Christopher Grumiau, Christophe Troestler
Abstract:
In this article, we consider the Lane-Emden problem
where
and
is a ball or an annulus in
,
.
We show that, for p
close to 2, least energy nodal solutions are odd with
respect to an hyperplane --
which is their nodal surface. The proof ingredients are a
constrained implicit function theorem and the fact that the second
eigenvalue is simple up to rotations.
Published July 10, 2010.
Math Subject Classifications: 35J20, 35A30.
Key Words: Variational method; least energy nodal solution; symmetry;
oddness; (nodal) Nehari manifold; Bessel functions; Laplace-Beltrami
operator on the sphere; implicit function theorem.
Show me the PDF file (238K), TEX file, and other files for this article.
Christopher Grumiau Institut de Mathématique, Université de Mons Place du Parc, 20, B-7000 Mons, Belgium email: Christopher.Grumiau@umons.ac.be |
Christophe Troestler Institut de Mathématique, Université de Mons Place du Parc, 20, B-7000 Mons, Belgium email: Christophe.Troestler@umons.ac.be |
Return to the table of contents
for this conference.
Return to the EJDE web page