David Medina, Pablo Padilla
Abstract:
In this article, we present a geometric framework to study invariant
sets of dynamical systems associated with differential equations.
This framework is based on properties of invariant sets for
an area functional. We obtain existence results
for heteroclinic and periodic orbits. We also implement this
approach numerically by means of the steepest descent method.
Published July 10, 2010.
Math Subject Classifications: 37L05.
Key Words: Invariant sets; dynamical systems; area functional;
steepest descent method.
Show me the PDF file (743K), TEX file, and other files for this article.
David Medina Instituto Tecnológico Superior de Perote Carretera Perote-México km. 2.5 Centro, Perote, Veracruz, C. P. 91270, México email: medina@math.unam.mx | |
Pablo Padilla Departamento de Matemáticas y Mecánica, IIMAS-UNAM Apartado Postal 20-726, C. P. 01000 México, México email: pablo@mym.iimas.unam.mx |
Return to the table of contents
for this conference.
Return to the EJDE web page