Eighth Mississippi State - UAB Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conf. 19 (2010), pp. 135-149. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

POPULATION MODELS WITH NONLINEAR BOUNDARY CONDITIONS

JEROME GODDARD II, EUN KYOUNG LEE, RATNASINGHAM SHIVAJI

Abstract

We study a two point boundary-value problem describing the steady states of a Logistic growth population model with diffusion and constant yield harvesting. In particular, we focus on a model when a certain nonlinear boundary condition is satisfied.

1. Introduction

Consider the Logistic growth population dynamics model with nonlinear boundary conditions:

$$
\begin{gather*}
u_{t}=d \Delta u+a u-b u^{2}-\operatorname{ch}(x) \quad \text { in } \Omega \tag{1.1}\\
d \alpha(x, u) \frac{\partial u}{\partial \eta}+[1-\alpha(x, u)] u=0 \tag{1.2}
\end{gather*} \quad \text { on } \partial \Omega,
$$

where Ω is a bounded domain in \mathbb{R}^{n} with $n \geq 1, \Delta$ is the Laplace operator, d is the diffusion coefficient, a, b are positive parameters, $c \geq 0$ is the harvesting parameter, $h(x): \bar{\Omega} \rightarrow \mathbb{R}$ is a C^{1} function, $\frac{\partial u}{\partial \eta}$ is the outward normal derivative, and $\alpha(x, u): \Omega \times \mathbb{R} \rightarrow[0,1]$ is a nondecreasing C^{1} function.

The parameter $c \geq 0$ represents the level of harvesting, $h(x) \geq 0$ for $x \in \Omega$, $h(x)=0$ for $x \in \partial \Omega$, and $\|h\|_{\infty}=1$. Here $c h(x)$ can be understood as the rate of the harvesting distribution. The nonlinear boundary condition (1.2) has only been recently studied by such authors as [1, 2, 3, among others. Here

$$
\alpha(x, u)=\alpha(u)=\frac{u}{u-d \frac{\partial u}{\partial \eta}}
$$

represents the fraction of the population that remains on the boundary when reached. For the case when $\alpha(x, u) \equiv 0, \sqrt{1.2}$ becomes the well known Dirichlet boundary condition. If $\alpha(x, u) \equiv 1$ then 1.2$)$ becomes the Neumann boundary condition. Here we will be interested in the study of positive steady state solutions

[^0]of (1.1)-1.2 when $d=1$ and
$$
\alpha(x, u)=\frac{u}{u+1} \quad \text { on } \partial \Omega
$$

Hence, we consider the model

$$
\begin{gather*}
-\Delta u=a u-b u^{2}-c h(x)=: f(x, u) \quad \text { in } \Omega, \tag{1.3}\\
u\left[\frac{\partial u}{\partial \eta}+1\right]=0 \quad \text { on } \partial \Omega . \tag{1.4}
\end{gather*}
$$

We will present the results of the case when $n=1, \Omega=(0,1)$, and $h(x) \equiv 1$. Thus, we study the nonlinear boundary-value problem

$$
\begin{gather*}
-u^{\prime \prime}=a u-b u^{2}-c, \quad x \in(0,1) \tag{1.5}\\
{\left[-u^{\prime}(0)+1\right] u(0)=0} \tag{1.6}\\
{\left[u^{\prime}(1)+1\right] u(1)=0} \tag{1.7}
\end{gather*}
$$

It is easy to see that analyzing the positive solutions of $1.5-1.7$ is equivalent to studying the four boundary-value problems

$$
\begin{gather*}
-u^{\prime \prime}=a u-b u^{2}-c, \quad x \in(0,1) \tag{1.8}\\
u(0)=0, \quad u(1)=0 \tag{1.9}\\
-u^{\prime \prime}=a u-b u^{2}-c, \quad x \in(0,1) \tag{1.10}\\
u(0)=0, \quad u^{\prime}(1)=-1 \tag{1.11}\\
-u^{\prime \prime}=a u-b u^{2}-c, \quad x \in(0,1) \tag{1.12}\\
u^{\prime}(0)=1, \quad u(1)=0 \tag{1.13}\\
-u^{\prime \prime}=a u-b u^{2}-c, \quad x \in(0,1) \tag{1.14}\\
u^{\prime}(0)=1, \quad u^{\prime}(1)=-1 \tag{1.15}
\end{gather*}
$$

Hence, the positive solutions of these four BVPs are the positive solutions of (1.5)-(1.7). Notice that if $u(x)$ is a solution of 1.10$)-1.11)$ then $v(x):=u(1-x)$ is a solution of $1.12-(1.13)$. Thus, it suffices to only consider $1.8-(1.9),(1.10)-$ (1.11), and (1.14)-(1.15). The structure of positive solutions for $(1.8-1.9)$ is known (see [4] and [7) via the quadrature method introduced by Laetsch in [8]. We develop quadrature methods in Section 2 to completely determine the bifurcation diagram of (1.5)-1.7). In Section 3 we use Mathematica computations to show that for certain subsets of the parameter space, (1.5-1.7 has up to exactly 8 positive solutions. For higher dimensional results, in the case when $\alpha(x, u)=0$ on $\partial \Omega$ (Dirichlet boundary conditions) see [9], and for the case when $\alpha(x, u)=\frac{u}{u+1}$ on $\partial \Omega$ see recent work in 5].

2. Results Via the quadrature method

2.1. Positive solutions of $1.8-1.9)$. In this section we summarize the known results (see [9]) for positive solutions of (1.8-1.9). Consider the boundary value problem:

$$
\begin{gather*}
-u^{\prime \prime}=a u-b u^{2}-c=: f(u), \quad x \in(0,1) \tag{2.1}\\
u(0)=0, \quad u(1)=0 \tag{2.2}
\end{gather*}
$$

Figure 1. Typical solution of $2.1-2.2$

It is easy to see that positive solutions of $2.1-2.2$ must resemble Figure 1 where ℓ_{i} for $i=1,2$ are the positive zeros of $f(u)$. The following theorem details the structure of positive solutions of $\sqrt{2.1}-\sqrt{2.2}$ for the case when $b=1$:

Theorem 2.1 (4, (9) . (1) If $a<\lambda_{1}$ then (2.1)-(2.2) has no positive solution for any $c \geq 0$.
(2) If $\lambda_{1} \leq a<\lambda^{*}$ (some $\lambda^{*}>\lambda_{1}$) then there exists a $c_{0}>0$ such that if
(a) $0 \leq c<c_{0}$ then (2.1)-2.2 has 2 positive solutions.
(b) $c=c_{0}$ then 2.1 -2.2 has a unique positive solution.
(c) $c>c_{0}$ then (2.1)-2.2 has no positive solution.
(3) If $a>\lambda^{*}$ then there exist $c_{0}, \tilde{c}>0$ such that if
(a) $\tilde{c}<c<c_{0}$ then (2.1)-2.2) has 2 positive solutions.
(b) $0 \leq c<\tilde{c}$ or $c=c_{0}$ then (2.1)-2.2 has a unique positive solution.
(c) $c>c_{0}$ then (2.1)-2.2) has no positive solution.

Figure 2 illustrates this theorem.

Figure 2. $a=10, b=1$ (left), and $a=40, b=1$ (right)
2.2. Positive solutions of $1.10-1.11$. In this subsection, we adapt the quadrature method in [8] to study

$$
\begin{gather*}
-u^{\prime \prime}=a u-b u^{2}-c=: f(u), \quad x \in(0,1) \tag{2.3}\\
u(0)=0, \quad u^{\prime}(1)=-1 \tag{2.4}
\end{gather*}
$$

Now, define $F(u)=\int_{0}^{u} f(s) d s$, the primitive of $f(u)$. Since 2.3) is an autonomous differential equation, if $u(x)$ is a positive solution of 2.3 with $u^{\prime}\left(x_{0}\right)=0$ for some
$x_{0} \in(0,1)$ then $v(x):=u\left(x_{0}-x\right)$ and $w(x):=u\left(x_{0}+x\right)$ both satisfy the initial value problem,

$$
\begin{gather*}
-z^{\prime \prime}=f(z) \tag{2.5}\\
z(0)=u\left(x_{0}\right) \tag{2.6}\\
z^{\prime}(0)=0 \tag{2.7}
\end{gather*}
$$

for all $x \in[0, d)$ where $d=\min \left\{x_{0}, 1-x_{0}\right\}$. As a result of Picard's existence and uniqueness theorem, $u\left(x_{0}-x\right) \equiv u\left(x_{0}+x\right)$. Thus, if we assume that $u(x)$ is a positive solution of 2.3-2.4 then it is symmetric around x_{0} with $\rho:=\|u\|_{\infty}=u\left(x_{0}\right)$. This implies that $u^{\prime}\left(x_{0}\right)=0, u^{\prime}(x)>0 ;\left[0, x_{0}\right)$, and $u^{\prime}(x)<0 ; \quad\left(x_{0}, 1\right]$. Using symmetry about x_{0}, the boundary conditions (2.4), and the sign of $u^{\prime \prime}$ given by $f(u)$ we see that positive solutions of $2.3-2.4$ must resemble Figure 3, where $\rho=\|u\|_{\infty}$ and $q=u(1)$. This implies that $\ell_{1}<\rho<\ell_{2}$ and $0 \leq q<\rho$ where ℓ_{i}, $i=1,2$ are the zeros of $f(u)$.

Figure 3. Typical solution of $(2.3)-2.4$

Multiplying 2.3) by u^{\prime} gives

$$
\begin{equation*}
-u^{\prime} u^{\prime \prime}=f(u) u^{\prime} \tag{2.8}
\end{equation*}
$$

Integration of 2.8 with respect to x gives,

$$
\begin{equation*}
-\left(\frac{\left[u^{\prime}(x)\right]^{2}}{2}\right)=[F(u(x))]+K \tag{2.9}
\end{equation*}
$$

Substituting $x=1$ and $x=x_{0}$ into 2.9 yields,

$$
\begin{align*}
-K & =F(q)+\frac{1}{2} \tag{2.10}\\
K & =-F(\rho) \tag{2.11}
\end{align*}
$$

Combining 2.10 and 2.11, we have

$$
\begin{equation*}
F(\rho)=F(q)+\frac{1}{2} . \tag{2.12}
\end{equation*}
$$

Substituting 2.11 into 2.9 yields,

$$
\begin{equation*}
-\left(\frac{\left[u^{\prime}(x)\right]^{2}}{2}\right)=[F(u(x))]-F(\rho) \tag{2.13}
\end{equation*}
$$

Now, solving for u^{\prime} in 2.13 gives

$$
\begin{array}{cc}
u^{\prime}(x)=\sqrt{2} \sqrt{F(\rho)-F(u(x))}, & x \in\left[0, x_{0}\right] \\
u^{\prime}(x)=-\sqrt{2} \sqrt{F(\rho)-F(u(x))}, & x \in\left[x_{0}, 1\right] \tag{2.15}
\end{array}
$$

Integrating (2.14) and 2.15 with respect to x and using a change of variables, we have

$$
\begin{gather*}
\int_{0}^{u(x)} \frac{d s}{\sqrt{F(\rho)-F(s)}}=\sqrt{2} x, \quad x \in\left[0, x_{0}\right] \tag{2.16}\\
\int_{\rho}^{u(x)} \frac{d s}{\sqrt{F(\rho)-F(s)}}=-\sqrt{2}\left(x-x_{0}\right), \quad x \in\left[x_{0}, 1\right] . \tag{2.17}
\end{gather*}
$$

Substitution of $x=x_{0}$ into 2.16 and $x=1$ into 2.17 gives

$$
\begin{gather*}
\int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}=\sqrt{2} x_{0} \tag{2.18}\\
\int_{\rho}^{q} \frac{d s}{\sqrt{F(\rho)-F(s)}}=-\sqrt{2}\left(1-x_{0}\right) \tag{2.19}
\end{gather*}
$$

Finally, subtracting 2.19 from 2.18, yields

$$
\begin{equation*}
\int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}+\int_{q}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}=\sqrt{2} \tag{2.20}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
2 \int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}-\int_{0}^{q} \frac{d s}{\sqrt{F(\rho)-F(s)}}=\sqrt{2} \tag{2.21}
\end{equation*}
$$

We note that in order for $\int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}$ to be well defined, $F(\rho)>F(s)$ for all $s \in[0, \rho)$. Moreover, the improper integral is convergent if $f(\rho)>0$. Thus, for such a positive solution to exist, $f(u)$ and $F(u)$ must resemble Figure 4, where μ_{1}, ℓ_{i}, and θ_{i} are the zeros of $f^{\prime}(u), f(u)$, and $F(u)$ respectively for $i=1,2$.

Figure 4. Graph of $f(u)$ (left), and of $F(u)$ (right)
From Figure 4 , we note that if $\rho \in\left(\theta_{1}, \ell_{2}\right)$ then both of these conditions hold and the integrals in 2.21) are well defined. From this and letting $c_{1}:=\frac{3 a^{2}}{16 b}$ and $c_{2}:=\frac{a^{2}}{4 b}$, we can arrive at the following result.
Theorem 2.2. If $c>c^{*}(a, b)$ then (2.3)-(2.4) has no positive solution, where $c^{*}(a, b)=\min \left\{c_{1}, c_{2}\right\}=\frac{3 a^{2}}{16 b}$.

Further, since $x_{0} \in(0,1)$ is fixed for each $\rho>0$, we need a unique $q<\rho$ corresponding to each ρ-value such that 2.12 is satisfied. Otherwise, uniqueness of solutions to the initial value problem, 2.5-2.7), would be violated. Let

$$
H(x):=F(x)+\frac{1}{2}
$$

It follows that $H^{\prime}(x)=-b x^{2}+a x-c, H(0)=1 / 2$, and $H^{\prime}(0)=-c<0$. In order for a unique $q<\rho$ to exist such that $H(q)=F(\rho), H(x)$ must have the following structure in Figure 5, where $H^{\prime}\left(\ell_{2}\right)=0$. So, for such a unique $q<\rho$ to exist $F(\rho)>1 / 2$.

Figure 5. Graph of $H(x)$
Since $\rho \in\left(\theta_{1}, \ell_{2}\right)$, for this to be true we will need $H\left(\ell_{2}\right)>1 / 2$. In fact, if

$$
\begin{equation*}
F\left(\ell_{2}\right)>\frac{1}{2} \tag{2.22}
\end{equation*}
$$

then clearly for $\rho \in\left(\theta_{1}, \ell_{2}\right)$ with $\rho \approx \ell_{2}$ we have $F(\rho)>1 / 2$. It is easy to see that (2.22) will be satisfied if (solving using Mathematica)

$$
\begin{aligned}
c<c_{3}:= & \frac{9 a^{2}}{144 b}-\frac{9\left(a^{4}-96 a b^{2}\right)}{144 b\left(-a^{6}-240 a^{3} b^{2}+16\left(72 b^{4}+\sqrt{3} \sqrt{b^{2}\left(a^{3}+12 b^{2}\right)^{3}}\right)\right)^{1 / 3}} \\
& -\frac{9}{144 b}\left(-a^{6}-240 a^{3} b^{2}+16\left(72 b^{4}+\sqrt{3} \sqrt{b^{2}\left(a^{3}+12 b^{2}\right)^{3}}\right)\right)
\end{aligned}
$$

and for c_{3} to be positive (again using Mathematica)

$$
a>a_{0}:=\sqrt[3]{3 b^{2}}
$$

both hold. This leads to the following results.
Theorem 2.3. If $a \leq a_{0}$ then (2.3)-(2.4) has no positive solution for any $c \geq 0$.
Theorem 2.4. If $a>a_{0}$ then there is $a c^{*}(a, b) \leq \min \left\{c_{1}, c_{2}, c_{3}\right\}$ such that for $c \geq c^{*}$ (2.3) has no positive solution.

We now state and prove the main theorem of this subsection.
Theorem 2.5. If $a>a_{0}$ and $c<c^{*}(a, b)$ then there is a unique $r(a, b, c) \in\left(\theta_{1}, \ell_{2}\right)$ such that $F(r)=1 / 2$ and

$$
G(\rho):=2 \int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}-\int_{0}^{q} \frac{d s}{\sqrt{F(\rho)-F(s)}}
$$

is well defined for all $\rho \in\left[r, \ell_{2}\right)$ where $q<\rho$ is the unique solution of $F(\rho)=H(q)$. Moreover, 2.3-2.4 has a positive solution, $u(x)$, with $\rho=\|u\|_{\infty}$ if and only if $G(\rho)=\sqrt{2}$ for some $\rho \in\left[r, \ell_{2}\right)$.
Proof. Let $a, b>0$ s.t. $a>a_{0}$ and $c \in\left[0, c^{*}(a, b)\right)$. From the preceding discussion, it follows that if u is a positive solution to (2.3)-2.4) with $\rho=\|u\|_{\infty}$ then $G(\rho)=\sqrt{2}$. Next, suppose $G(\rho)=\sqrt{2}$ for some $\rho \in\left[r, \ell_{2}\right)$. Define $u(x):(0,1) \rightarrow \mathbb{R}$ by

$$
\begin{gather*}
\int_{0}^{u(x)} \frac{d s}{\sqrt{F(\rho)-F(s)}}=\sqrt{2} x, \quad x \in\left[0, x_{0}\right] \tag{2.23}\\
\int_{\rho}^{u(x)} \frac{d s}{\sqrt{F(\rho)-F(s)}}=-\sqrt{2}\left(x-x_{0}\right), \quad x \in\left[x_{0}, 1\right] . \tag{2.24}
\end{gather*}
$$

Now, we show that $u(x)$ is a positive solution to $\sqrt{2.3}-\sqrt{2.4}$. It is easy to see that the turning point is given by $x_{0}=\frac{1}{\sqrt{2}} \int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}$. The function, $\int_{0}^{u} \frac{d s}{\sqrt{F(\rho)-F(s)}}$, is a differentiable function of u which is strictly increasing from 0 to x_{0} as u increases from 0 to ρ. Thus, for each $x \in\left[0, x_{0}\right]$, there is a unique $u(x)$ such that

$$
\begin{equation*}
\int_{0}^{u(x)} \frac{d s}{\sqrt{F(\rho)-F(s)}}=\sqrt{2} x \tag{2.25}
\end{equation*}
$$

Moreover, by the Implicit Function theorem, u is differentiable with respect to x. Differentiating 2.25 gives

$$
u^{\prime}(x)=\sqrt{2[F(\rho)-F(u)]}, \quad x \in\left[0, x_{0}\right] .
$$

Similarly, u is a decreasing function of x for $x \in\left[x_{0}, 1\right]$ which yields,

$$
u^{\prime}(x)=-\sqrt{2[F(\rho)-F(u)]}, \quad x \in\left[x_{0}, 1\right] .
$$

This implies

$$
\frac{-\left(u^{\prime}\right)^{2}}{2}=F(\rho)-F(u(x))
$$

Differentiating again, we have $-u^{\prime \prime}(x)=f(u(x))$. Thus, $u(x)$ satisfies 2.3). Now, from our assumption, $G(\rho)=\sqrt{2}$, it follows that $u(0)=0$ and $u(1)=q(\rho)$. Since $F(\rho)=H(q(\rho))=F(q)+\frac{1}{2}$, we have that $u^{\prime}(1)=-\sqrt{2[F(\rho)-F(q)]}=-1$. Hence, the boundary conditions (2.4) are both satisfied.
2.3. Positive solutions of 1.14 - 1.15 . A similar quadrature method can be adapted to study

$$
\begin{gather*}
-u^{\prime \prime}=a u-b u^{2}-c=: f(u), \quad x \in(0,1) \tag{2.26}\\
u^{\prime}(0)=1, \quad u^{\prime}(1)=-1 \tag{2.27}
\end{gather*}
$$

Again, define $F(u)=\int_{0}^{u} f(s) d s$, the primitive of $f(u)$. Using a similar argument as before, symmetry about x_{0}, the boundary conditions $\left.\sqrt{2.26}\right)-(\sqrt{2.27})$, and the sign of $u^{\prime \prime}$ given by $f(u)$ ensure that positive solutions of $\left.2.26-2.27\right)$ must resemble Figure 6, where $\rho=\|u\|_{\infty}$ and $q=u(0)=u(1)$. Clearly, $x_{0}=1 / 2$ in this case.

Through an almost identical approach as the one in Section 2.2, we can prove the following results.

Theorem 2.6. If $a \leq a_{0}$ then 2.26 2.27 has no positive solution for any $c \geq 0$.
Theorem 2.7. If $a>a_{0}$ then there is $a c^{*}(a, b) \leq \min \left\{c_{1}, c_{2}, c_{3}\right\}$ such that for $c \geq c^{*} 2.26-2.27$ has no positive solution.

Figure 6. Typical solution of $2.3-2.4$

We now state the main theorem of this subsection.
Theorem 2.8. If $a>a_{0}$ and $c<c^{*}(a, b)$ then there is a unique $r(a, b, c) \in\left(\theta_{1}, \ell_{2}\right)$ such that $F(r)=\frac{1}{2}$ and

$$
\widetilde{G}(\rho):=2 \int_{0}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}-2 \int_{0}^{q} \frac{d s}{\sqrt{F(\rho)-F(s)}}
$$

is well defined for all $\rho \in\left[r, \ell_{2}\right)$ where $q<\rho$ is the unique solution of $F(\rho)=H(q)$. Moreover, 2.26-2.27) has a positive solution, $u(x)$, with $\rho=\|u\|_{\infty}$ if and only if $\widetilde{G}(\rho)=\sqrt{2}$ for some $\rho \in\left[r, \ell_{2}\right)$.

Remark. See [7] where Ladner et al. adapted the quadrature method to study the case when $\alpha(x, u)=\frac{u}{a}$ on $\partial \Omega$. Also, see [6] where the quadrature method was adapted to study the case with a Strong Allee effect and $\alpha(x, u)=\frac{u}{b}$ on $\partial \Omega$.

3. Computational Results

3.1. Positive solutions of (1.10-1.11) and $1.12-1.13$. We are particularly interested in the case when $b=1$. From Theorem 2.5, we plot the level sets of

$$
\begin{equation*}
G(\rho)-\sqrt{2}=0 \tag{3.1}
\end{equation*}
$$

for $a>\sqrt[3]{3}$ and $\rho \in\left[r, \ell_{2}\right)$. By implementing a numerical root-finding algorithm in Mathematica we were able to solve equation (3.1). Explicit formulas were used to calculate the unique $r=r(a, b, c)$ and $q=q(\rho)$ values. Note that these computations are expensive due to the natural of the improper integral equations involved. Figures 7-9 depict several level sets plotted within $\left[r, \ell_{2}\right) \times\left[0, c^{*}\right]$. In what follows, the green curve represents ρ vs c while the upper and lower branches of the dotted black curve represent ℓ_{2} and r, respectively. The green curve's lower branch begins to shrink for $a \geq 10.1388$. This is due to the fact that solutions of (3.1) are outside of $\left[r, \ell_{2}\right)$. The bifurcation diagrams also indicate the following results.

Theorem 3.1. For $b=1$, if $a<a_{4}$ (for $a_{4} \approx 5.0407$) then 1.10 1.11) and (1.12) -1.13) have no positive solution for any $c \geq 0$.

Theorem 3.2. If $b=1$ then $c_{0}(a) \rightarrow c^{*}(a)$ as $a \rightarrow \infty$. Furthermore, $\rho \rightarrow \ell_{2}$ as $a \rightarrow \infty$ where $u(x)$ is a positive solution to 1.10 (1.11) or 1.12 -1.13 with $\|u\|_{\infty}=\rho$.

Figure 7. $a=6, b=1$ (left), and $a=10, b=1$ (right)

Figure 8. $a=11, b=1$ (left), and $a=40, b=1$ (right)

Figure 9. $a=100, b=1$
3.2. Positive solutions of $(1.14)-1.15$. Again, we are particularly interested in the case when $b=1$. Recalling Theorem 2.8, we plot the level sets of

$$
\begin{equation*}
\widetilde{G}(\rho)-\sqrt{2}=0 \tag{3.2}
\end{equation*}
$$

Using our numerical root-finding algorithm in Mathematica to solve equation 3.2 and explicit formulas to calculate the unique $r=r(a, b, c)$ and $q=q(\rho)$ values, level sets were plotted within $\left[r, \ell_{2}\right) \times\left[0, c^{*}\right]$. The blue curve breaks into two components somewhere around $a=4.39$, with the lower component vanishing for $a>10.1387$. This is due to the fact that the ρ-values, which are solutions of $\sqrt{3.2}$, are outside of $\left[r, \ell_{2}\right)$. These bifurcation diagrams also indicate the following results.

Theorem 3.3. For $b=1$, if $a<a_{1}$ (for $a_{1} \approx 2.8324$) then 1.14 -1.15 has no positive solution for any $c \geq 0$.

Theorem 3.4. If $b=1$ then $c_{0}(a) \rightarrow c^{*}(a)$ as $a \rightarrow \infty$. Furthermore, $\rho \rightarrow \ell_{2}$ as $a \rightarrow \infty$ where $u(x)$ is a positive solution to (1.14)-1.15 with $\|u\|_{\infty}=\rho$.
3.3. Structure of Positive solutions to (1.5)-(1.7). Combining results from the three cases, $(1.8)-(1.9),(1.10)-(1.11)$, and $(1.14)-(1.15)$ while recalling that the

Figure 10. $a=4, b=1$ (left), and $a=4.4, b=1$ (right)

Figure 11. $a=6, b=1$ (left), and $a=10, b=1$ (right)

Figure 12. $a=11, b=1$ (left), and $a=40, b=1$ (right)
(1.10-1.11 case represents two symmetric solutions, we are able to completely determine the structure of positive solutions to (1.5)-1.7). As before, we are primarily interested in the case when $b=1$. Comparison of nonexistence Theorems $2.1,2.3$, and 2.6 from Section 3 yields the following nonexistence result for 1.5 (1.7).

Theorem 3.5. If $a \leq \min \left[\sqrt[3]{3 b^{2}}, \lambda_{1}\right]$ then 1.5 (1.7) has no positive solution for any $c \geq 0$.

Moreover, our computational results for the case $b=1$ provide the following nonexistence result.

Theorem 3.6. For $b=1$, if $a<a_{1}$ (for $a_{1} \approx 2.8324$) then (1.5) 1.7) has no positive solution for any $c \geq 0$.

Also, our computations indicate the following existence results for $b=1$. For what follows, $(1.8)-(\sqrt{1.9 p}$ is depicted in yellow, $(1.10)-(1.11)$ and $(1.12)-(1.13)$ both in green, and 1.14 -1.15 in blue.

Theorem 3.7. For $b=1$, if $a \in\left[a_{1}, a_{2}\right.$) (for some $a_{2}>a_{1}$) (for $a_{2} \approx 4.39$) then there exists a $C_{0}>0$ such that if
(1) $0 \leq c<C_{0}$ then 1.5 -1.7) has exactly 2 positive solutions.
(2) $c=C_{0}$ then (1.5) -1.7) has a unique positive solution.
(3) $c>C_{0}$ then (1.5)-1.7) has no positive solution.

A bifurcation diagram of the case when $b=1$ and $a=4$ is shown in Figure 13 .

Figure 13. ρ vs c for $a=4, b=1$

Theorem 3.8. For $b=1$, if $a \in\left[a_{2}, a_{3}\right.$) (some $a_{3} \in(4.4,5)$) then there exist $C_{i}>0, i=0,1,2$, such that if
(1) $0 \leq c \leq C_{2}$ or $C_{1} \leq c<C_{0}$ then (1.5) has exactly 2 positive solutions.
(2) $C_{2}<c<C_{1}$ or $c=C_{0}$ then 1.5)-1.7) has a unique positive solution.
(3) $c>C_{0}$ then (1.5)-1.7) has no positive solution.

Figure 14 illustrates Theorem 3.8 .

Figure 14. ρ vs c for $a=4.4, b=1$

Theorem 3.9. For $b=1$, if $a \in\left[a_{3}, a_{4}\right)$ (for $a_{4} \approx 5.0407$) then there exist $C_{i}>0$, $i=0,1$, such that if
(1) $0 \leq c \leq C_{1}$ then 1.5 -1.7) has exactly 2 positive solutions.
(2) $C_{1}<c \leq C_{0}$ then (1.5)-(1.7) has a unique positive solution.
(3) $c>C_{0}$ then (1.5) (1.7) has no positive solution.

Theorem 3.9 is illustrated in Figure 15.
Theorem 3.10. For $b=1$, if $a \in\left[a_{4}, a_{5}\right)$ (for $a_{5}=\pi^{2}$) then there exist $C_{i}>0$, $i=0,1,2$, such that if

Figure 15. ρ vs c for $a=5.03, b=1$
(1) $0 \leq c \leq C_{2}$ then 1.5 -1.7) has exactly 6 positive solutions.
(2) $C_{2}<c<C_{1}$ then (1.5)-1.7) has exactly 5 positive solutions.
(3) $c=C_{1}$ then (1.5) 1.7) has exactly 3 positive solutions.
(4) $C_{1}<c \leq C_{0}$ then 1.5 (1.7) has a unique positive solution.
(5) $c>C_{0}$ then (1.5) (1.7) has no positive solution.

Theorem 3.10 is depicted in Figure 16.

Figure 16. ρ vs c for $a=6, b=1$

Theorem 3.11. For $b=1$, if $a \in\left[a_{5}, a_{6}\right.$) (some $a_{6} \in(10,10.1388)$) then there exist $C_{i}>0, i=0,1,2,3$, such that if
(1) $0 \leq c<C_{3}$ then 1.5 -1.7) has exactly 8 positive solutions.
(2) $c=C_{3}$ then (1.5)-(1.7) has exactly 7 positive solutions.
(3) $C_{3}<c \leq C_{2}$ then (1.5) 1.7) has exactly 6 positive solutions.
(4) $C_{2}<c<C_{1}$ then (1.5) 1.7) has exactly 5 positive solutions.
(5) $c=C_{1}$ then (1.5)-(1.7) has exactly 3 positive solutions.
(6) $C_{1}<c \leq C_{0}$ then 1.5 (1.7) has a unique positive solution.
(7) $c>C_{0}$ then (1.5) (1.7) has no positive solution.

Figure 17 shows the bifurcation diagram for $a=10, b=1$ along with Figure 18 , which gives two small cross sections of the diagram.

Theorem 3.12. For $b=1$, if $a \in\left[a_{6}, a_{7}\right.$) (for $a_{7} \approx 10.1388$) then there exist $C_{i}>0, i=0,1,2,3$, such that if
(1) $0 \leq c \leq C_{3}$ then 1.5-1.7) has exactly 8 positive solutions.

Figure 17. ρ vs c for $a=10, b=1$

Figure 18. ρ vs c cross-sections for $a=10, b=1$
(2) $C_{3}<c<C_{2}$ then 1.5 1.7 has exactly 7 positive solutions.
(3) $c=C_{2}$ then (1.5) 1.7) has exactly 6 positive solutions.
(4) $C_{2}<c<C_{1}$ then 1.5)-(1.7) has exactly 5 positive solutions.
(5) $c=C_{1}$ then (1.5) has exactly 3 positive solutions.
(6) $C_{1}<c \leq C_{0}$ then (1.5) has a unique positive solution.
(7) $c>C_{0}$ then (1.5) has no positive solution.

The bifurcation diagram for $a=10.1, b=1$ is depicted in Figures 19 and 20.

Figure 19. ρ vs c for $a=10.1, b=1$

Theorem 3.13. For $b=1$, if $a \in\left[a_{7}, a_{8}\right]\left(\right.$ for $\left.a_{8}=4 \pi^{2}\right)$ then there exist $C_{i}>0$, $i=0,1,2,3$, such that if

Figure 20. ρ vs c cross-sections for $a=10.1, b=1$
(1) $0 \leq c<C_{3}$ or $C_{2} \leq c<C_{1}$ then (1.5) has exactly 5 positive solutions.
(2) $c=C_{3}$ then (1.5) 1.7) has exactly 4 positive solutions.
(3) $C_{3}<c<C_{2}$ or $c=C_{1}$ then (1.5) 1.7 has exactly 3 positive solutions.
(4) $C_{1}<c \leq C_{0}$ then 1.5 1.7) has a unique positive solution.
(5) $c>C_{0}$ then (1.5) has no positive solution.

Figure 21 shows the bifurcation diagram for $a=11, b=1$.

Figure 21. ρ vs c for $a=11, b=1$

Theorem 3.14. For $b=1$, if $a \in\left(a_{8}, \infty\right)$ then there exist $C_{i}>0, i=0,1,2,3$, such that if
(1) $C_{3} \leq c<C_{2}$ then 1.5 -1.7) has exactly 5 positive solutions.
(2) $0 \leq c<C_{3}$ or $c=C_{2}$ then (1.5) (1.7) has exactly 4 positive solutions.
(3) $C_{2}<c \leq C_{1}$ then 1.5 - 1.7) has exactly 3 positive solutions.
(4) $C_{1}<c \leq C_{0}$ then 1.5 (1.7) has a unique positive solution.
(5) $c>C_{0}$ then (1.5)-1.7) has no positive solution.

The bifurcation diagram for $a=40, b=1$ is shown in Figure 22 ,

References

[1] Robert Stephen Cantrell and Chris Cosner. Conditional persistence in logistic models via nonlinear diffusion. Proceedings of the Royal Society of Edinburgh, 132A:267-281, 2002.
[2] Robert Stephen Cantrell and Chris Cosner. Spatial Ecology via Reaction-Diffusion Equations. Mathematical and Computational Biology. Wiley, 2003.
[3] Robert Stephen Cantrell and Chris Cosner. Density dependent behavior at habitat boundaries and the allee effect. Bulletin of Mathematical Biology, 69:2339-2360, 2007.

Figure 22. ρ vs c for $a=40, b=1$
[4] A. Collins, M. Gilliland, C. Henderson, S. Koone, L. McFerrin, and E. K. Wampler. Population models with diffusion and constant yield harvesting. Rose-Hulman Institute of Technology Undergradate Math Journal, 5(2), 2004.
[5] Jerome Goddard II, Eun Kyoung Lee, and R. Shivaji. Diffusive logistic equation with nonlinear boundary conditions. Submitted., 2009.
[6] Jerome Goddard II and R. Shivaji. A population model with nonlinear boundary conditions and constant yield harvesting. Submitted., 2009.
[7] Tammy Ladner, Anna Little, Ken Marks, and Amber Russell. Positive solutions to a diffusive logistic equation with constant yield harvesting. Rose-Hulman Institute of Technology Undergraduate Math Journal, 6(1), 2005.
[8] Theodore Laetsch. The number of solutions of a nonlinear two point boundary-value problem. Indiana University Mathematics Journal, 20(1):1-13, 1970.
[9] Shobha Oruganti, Junping Shi, and R. Shivaji. Diffusive logistic equation with constant yield harvesting. Transactions of the American Mathematical Society, 354(9):3601-3619, 2002.

Jerome Goddard II
Department of Mathematics and Statistics, Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA

E-mail address: jg440@msstate.edu
Eun Kyoung Lee
Department of Mathematics, Pusan National University, Busan 609-735, Korea
E-mail address: eunkyoung165@gmail.com
Ratnasingham Shivaji
Department of Mathematics and Statistics, Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA

E-mail address: shivaji@ra.msstate.edu

[^0]: 2000 Mathematics Subject Classification. 34B18, 34B08.
 Key words and phrases. Nonlinear boundary conditions; logistic growth; positive solutions. (C) 2010 Texas State University - San Marcos.

 Published September 25, 2010.
 E. K. Lee was supported by grant NRF-2009-353-C00042 from the National Research Foundation of Korea.

