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NUMERICAL SOLUTION TO NONLINEAR TRICOMI
EQUATION USING WENO SCHEMES

ADRIAN SESCU, ABDOLLAH A. AFJEH, CARMEN SESCU

Abstract. Nonlinear Tricomi equation is a hybrid (hyperbolic-elliptic) sec-

ond order partial differential equation, modelling the sonic boom focusing. In
this paper, the Tricomi equation is transformed into a hyperbolic system of

first order equations, in conservation law form. On the upper boundary, a

new mixed boundary condition for the acoustic pressure is used to avoid the
inclusion of the Dirac function in the numerical solution. Weighted Essentially

Non-Oscillatory (WENO) schemes are used for the spatial discretization, and

the time marching is carried out using the second order accurate Runge-Kutta
total-variation diminishing (TVD) scheme.

1. Nonlinear Tricomi Equation

The weak shock wave focusing at a smooth caustic has been elucidated as a result
of the concern about the focusing of sonic boom induced by maneuvering supersonic
aircraft. Guiraud [6] elaborated a consistent theory including both diffraction and
nonlinear effects at first order and leading to the nonlinear Tricomi equation. In a
review report, Coulouvrat [5] extended the previous results to a three-dimensional
heterogeneous medium. Hunter and Keller [8] showed that the nonlinear Tricomi
equation occurs for the general case of weakly nonlinear wave solutions of a system of
hyperbolic equations. Kandil and Zheng [10] solved the nonlinear, non-conservative
Tricomi equation using a frequency-domain scheme, a time domain scheme and a
time domain with overlapping grid scheme. A conservative form of the nonlinear
Tricomi equation with the pressure potential as the dependent variable has been
developed and solved using a time-domain scheme. The four schemes have been
applied to several incoming waves which include an N -wave, a Concorde aircraft
wave and symmetric and asymmetric flat-top and ramp-top waves. Kandil and
Khasdeo [11] investigated the effects of several parameteres (longitudinal size fo
the computational domain, the incoming shock footprint width and its level of
strength) on the computational solution to the nonlinear Tricomi equation.

According to the catastrophe theory [4], the pressure near the fold caustic can
be shown to be a function of two independent variables only: the distance to the

2000 Mathematics Subject Classification. 76Q05, 35L60, 35L65, 65M22.
Key words and phrases. Nonlinear aeroacoustics; hyperbolic conservation law;

discretized equations.
c©2010 Texas State University - San Marcos.

Published September 25, 2010.

235



236 A. SESCU, A. A. AFJEH, C. SESCU EJDE/CONF/19

caustic z, and the phase of the signal t. The corresponding dimensionless variables
are:

(1) the dimensionless delayed time: τ̄ = [t−x(1−z/Rsec/c0)]/Tac, where x is the
coordinate tangent to the caustic, Rsec is the radius of curvature of the intersection
of the caustics with the Oxz plane, c0 is the ambient sound speed, and Tac is the
characteristic duration of the acoustical signal;

(2) the dimensionless distance to the caustic: z̄ = z/δ, where δ is the thickness
of the diffraction boundary; and

(3) the dimensionless pressure: p̄ = (p−p0)/pac, where p0 is the ambient pressure,
and pac is the maximal pressure.

Using these dimensionless variables, the Euler equations are simplified to get the
nonlinear Tricomi equation [6]:

∂2p̄

∂z̄2
− z̄ ∂

2p̄

∂τ̄2
+
µ

2
∂2p̄2

∂τ̄2
= 0, (1.1)

where the coefficient µ = 2βMac[Rcau/(2c0Tac)]2/3 measures the nonlinear effects
relative to the diffraction effects (here Rcau = 1/(1/Rsec + 1/Rray), and Rray is the
radius of curvature of the projection of the acoustical ray on the Oxz plane), β is
the nonlinearity parameter of the medium, and Mac is the acoustical Mach number.
In figure 1, a schematic of the focusing of a N -wave i s shown. The domain consists
of two zones: the hyperbolic zone which is located above the z̄ = 0 axis, and the
elliptic zone which is located below the z̄ = 0 axis. The amplification of the N -wave
occurs on the caustic, in the vicinity of the τ̄ = 0, z̄ = 0.

Figure 1. N -wave focusing

The associated boundary conditions are:
(1) In time, for a transient signal, the medium is not perturbed before or after

the acoustical wave has passed: p̄(z̄, τ̄ → ±∞) = 0 or, for a periodic signal (with a
period T), one simply gets p̄(z̄, τ̄ + T ) = p̄(z̄, τ̄);

(2) Away from the caustic in the shadow zone, the acoustic pressure decays
exponentially: p̄(z̄ → −∞, τ̄) = 0;
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(3) Away from the caustic on the illuminated side, the field matches the geomet-
rical acoustics approximation:

p̄(z̄ → +∞, τ̄) = z̄−1/4[F (τ̄ +
2
3
z̄3/2) +G(τ̄ − 2

3
z̄3/2)] (1.2)

The function F represents the incoming wave, and is supposed to be known. On
the contrary, the function G is the time waveform along the outgoing ray. Unlike
the incoming signal F , the outgoing signal G has undergone the diffraction effects
after having tangented the caustic, and is unknown. To eliminate this unknown
function, the matching boundary condition (1.2) can be written as a “radiation
condition”, by a combination of its derivatives with respect to z̄ and τ̄ :

z̄1/4 ∂p̄

∂τ̄
+ z̄−1/4 ∂p̄

∂z̄
+ z−5/4 p̄

4
→ 2

dF

dτ

(
τ̄ +

2
3
z̄3/2

)
, as z̄ → +∞ (1.3)

1.1. Conservation Law Form. In what follows the bar notation for both the de-
pendent and independent variables will be dropped. Upon introducing the pseudo-
time derivatives and the new dependent variable q, the conservation law form of
the nonlinear Tricomi equation can be written as

∂u
∂t

+ div f(u) = 0, in Ω× (0, θ) (1.4)

where Ω is a real domain in R2, (0, θ) is a time interval, and

u =
(
p
q

)
; f(u) = f1(u)~i+ f2(u)~j =

(
zp− µ

2 p
2

q

)
~i+

(
q
p

)
~j (1.5)

Definition. The conservation law (1.4) is hyperbolic if any real combination of the
Jacobians

∑d
i=1 ψi∂fi/∂u has 2 real eigenvalues and a complete set of eigenvectors.

The real combination of the Jacobians is given by

J(u) =
[
ψ1(z − µp) ψ2

ψ2 ψ1

]
(1.6)

and the eigenvalues are λ1,2 = 1/2[ψ1(z−µp+1)±
√
ψ2

1(z − µp− 1)2 + 4ψ2
2 ], which

are real for any combination of ψ1 and ψ2. The corresponding linearly independent
right eigenvectors are:

r1 = C1

(
A+

√
A2 + 4ψ2

2

2ψ2

)
; r2 = C2

(
2ψ2

−A−
√
A2 + 4ψ2

2

)
; (1.7)

where A = ψ1(z − µp − 1). As a result, the conservation law (1.4) is hyperbolic.
The pseudo-time derivative in equation (1.4) has been introduced to change the
character of the equation from mixed (elliptic/hyperbolic) to hyperbolic. The iter-
ations in time have the scope to drop the time derivatives to zero (the residuals go
to zero), so that the numerical solution satisfies the original equation (1.1).

1.2. Modified Boundary Conditions. For z → +∞ the boundary condition is
a little problematic: equation (1.3) contains the derivative of F with respect to τ
and, in the case of an incoming shock wave, this leads to a boundary condition
with a sharp singularity (delta Dirac function), which may be problematic from the
numerical point of view.

In this work, a different treatment of the boundary condition for z → +∞ is
adopted. Function F (x) which represents the incoming wave is assumed to be
zero except in a finite interval in the vicinity of x = 0. This is the case of an
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N wave, for example, modelling the sonic boom focusing. When equation (1.4) is
solved numerically, the domain is truncated and the boundary conditions at infinity
become conditions for large τ or z. If the upper boundary (z → +∞) is considered
far enough from 0, then the incoming and the outgoing waves are separated by the
z-axis. This suggests the division of the upper boundary in two regions: τ < 0 and
τ ≥ 0. Thus the boundary condition on the upper side can be written as

Φ(−τ)p+ Φ(τ)
(
z1/4 ∂p

∂τ
+ z−1/4 ∂p

∂z
+ z−5/4 p̄

4

)
→ Φ(−τ)F

(
τ +

2
3
z3/2

)
(1.8)

as z → +∞, where Φ(τ) is the Heaviside step function.

1.3. Linear Case: Analytical Solution. An analytical solution [3] to the linear
Tricomi equation is presented in this section, which will be used to validate the
numerical solution. The linear Tricomi equation is obtained by setting µ = 0:

z
∂2p

∂τ2
− ∂2p

∂z2
= 0 (1.9)

with boundary conditions defined as before.
An analytical solution can be found using the Fourier analysis [3] in the form

p(τ, z) = TF−1[
√

2(1 + i sgn(ω))|ω| 16Ai(−|ω|2/3z)TF (F )] (1.10)

where TF and TF−1 stand for the Fourier transform and its inverse:

p̂(z, ω) =

+∞∫
−∞

p(τ, z)e−iωτdτ ; p(τ, z) =
1
2π

+∞∫
−∞

p̂(z, ω)eiωτdω (1.11)

The analytical solution at z = 0, for an incoming N -wave in the form

F (τ) =

{
−τ/T, if |τ | < T

0, otherwise
(1.12)

can be explicitly written as

pa(τ, 0) =
2Ai(0)Γ(1/6)

T
√

2π
[f1(τ) + f2(τ) + f3(τ) + f4(τ)] (1.13)

where 2T = 1 (the duration of the N -wave) and

f1(τ) =
sgn(τ)

5
sin

π

12
[|T − |τ ||5/6 − (T + |τ |)5/6]

f2(τ) = |τ | cos
π

12
[|T − |τ ||−1/6 − (T + |τ |)−1/6]

f3(τ) = −1
5

cos
π

12
[|T + |τ ||5/6 + sgn(T − |τ |)|T − |τ ||5/6]

f4(τ) = −τ sin
π

12
[|T + |τ ||−1/6 + sgn(T − |τ |)|T − |τ ||−1/6]

(1.14)

Away from the caustics, where z > 0, the geometrical acoustics approximation (1.2)
can be used, where function G can be explicitly determined, [2]

G(τ) = −T
π

[2 +
τ

T
ln
|T − τ |
|T + τ |

] (1.15)
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2. WENO Schemes

WENO schemes have been designed in recent years as a class of high order finite
volume or finite difference schemes to solve hyperbolic conservation laws, with the
property of maintaining both uniform high order accuracy and an essentially non-
oscillatory solution in the vicinity of discontinuities or large gradients. The first
WENO scheme is constructed in [12] for a third-order finite volume version in one
space dimension. In [9], third and fifth-order finite difference WENO schemes in
multi space dimensions are constructed, with a general framework for the design
of the smoothness indicators and nonlinear weights. WENO schemes are designed
based on the successful ENO schemes in [7, 13]. Both ENO and WENO schemes
use the idea of adaptive stencils in the reconstruction procedure based on the local
smoothness of the numerical solution to automatically achieve high order accuracy
and a non-oscillatory property near discontinuities. ENO uses just one (optimal in
some sense) out of many candidate stencils when doing the reconstruction, while
WENO uses a convex combination of all the candidate stencils, each being assigned
a nonlinear weight which depends on the local smoothness of the numerical solution
based on that stencil. For a detailed review of ENO and WENO schemes, we refer
to the lecture notes [14].

2.1. Upwind WENO Schemes. Upwind WENO schemes of third and fifth order
of accuracy are applied in this work, and therefore they are briefly introduced here.
The schemes are written as

f̂±i+1/2 =
k−1∑
r=0

ω±r f̂
±
i+1/2,r (2.1)

where ω±r and α±r are given by

ωr =
αr∑k−1

l=0 αl

, where αr =
Cr

(ε+ ISr)2
, (2.2)

where Cr are the ideal weights and the parameter ε is a small number (10−10 to
10−6) introduced to avoid the cancellation of the denominator, and ISr is a measure
of the smoothness.

2.1.1. Third Order (r = 2). The third order (WENO3) scheme uses a three-point
stencil [xi−1, xi+1] or [xi, xi+2], corresponding to f̂+

i+1/2 or f̂−i+1/2, respectively.

There are two ENO candidate stencils (for f̂+
i+1/2 or f̂−i+1/2), given by

f̂+
i+1/2,0 = −1

2
f̂+

i−1 +
3
2
f̂+

i

f̂+
i+1/2,1 = +

1
2
f̂+

i +
1
2
f̂+

i+1

(2.3)

with the corresponding smoothness indicators,

IS+
0 =

(
f̂+

i+1 − f̂
+
i

)2

, IS+
1 =

(
f̂+

i − f̂
+
i−1

)2

(2.4)

The optimal weights are C0 = 1/3 and C1 = 2/3.
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2.1.2. Fifth Order (r = 3). The fifth order (WENO5) scheme uses a five-point
stencil [xi−2, xi+2] or [xi−1, xi+3], corresponding to f̂+

i+1/2 or f̂−i+1/2, respectively.

There are three ENO candidate stencils (for f̂+
i+1/2 or f̂−i+1/2), given by

f̂+
i+1/2,0 =

2
6
f̂+

i−2 −
7
6
f̂+

i−1 +
11
6
f̂+

i

f̂+
i+1/2,1 = −1

6
f̂+

i−1 +
5
6
f̂+

i +
2
6
f̂+

i+1

f̂+
i+1/2,2 =

2
6
f̂+

i +
5
6
f̂+

i+1 −
1
6
f̂+

i+2

(2.5)

with the corresponding smoothness indicators

IS+
0 =

13
12

(
f̂+

i−2 − 2f̂+
i−1 + f̂+

i

)2

+
1
4

(
f̂+

i−2 − 4f̂+
i−1 + 3f̂+

i

)2

IS+
1 =

13
12

(
f̂+

i−1 − 2f̂+
i + f̂+

i+1

)2

+
1
4

(
f̂+

i−1 − f̂
+
i+1

)2

IS+
2 =

13
12

(
f̂+

i − 2f̂+
i+1 + f̂+

i+2

)2

+
1
4

(
3f̂+

i − 4f̂+
i+1 + f̂+

i+2

)2

(2.6)

The optimal weights are C0 = 1/10, C1 = 6/10 and C2 = 3/10.

2.2. WENO Scheme for Nonlinear Tricomi Equation. Consider the nonlin-
ear Tricomi Equation written as a system of conservation law (equation (1.4)). The
procedure of calculating the numerical fluxes at a cell face using WENO schemes
proposed by Jiang and Shu [9] can be summarized as follows:

1. Projection to the characteristic space.
2. Flux splitting.
3. WENO interpolation.
4. Reverse projection.

The left eigenvector matrix R−1
i+1/2 is used for the projection of the conservative

variables and inviscid fluxes to the characteristic space,

U = R−1
i+1/2u, Fi+1/2 = R−1

i+1/2fi+1/2, (2.7)

The projected flux is split by flux splitting methods such as the Lax-Friedrichs
method:

F (l)± =
1
2
(F (l) ± λ(l)

maxU(l)) (2.8)

where the superscript l denotes each characteristic field, the signs + and − mean
the positive and negative flux parts, the scalar variables F and U are the elements
of the vectors F and U, respectively, and the eigenvalue λ(l)

max is defined over a grid
line: λ(l)

max = max |λ(l)
i |,i = 1, . . . , Nx. Then, the numerical fluxes obtained by the

WENO interpolation are given by

F̂i+1/2 = F̂+
i+1/2 + F̂−i+1/2 (2.9)

where F̂±i+1/2 are the interpolated fluxes at the cell face i+ 1/2. Finally, the fluxes
are obtained by the reverse projection as

f̂i+1/2 = Ri+1/2F̂i+1/2 (2.10)
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After the spatial reconstruction is obtained with WENO schemes, a set of ordinary
differential equations is obtained:

du

dt
= L(u) (2.11)

where L is the spatial discrete operator. This set of ordinary differential equations
is discretized here using the second order TVD Runge-Kutta method [12]:

u(0) = un

u(1) = u(0) + ∆tL(u(0))

un+1 =
1
2
u(0) +

1
2
u(1) +

1
2
∆tL(u(1))

3. N-wave Focusing

An N -wave is considered as the incoming signal (function F ), with an amplitude
of z−1/4

up , where zup is the upper limit of the domain, along z direction. In order
to be able to apply the boundary conditions for large stencils (such as WENO
schemes), a number of additional ghost cells are considered outside the domain.
The values of the dependent variables in the ghost points are set to very large
numbers (the order of 104).
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Figure 2. Acoustic pressure versus τ for z = 2 (linear solution):
WENO3 (left); WENO5 (right)

Figures 2 and 3 show comparisons between the numerical solution and the an-
alytical solution for z = 1.2 and z = 2, respectively; the analytical solution in the
radiation zone is obtained using equation (1.15), for both cases (z = 1.2 and z = 2).
Also, the comparison between the numerical and the analytical solutions in linear
case, obtained using equation (1.13), for z = 0, is shown in figure 4. The nonlinear
solver was used to determine the numerical linear solution, by setting a very small
value to the coefficient µ = 2βMac[Rcau/(2c0Tac)]2/3 defined in section 1. WENO5
schemes are more accurate than WENO3 schemes, as expected: the L2-error is
in the order of 10−2 for WENO3 schemes, and in the order of 10−4 for WENO5
schemes.

Figure 5 shows contours of acoustic pressure in nonlinear case, for third (left)
and fifth (right) order WENO schemes. The N -wave is entering the domain on the
left side, and is amplified on the caustic (in the vicinity of (z = 0, τ = 0)); the
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Figure 3. Acoustic pressure versus τ for z = 1.2 (linear solution):
WENO3 (left); WENO5 (right)
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Figure 4. Acoustic pressure versus τ for z = 0 (linear solution):
WENO3 (left); WENO5 (right)

amplitude becomes three to four times larger. Figure 6 shows the acoustic pressure
as a function of τ for z = 0.207, corresponding to the maximum pressure.
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Figure 5. Acoustic pressure contours (nonlinear solution):
WENO3 (left); WENO5 (right)
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Figure 6. Acoustic pressure versus τ for z = 0.207 (nonlinear
solution): WENO3 (left); WENO5 (right)

Concluding Remarks. Nonlinear Tricomi equation, modelling the sonic boom
focusing, has been transformed in hyperbolic conservation law form, by introduc-
ing a new dependent variable and using pseudo-time derivatives. The boundary
condition on the illuminated side has been modified; it was split into two parts: on
the left side, Dirichlet boundary condition has been imposed for pressure; on the
right side, a radiation condition has been imposed. The equation was solved using
WENO schemes of third and fifth order of accuracy, and the time marching was
carried out using a second order TVD Runge-Kutta method. The numerical solu-
tion for the linear case was compared to the analytical solution found via Fourier
analysis, and the agreement was good.
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PhD thesis, Université Paris VI, (2001).
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