ) + fβ(t, λ)|2d(E(λ)ψ,ψ)

=
∫ ∞

0

|A(t, λ) +
1

T − s
ln(β + e−(T−s)A(t,λ))|2d(E(λ)ψ,ψ)

=
∫ ∞

0

| 1
T − s

ln(e(T−s)A(t,λ)) +
1

T − s
ln(β + e−(T−s)A(t,λ))|2d(E(λ)ψ,ψ)

=
∫ ∞

0

| 1
T − s

ln(βe(T−s)A(t,λ) + 1)|2d(E(λ)ψ,ψ)

and using the fact that ln(x+ 1) ≤ x for x ≥ 0, then

‖(−A(t,D) + fβ(t,D))ψ‖2 ≤
∫ ∞

0

| β

T − s
e(T−s)A(t,λ)|2d(E(λ)ψ,ψ)

≤
∫ ∞

0

| β

T − s
e(T−s)B(λ)|2d(E(λ)ψ,ψ)

= ‖ β

T − s
e(T−s)B(D)ψ‖2

proving the desired result. �

In light of the inequality in Lemma 2.2, define for (t, λ) ∈ [0, T ]× [0,∞),

gβ(t, λ) = −A(t, λ) + fβ(t, λ).

Note,
ln(β + e−(T−s)A(t,λ)) ≥ ln(e−(T−s)A(t,λ)) = −(T − s)A(t, λ)

which, after multiplying through by −(T −s)−1, yields fβ(t, λ) ≤ A(t, λ) and hence

gβ(t, λ) ≤ 0 for (t, λ) ∈ [0, T ]× [0,∞). (2.7)

For each natural number n, set en = {λ ∈ [0,∞) : maxt∈[0,T ] |A(t, λ)| ≤ n}. Note
by inequality (2.3),

λ ∈ en ⇒ max
t∈[0,T ]

|fβ(t, λ)| ≤Mβ (2.8)

for some constant Mβ , and by the definition of gβ(t, λ), then

λ ∈ en ⇒ max
t∈[0,T ]

|gβ(t, λ)| ≤ n+Mβ . (2.9)
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Set En = E(en) and let ψ ∈ H be arbitrary. Consider the homogeneous evolution
problem

du

dt
= A(t,D)Enu(t) 0 ≤ s ≤ t < T

u(s) = ψ.
(2.10)

Lemma 2.3. The evolution problem (2.10) has a unique classical solution t 7→
Un(t, s)ψ for every ψ ∈ H, where Un(t, s), 0 ≤ s ≤ t ≤ T is an evolution system
on H such that Un(t, s) = e

R t
s
A(τ,D)dτ when acting on EnH.

Proof. For each t ∈ [0, T ], A(t,D)En is a bounded operator on H since |A(t, λ)| ≤ n
for (t, λ) ∈ [0, T ]×en. Also, the function t 7→ A(t,D)En is continuous in the uniform
operator topology since each aj is a continuous function. This implies the existence
of a solution operator Un(t, s), 0 ≤ s ≤ t ≤ T such that t 7→ Un(t, s)ψ is a unique
classical solution of the homogeneous problem (2.10) for every ψ ∈ H (cf. [18,
Theorem 5.1.1]). It may also be shown that Un(t, s) is an evolution system with the
property that Un(t, s) = e

R t
s
A(τ,D)dτ when acting on EnH (cf. [18, Theorem 5.1.2]

and [6, Lemma 3.2]). �

Note by replacing A(t,D)En with either fβ(t,D)En or gβ(t,D)En in (2.10), we
obtain by (2.8) and (2.9), evolution systems Vβ,n(t, s) or Wβ,n(t, s), respectively,
similarly as in Lemma 2.3. We have the following corollary.

Corollary 2.4. Let ψn ∈ EnH. Then

Un(t, s)Wβ,n(t, s)ψn = Vβ,n(t, s)ψn = Wβ,n(t, s)Un(t, s)ψn

for all 0 ≤ s ≤ t ≤ T .

Proof. Note that just as Un(t, s) = e
R t
s
A(τ,D)dτ when acting on EnH, we have

Vβ,n(t, s) = e
R t
s
fβ(τ,D)dτ and Wβ,n(t, s) = e

R t
s
gβ(τ,D)dτ when acting on EnH as

well. The identity then follows from the relation gβ(t, λ) = −A(t, λ) + fβ(t, λ)
and from properties of the functional calculus for self-adjoint operators (cf. [4,
Corollary XII.2.7]). �

3. Regularization for problem (1.3)

In this section, we use the results from Section 2 to prove regularization for the
ill-posed problem (1.3) (Theorem 3.4 below).

Lemma 3.1. Let u(t) and vβ(t) be classical solutions of (1.3) and (1.4) respectively
where the operators fβ(t,D), 0 ≤ t ≤ T are defined by (2.1) and h : [s, T ]×H → H
satisfies the hypotheses of Proposition 2.1. Also, set χn = Enχ and hn(t, x) =
Enh(t, x) for all (t, x) ∈ [s, T ]×H. Then

Enu(t) = Un(t, s)χn +
∫ t

s

Un(t, r)hn(r, u(r))dr,

Envβ(t) = Vβ,n(t, s)χn +
∫ t

s

Vβ,n(t, r)hn(r, vβ(r))dr

for all t ∈ [s, T ].
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Proof. The first identity follows from uniqueness of solutions since both sides of the
equation are classical solutions of the linear inhomogeneous problem

dw

dt
= A(t,D)Enw(t) + hn(t, u(t)) 0 ≤ s ≤ t < T

w(s) = χn.
(3.1)

The second identity holds by a similar argument with A(t,D)En replaced by the
function fβ(t,D)En in (3.1). �

As in Lemma 2.2, set B(λ) =
∑k
j=1Bjλ

j where Bj = maxt∈[0,T ] aj(t) for each
1 ≤ j ≤ k. We have the following result.

Theorem 3.2. Let u(t) and vβ(t) be classical solutions of (1.3) and (1.4) re-
spectively where the operators fβ(t,D), 0 ≤ t ≤ T are defined by (2.1) and h :
[s, T ] × H → H satisfies the hypotheses of Proposition 2.1. Then if there exist
constants M ′,M ′′ ≥ 0 such that

‖e(T−s)B(D)e
R t
s
A(τ,D)dτχ‖ ≤M ′,

‖e(T−s)B(D)e
R t
s
A(τ,D)dτh(t, u(t))‖ ≤M ′′

for all t ∈ [s, T ], then there exist constants C and L independent of β such that

‖u(t)− vβ(t)‖ ≤ β
T−t
T−sCeL(T−s) for 0 ≤ s ≤ t < T.

Proof. As in Lemma 3.1, set χn = Enχ and hn(t, x) = Enh(t, x) for all (t, x) ∈
[s, T ]×H. From Lemma 3.1, for 0 ≤ s ≤ t < T ,

‖Enu(t)− Envβ(t)‖

≤ ‖Un(t, s)χn − Vβ,n(t, s)χn‖+
∫ t

s

‖Un(t, r)hn(r, u(r))− Vβ,n(t, r)hn(r, vβ(r))‖dr

≤ ‖Un(t, s)χn − Vβ,n(t, s)χn‖ (3.2)

+
∫ t

s

‖Un(t, r)hn(r, u(r))− Vβ,n(t, r)hn(r, u(r))‖dr (3.3)

+
∫ t

s

‖Vβ,n(t, r)hn(r, u(r))− Vβ,n(t, r)hn(r, vβ(r))‖dr. (3.4)

For the expression (3.2), we have by Corollary 2.4 and standard properties of evo-
lution systems ([18, Theorem 5.1.2]),

‖Un(t, s)χn − Vβ,n(t, s)χn‖ = ‖(I −Wβ,n(t, s))Un(t, s)χn‖
= ‖(Wβ,n(t, t)−Wβ,n(t, s))Un(t, s)χn‖

=
∥∥∫ t

s

∂

∂q
Wβ,n(t, q)Un(t, s)χndq

∥∥
=
∥∥∫ t

s

(−Wβ,n(t, q)gβ(q,D)En)Un(t, s)χndq
∥∥.

Recall Wβ(t, s) = e
R t
s
gβ(τ,D)dτ when acting on EnH (Proof of Corollary 2.4). Also,

since en is a bounded subset of [0,∞) and En = E(en) is a projection operator, it
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is clear from (2.2) that Un(t, s)χn ∈ Dom(e(T−s)B(D)). Therefore, we have by (2.7)
and Lemma 2.2,

(3.2) ≤
∫ t

s

‖Wβ,n(t, q)gβ(q,D)Un(t, s)χn‖dq

≤
∫ t

s

‖gβ(q,D)Un(t, s)χn‖dq

≤ β

T − s
(t− s)‖e(T−s)B(D)Un(t, s)χn‖.

Similarly, the second expression

(3.3) =
∫ t

s

‖(I −Wβ,n(t, r))Un(t, r)hn(r, u(r))‖dr

≤
∫ t

s

β

T − s
(t− r)‖e(T−s)B(D)Un(t, r)hn(r, u(r))‖dr.

Combining these calculations for (3.2) and (3.3), we have

‖Un(t, s)χn − Vβ,n(t, s)χn‖+
∫ t

s

‖Un(t, r)hn(r, u(r))− Vβ,n(t, r)hn(r, u(r))‖dr

≤ βC
(3.5)

where C is a constant independent of β and also independent of n and t by our
stabilizing constants M ′ and M ′′. Finally, by (2.6) and the Lipschitz condition on
h, the third expression is

(3.4) =
∫ t

s

‖Vβ,n(t, r)(hn(r, u(r))− hn(r, vβ(r)))‖dr

≤
∫ t

s

β
r−t
T−s ‖hn(r, u(r))− hn(r, vβ(r))‖dr

≤ L
∫ t

s

β
r−t
T−s ‖u(r)− vβ(r)‖dr.

(3.6)

Combining (3.5) and (3.6), we have shown that ‖Enu(t) − Envβ(t)‖ ≤ βC +
L
∫ t
s
β
r−t
T−s ‖u(r) − vβ(r)‖dr, and since all constants on the right are independent

of n, we may let n→∞ to obtain

‖u(t)− vβ(t)‖ ≤ βC + L

∫ t

s

β
r−t
T−s ‖u(r)− vβ(r)‖dr.

Next, note since 0 < β < 1, we have

‖u(t)− vβ(t)‖ ≤ β
T−t
T−sC + L

∫ t

s

β
r−t
T−s ‖u(r)− vβ(r)‖dr

which yields

β
t−T
T−s ‖u(t)− vβ(t)‖ ≤ C + L

∫ t

s

β
r−T
T−s ‖u(r)− vβ(r)‖dr.

By Gronwall’s inequality, then

β
t−T
T−s ‖u(t)− vβ(t)‖ ≤ CeL(T−s)

from which the desired result follows. �
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The inequality in Theorem 3.2 establishes continuous dependence on modeling
for problems (1.3) and (1.4) meaning that as β → 0, the operators fβ(t,D) approach
the operators A(t,D) and also the difference in solutions u(t) and vβ(t) tends to
0 for each t ∈ [s, T ). Since convergence to 0 in the inequality ‖u(t) − vβ(t)‖ ≤
Cβ

T−t
T−s eL(t−s) is lost when t = T , we provide an alternate estimate for this specific

case. Following calculations in [22], we have

Lemma 3.3. Let u(t) and vβ(t) be the solutions of (1.3) and (1.4) respectively
as in Theorem 3.2 and let the hypotheses of Theorem 3.2 be satisfied. Then there
exists tβ ∈ (s, T ) and constants C and M independent of β such that

‖u(T )− vβ(tβ)‖ ≤M
√
− 1

lnβ
+ β

1
T−s

q
− 1
lnβCeL(T−s).

Proof. Following [22, Proof of Theorem 3.1], define the function

q(t) = − 1
(T − t)2

− ln β, s < t < T.

It is easy to see that for sufficiently small β, there exists t0 ∈ (s, T ) such that
q(t0) > 0. Since limt→T− q(t) = −∞, there must then exist tβ ∈ (t0, T ) such that
q(tβ) = 0, that is − 1

(T−tβ)2 = lnβ. Hence, we have

T − tβ =
√
− 1

lnβ
. (3.7)

Now, consider by Lemma 3.1,

‖Enu(T )− Enu(tβ)‖ = ‖
∫ T

tβ

d

dt
Enu(t) dt‖

= ‖
∫ T

tβ

(A(t,D)Enu(t) + hn(t, u(t))) dt‖

≤
∫ T

tβ

(‖A(t,D)Un(t, s)χn‖

+
∫ t

s

‖A(t,D)Un(t, r)hn(r, u(r))‖dr + ‖hn(t, u(t))‖) dt

≤M(T − tβ)

for some constant M independent of β and n where the last inequality follows from
the stabilizing constants M ′ and M ′′ of Theorem 3.2. Letting n → ∞, we obtain
‖u(T ) − u(tβ)‖ ≤ M(T − tβ). Finally, since tβ ∈ (s, T ), we have by Theorem 3.2
and (3.7),

‖u(T )− vβ(tβ)‖ ≤ ‖u(T )− u(tβ)‖+ ‖u(tβ)− vβ(tβ)‖

≤M(T − tβ) + β
T−tβ
T−s CeL(T−s)

= M

√
− 1

ln β
+ β

1
T−s

q
− 1
lnβCeL(T−s),

as desired. �

We utilize the estimates in Theorem 3.2 and Lemma 3.3 to prove regularization
for (1.3) as follows.
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Theorem 3.4. Let u(t) be a classical solution of (1.3) as in Theorem 3.2 and
let the hypotheses of Theorem 3.2 be satisfied. Then for any δ > 0, there exists
β = β(δ) > 0 such that

(i) β → 0 as δ → 0,
(ii) ‖u(t)− vδβ(t)‖ → 0 as δ → 0 for s ≤ t ≤ T whenever ‖χ− χδ‖ ≤ δ

where vδβ(t) is the solution of (1.4) with initial data χδ.

Proof. Let δ > 0 be given and let ‖χ − χδ‖ ≤ δ. Also, let vβ(t) be the solution of
(1.4) as in Theorem 3.2. For s ≤ t < T , by Theorem 3.2, then

‖u(t)− vδβ(t)‖ ≤ ‖u(t)− vβ(t)‖+ ‖vβ(t)− vδβ(t)‖

≤ β
T−t
T−sCeL(T−s) + ‖vβ(t)− vδβ(t)‖.

(3.8)

Consider the second quantity in (3.8). As in previous calculations, by (2.6) and the
Lipschitz condition on H, we have

‖vβ(t)− vδβ(t)‖

≤ ‖Vβ(t, s)χ− Vβ(t, s)χδ‖+
∫ t

s

‖Vβ(t, r)(h(r, vβ(r))− h(r, vδβ(r)))‖dr

≤ δβ
s−t
T−s + L

∫ t

s

β
r−t
T−s ‖vβ(r)− vδβ(r)‖dr.

Hence,

β
t−T
T−s ‖vβ(t)− vδβ(t)‖ ≤ δβ

s−T
T−s + L

∫ t

s

β
r−T
T−s ‖vβ(r)− vδβ(r)‖dr

which by Gronwall’s Inequality gives us

β
t−T
T−s ‖vβ(t)− vδβ(t)‖ ≤ δβ

s−T
T−s eL(T−s).

Therefore,

‖vβ(t)− vδβ(t)‖ ≤ δβ
s−t
T−s eL(T−s) (3.9)

and choosing β = δ yields

‖vβ(t)− vδβ(t)‖ ≤ β
T−t
T−s eL(T−s).

Thus, β → 0 as δ → 0, and by (3.8), we have

‖u(t)− vδβ(t)‖ ≤ β
T−t
T−sCeL(T−s) + β

T−t
T−s eL(T−s)

→ 0 as δ → 0.
(3.10)

For the case that t = T we utilize Lemma 3.3. Since tβ ∈ (s, T ), we have by
Lemma 3.3 and (3.9),

‖u(T )− vδβ(T )‖

≤ ‖u(T )− vβ(tβ)‖+ ‖vβ(tβ)− vδβ(tβ)‖+ ‖vδβ(tβ)− vδβ(T )‖

≤
(
M

√
− 1

lnβ
+ β

1
T−s

q
− 1
lnβCeL(T−s)

)
+ δβ

s−tβ
T−s eL(T−s) + ‖vδβ(tβ)− vδβ(T )‖ .
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Again choosing β = δ and applying (3.7), we have

‖u(T )− vδβ(T )‖

≤M
√
− 1

ln β
+ β

1
T−s

q
− 1
lnβCeL(T−s) + β

T−tβ
T−s eL(T−s) + ‖vδβ(tβ)− vδβ(T )‖

= M

√
− 1

lnβ
+ β

1
T−s

q
− 1
lnβCeL(T−s) + β

1
T−s

q
− 1
lnβ eL(T−s) + ‖vδβ(tβ)− vδβ(T )‖

→ 0 as δ → 0,
(3.11)

the reason for convergence of the last term being that t 7→ vδβ(t) is continuous and
that tβ converges to T as β → 0.

Combining (3.10) and (3.11) completes the proof and so the ill-posed problem
(1.3) is regularized. �

4. Examples

The theory in Section 3 may be applied to a wide class of ill-posed partial
differential equations in the Hilbert space H = L2(Rn) with D = −∆ where ∆
denotes the Laplacian defined by ∆ψ =

∑n
i=1

∂2ψ
∂x2
i

. The operator −∆ is a positive,
self-adjoint operator in L2(Rn) and hence the partial differential equation

∂

∂t
u(t, x) = A(t,−∆)u(t, x) + h(t, x, u(t, x)), (t, x) ∈ [s, T )× Rn

u(s, x) = ψ(x), x ∈ Rn
(4.1)

in L2(Rn), where A(t,−∆) =
∑k
j=1 aj(t)(−∆)j and aj ∈ C([0, T ] : R+)∩C1([0, T ])

for 1 ≤ j ≤ k, is generally ill-posed. By Theorem 3.4, problem (4.1) is regularized
by considering solutions of the approximate well-posed problem (1.4).

We note a simple example of (4.1) is the case that H = (L2(R), ‖ · ‖2) and there
is only one term in the sum A(t,−∆) (i.e. k = 1), yielding regularization for the
nonlinear backward heat equation

∂

∂t
u(t, x) = −a(t)∆u(t, x) + tu(t, x) + e−(x−t)2 , (t, x) ∈ [s, T )× R

u(s, x) = ψ(x), x ∈ R
(4.2)

with time-dependent diffusion coefficient a(t) and h defined as h(t, x, φ(x)) =
tφ(x)+e−(x−t)2 for φ ∈ L2(R). The function h is well-defined since e−(x−t)2 ∈ L2(R)
for any t ∈ [s, T ]. Using a dominated convergence argument, it may also be shown
that for each φ ∈ H, t 7→ h(t, x, φ(x)) is continuous. Finally, h is clearly uniformly
Lipschitz in H by the calculation,

‖h(t, x, φ1(x))− h(t, x, φ2(x))‖2 = ‖(tφ1(x) + e−(x−t)2)− (tφ2(x) + e−(x−t)2)‖2
= ‖tφ1(x)− tφ2(x)‖2
≤ T‖φ1(x)− φ2(x)‖2.

Hence, by Proposition 2.1, the approximate problem (1.4) corresponding to (4.2) is
well-posed, and by Theorem 3.4, provides regularization for the ill-posed problem
(4.2).
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