2007 Conference on Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems. Electronic Journal of Differential Equations, Conference 18 (2010), pp. 15-22.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ON THE NUMBER OF NODAL SOLUTIONS FOR A NONLINEAR ELLIPTIC PROBLEM ON SYMMETRIC RIEMANNIAN MANIFOLDS

MARCO GHIMENTI, ANNA MARIA MICHELETTI

Abstract. We consider the problem

$$
-\varepsilon^{2} \Delta_{g} u+u=|u|^{p-2} u
$$

in a symmetric Riemannian manifold (M, g). We give a multiplicity result for antisymmetric changing sign solutions.

1. Introduction

Let (M, g) be a smooth connected compact Riemannian manifold of finite dimension $n \geq 2$ embedded in \mathbb{R}^{N}. We consider the problem

$$
\begin{equation*}
-\varepsilon^{2} \Delta_{g} u+u=|u|^{p-2} u \text { in } M, \quad u \in H_{g}^{1}(M) \tag{1.1}
\end{equation*}
$$

where $2<p<2 *=\frac{2 N}{N-2}$, if $N \geq 3$.
Here $H_{g}^{1}(M)$ is the completion of $C^{\infty}(M)$ with respect to

$$
\begin{equation*}
\|u\|_{g}^{2}=\int_{M}\left|\nabla_{g} u\right|^{2}+u^{2} d \mu_{g} \tag{1.2}
\end{equation*}
$$

It is well known that the problem (1.1) has a mountain pass solution u_{ε}. In [3] the authors showed that u_{ε} has a spike layer and its peak point converges to the maximum point of the scalar curvature of M as ε goes to 0 .

Recently there have been some results on the influence of the topology and the geometry of M on the number of solutions of the problem. In [1] the authors proved that, if M has a rich topology, problem (1.1) has multiple solutions. More precisely they show that problem (1.1) has at least $\operatorname{cat}(M)+1$ positive nontrivial solutions for ε small enough. Here $\operatorname{cat}(M)$ is the Lusternik-Schnirelmann category of M. In [17] there is the same result for a more general nonlinearity. Furthermore in [9] it was shown that the number of solution is influenced by the topology of a suitable subset of M depending on the geometry of M. To point out the role of the geometry in finding solutions of problem [1.1), in [13] it was shown that for any stable critical

[^0]point of the scalar curvature it is possible to build positive single peak solutions. The peak of these solutions approaches such a critical point as ε goes to zero.

Successively in [6] the authors build positive k-peak solutions whose peaks collapse to an isolated local minimum point of the scalar curvature as ε goes to zero.

The first result on sign changing solution is in [12] where it is showed the existence of a solution with one positive peak η_{1}^{ε} and one negative peak η_{2}^{ε} such that, as ε goes to zero, the scalar curvature $S_{g}\left(\eta_{1}^{\varepsilon}\right)$ (respectively $S_{g}\left(\eta_{2}^{\varepsilon}\right)$) goes to the minimum (resp. maximum) of the scalar curvature when the scalar curvature of (M, g) is non constant. Here we give a multiplicity result for changing sign solutions when the Riemannian manifold (M, g) is symmetric.

We look for solutions of the problem

$$
\begin{gather*}
-\varepsilon^{2} \Delta_{g} u+u=|u|^{p-2} u \quad u \in H_{g}^{1}(M) \tag{1.3}\\
u(\tau x)=-u(x) \quad \forall x \in M
\end{gather*}
$$

where $\tau: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is an orthogonal linear transformation such that $\tau \neq \operatorname{Id}$, $\tau^{2}=\mathrm{Id}$, Id being the identity of \mathbb{R}^{N}. Here M is a compact connected Riemannian manifold of dimension $n \geq 2$ and M is a regular submanifold of \mathbb{R}^{N} which is invariant with respect to τ. Let $M_{\tau}:=\{x \in M: \tau x=x\}$ be the set of the fixed points with respect to the involution τ; in the case $M_{\tau} \neq \emptyset$ we assume that M_{τ} is a regular submanifold of M.

We obtain the following result.
Theorem 1.1. The problem 1.3 has at least $G_{\tau}-\operatorname{cat}\left(M-M_{\tau}\right)$ pairs of solutions $(u,-u)$ which change sign (exactly once) for ε small enough

Here G_{τ} - cat is the G_{τ}-equivariant Lusternik Schnirelmann category for the group $G_{\tau}=\{\mathrm{Id}, \tau\}$.

In [4] the authors prove a result of this type for the Dirichlet problem

$$
\begin{gather*}
-\Delta u-\lambda u-|u|^{2^{*}-2} u=0 \quad u \in H_{0}^{1}(\Omega) \\
u(\tau x)=-u(x) \tag{1.4}
\end{gather*}
$$

Here Ω is a bounded smooth domain invariant with respect to τ and λ is a positive parameter.

We point out that in the case of the unit sphere $S^{N-1} \subset \mathbb{R}^{N}$ (with the metric g induced by the metric of \mathbb{R}^{N}) the theorem of existence of changing sign solutions of 12 can not be used because it holds for manifold of non constant curvature. Instead, we can apply Theorem 1.1 to obtain sign changing solutions because we can consider $\tau=-\mathrm{Id}$, and we have $G_{\tau}-\operatorname{cat} S^{N-1}=N$.

Equation like 1.1 has been extensively studied in a flat bounded domain $\Omega \subset$ \mathbb{R}^{N}. In particular, we would like to compare problem with the following Neumann problem

$$
\begin{gather*}
-\varepsilon^{2} \Delta u+u=|u|^{p-2} u \quad \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=0 \quad \text { in } \partial \Omega \tag{1.5}
\end{gather*}
$$

Here Ω is a smooth bounded domain of \mathbb{R}^{N} and ν is the unit outer normal to Ω. Problems (1.1) and 1.5 present many similarities. We recall some classical results about the Neumann problem.

In the fundamental papers [11, 14, [15], Lin, Ni and Takagi established the existence of least-energy solution to and showed that for ε small enough the least
energy solution has a boundary spike, which approaches the maximum point of the mean curvature H of $\partial \Omega$, as ε goes to zero. Later, in [16, 18] it was proved that for any stable critical point of the mean curvature of the boundary it is possible to construct single boundary spike layer solutions, while in [7, 19, 10] the authors construct multiple boundary spike solutions at multiple stable critical points of H. Finally, in [5, 8] the authors proved that for any integer K there exists a boundary K-peaks solutions, whose peaks collapse to a local minimum point of H.

2. Setting

We consider the functional defined on $H_{g}^{1}(M)$

$$
\begin{equation*}
J_{\varepsilon}(u)=\frac{1}{\varepsilon^{N}} \int_{M}\left(\frac{1}{2} \varepsilon^{2}\left|\nabla_{g} u\right|^{2}+\frac{1}{2}|u|^{2}-\frac{1}{p}|u|^{p}\right) d \mu_{g} \tag{2.1}
\end{equation*}
$$

It is well known that the critical points of $J_{\varepsilon}(u)$ constrained on the Nehari manifold

$$
\begin{equation*}
\mathcal{N}_{\varepsilon}=\left\{u \in H_{g}^{1} \backslash\{0\}: J_{\varepsilon}^{\prime}(u) u=0\right\} \tag{2.2}
\end{equation*}
$$

are non trivial solution of problem (1.1).
The transformation $\tau: M \rightarrow M$ induces a transformation on H_{g}^{1} we define the linear operator τ^{*} as

$$
\begin{aligned}
& \tau^{*}: H_{g}^{1}(M) \rightarrow H_{g}^{1}(M) \\
& \quad \tau^{*}(u(x))=-u(\tau(x))
\end{aligned}
$$

and τ^{*} is a selfadjoint operator with respect to the scalar product on $H_{g}^{1}(M)$

$$
\begin{equation*}
\langle u, v\rangle_{\varepsilon}=\frac{1}{\varepsilon^{N}} \int_{M}\left(\varepsilon^{2} \nabla_{g} u \cdot \nabla_{g} v+u \cdot v\right) d \mu_{g} \tag{2.3}
\end{equation*}
$$

Moreover, $\left\|\tau^{*} u\right\|_{L^{p}(M)}=\|u\|_{L^{p}(M)}$, and $\left\|\tau^{*} u\right\|_{\varepsilon}=\|u\|_{\varepsilon}$, thus $J_{\varepsilon}\left(\tau^{*} u\right)=J_{\varepsilon}(u)$. Then, for the Palais principle, the nontrivial solutions of (1.3) are the critical points of the restriction of J_{ε} to the τ-invariant Nehari manifold

$$
\begin{equation*}
\mathcal{N}_{\varepsilon}^{\tau}=\left\{u \in \mathcal{N}_{\varepsilon}: \tau^{*} u=u\right\}=\mathcal{N}_{\varepsilon} \cap H^{\tau} \tag{2.4}
\end{equation*}
$$

Here $H^{\tau}=\left\{u \in H_{g}^{1}: \tau^{*} u=u\right\}$.
In fact, since $J_{\varepsilon}\left(\tau^{*} u\right)=J_{\varepsilon}(u)$ and τ^{*} is a selfadjoint operator we have

$$
\begin{equation*}
\left\langle\nabla J_{\varepsilon}\left(\tau^{*} u\right), \tau^{*} \varphi\right\rangle_{\varepsilon}=\left\langle\nabla J_{\varepsilon}(u), \varphi\right\rangle_{\varepsilon} \quad \forall \varphi \in H_{g}^{1}(M) \tag{2.5}
\end{equation*}
$$

Then $\nabla J_{\varepsilon}(u)=\tau^{*} \nabla J_{\varepsilon}\left(\tau^{*} u\right)=\tau^{*} \nabla J_{\varepsilon}(u)$ if $\tau^{*} u=u$. We set

$$
\begin{gather*}
m_{\infty}=\inf _{\int_{\mathbb{R}^{N}}|\nabla u|^{2}+u^{2}=\int_{\mathbb{R}^{N}}|u|^{p}} \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+u^{2}-\frac{1}{p} \int_{\mathbb{R}^{N}}|u|^{p} ; \tag{2.6}\\
m_{\varepsilon}=\inf _{u \in \mathcal{N}_{\varepsilon}} J_{\varepsilon} ; \tag{2.7}\\
m_{\varepsilon}^{\tau}=\inf _{u \in \mathcal{N}_{\varepsilon}^{\tau}} J_{\varepsilon} . \tag{2.8}
\end{gather*}
$$

Remark 2.1. It is easy to verify that J_{ε} satisfies the Palais Smale condition on $\mathcal{N}_{\varepsilon}^{\tau}$. Then there exists v_{ε} minimizer of m_{ε}^{τ} and v_{ε} is a critical point for J_{ε} on $H_{g}^{1}(M)$. Thus v_{ε}^{+}and v_{ε}^{-}belong to $\mathcal{N}_{\varepsilon}$, then $J_{\varepsilon}\left(v_{\varepsilon}\right) \geq 2 m_{\varepsilon}$.

We recall some facts about equivariant Lusternik-Schnirelmann theory. If G is a compact Lie group, then a G-space is a topological space X with a continuous G-action $G \times X \rightarrow X,(g, x) \mapsto g x$. A G-map is a continuous function $f: X \rightarrow Y$ between G-spaces X and Y which is compatible with the G-actions, i.e. $f(g x)=$ $g f(x)$ for all $x \in X, g \in G$. Two G-maps $f_{0}, f_{1}: X \rightarrow Y$ are G-homotopic if there is a homotopy $\theta: X \times[0,1] \rightarrow Y$ such that $\theta(x, 0)=f_{0}(x), \theta(x, 1)=f_{1}(x)$ and $\theta(g x, t)=g \theta(x, t)$ for all $x \in X, g \in G, t \in[0,1]$. A subset A of a X is G invariant if $g a \in A$ for every $a \in A, g \in G$. The G-orbit of a point $x \in X$ is the set $G x=\{g x: g \in G\}$.

Definition 2.2. The G-category of a G-map $f: X \rightarrow Y$ is the smallest number $k=G-\operatorname{cat}(f)$ of open G-invariant subsets X_{1}, \ldots, X_{k} of X which cover X and which have the property that, for each $i=1, \ldots, k$, there is a point $y_{i} \in Y$ and a G-map $\alpha_{i}: X_{i} \rightarrow G y_{i} \subset Y$ such that the restriction of f to X_{i} is G-homotopic to α_{i}. If no such covering exists we define $G-\operatorname{cat}(f)=\infty$.

In our applications, G will be the group with two elements, acting as $G_{\tau}=\{\operatorname{Id}, \tau\}$ on Ω, and as $\mathbb{Z} / 2=\{1,-1\}$ by multiplication on the Nehari manifold $\mathcal{N}_{\varepsilon}^{\tau}$. We remark the following result on the equivariant category.
Theorem 2.3. Let $\phi: M \rightarrow \mathbb{R}$ be an even $C 1$ functional on a complete $C^{1,1}$ submanifold M of a Banach space which is symmetric with respect to the origin. Assume that ϕ is bounded below and satisfies the Palais Smale condition $(P S)_{c}$ for every $c \leq d$. Then ϕ has at least $\mathbb{Z} / 2-\operatorname{cat}\left(\phi^{d}\right)$ antipodal pairs $\{u,-u\}$ of critical points with critical values $\phi(\pm u) \leq d$.

3. Sketch of the proof of main theorem

In our case we consider the even positive C^{2} functional J_{ε} on the $C 2$ Nehari manifold $\mathcal{N}_{\varepsilon}^{\tau}$ which is symmetric with respect to the origin. As claimed in Remark 2.1, J_{ε} satisfies Palais Smale condition on $\mathcal{N}_{\varepsilon}^{\tau}$. Then we can apply Theorem 2.3 and our aim is to get an estimate of this lower bound for the number of solutions. For $d>0$ we consider

$$
\begin{aligned}
& M_{d}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, M) \leq d\right\} \\
& M_{d}^{-}=\left\{x \in M: \operatorname{dist}\left(x, M_{\tau}\right) \geq d\right\}
\end{aligned}
$$

We choose d small enough such that

$$
\begin{gathered}
G_{\tau}-\operatorname{cat}_{M_{d}} M_{d}=G_{\tau}-\operatorname{cat}_{M} M \\
G_{\tau}-\operatorname{cat}_{M} M_{d}^{-}=G_{\tau}-\operatorname{cat}_{M}\left(M-M_{\tau}\right)
\end{gathered}
$$

Now we build two continuous operator

$$
\begin{gathered}
\Phi_{\varepsilon}^{\tau}: M_{d}^{-} \rightarrow \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)} ; \\
\beta: \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)} \rightarrow M_{d},
\end{gathered}
$$

such that $\Phi_{\varepsilon}^{\tau}(\tau q)=-\Phi_{\varepsilon}^{\tau}(q), \tau \beta(u)=\beta(-u)$ and $\beta \circ \Phi_{\varepsilon}^{\tau}$ is G_{τ} homotopic to the inclusion $M_{d}^{-} \rightarrow M_{d}$.

By equivariant category theory we obtain

$$
\begin{align*}
G_{\tau}-\operatorname{cat}_{M}\left(M-M_{\tau}\right) & =G_{\tau}-\operatorname{cat}\left(M_{d}^{-} \hookrightarrow M_{d}\right) \\
& =G_{\tau}-\operatorname{cat} \beta \circ \Phi_{\varepsilon}^{\tau} \tag{3.1}\\
& \leq \mathbb{Z}_{2}-\operatorname{cat} \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)}
\end{align*}
$$

4. Technical lemmas

First of all, we recall that there exists a unique positive spherically symmetric function $U \in H^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
-\Delta U+U=U^{p-1} \text { in } \mathbb{R}^{n} \tag{4.1}
\end{equation*}
$$

It is well known that $U_{\varepsilon}(x)=U\left(\frac{x}{\varepsilon}\right)$ is a solution of

$$
\begin{equation*}
-\varepsilon^{2} \Delta U_{\varepsilon}+U_{\varepsilon}=U_{\varepsilon}^{p-1} \text { in } \mathbb{R}^{n} \tag{4.2}
\end{equation*}
$$

Secondly, let us introduce the exponential map exp : TM $\rightarrow M$ defined on the tangent bundle $T M$ of M which is a C^{∞} map. Then, for ρ sufficiently small (smaller than the injectivity radius of M and smaller than $d / 2$), the Riemannian manifold M has a special set of charts $\left\{\exp _{x}: B(0, \rho) \rightarrow M\right\}$. Throughout the paper we will use the following notation: $B_{g}(x, \rho)$ is the open ball in M centered in x with radius ρ with respect to the distance given by the metric g. Corresponding to this chart, by choosing an orthogonal coordinate system $\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{n}$ and identifying $T_{x} M$ with \mathbb{R}^{n} for $x \in M$, we can define a system of coordinates called normal coordinates.

Let χ_{ρ} be a smooth cut off function such that

$$
\begin{gathered}
\chi_{\rho}(z)=1 \quad \text { if } z \in B(0, \rho / 2) \\
\chi_{\rho}(z)=0 \quad \text { if } z \in \mathbb{R}^{n} \backslash B(0, \rho) \\
\left|\nabla \chi_{\rho}(z)\right| \leq 2 \quad \text { for all } x
\end{gathered}
$$

Fixed a point $q \in M$ and $\varepsilon>0$, let us define the function $w_{\varepsilon, q}(x)$ on M as

$$
w_{\varepsilon, q}(x)= \begin{cases}U_{\varepsilon}\left(\exp _{q}^{-1}(x)\right) \chi_{\rho}\left(\exp _{q}^{-1}(x)\right) & \text { if } x \in B_{g}(q, \rho) \tag{4.3}\\ 0 & \text { otherwise }\end{cases}
$$

For each $\varepsilon>0$ we can define a positive number $t\left(w_{\varepsilon, q}\right)$ such that

$$
\begin{equation*}
\Phi_{\varepsilon}(q)=t\left(w_{\varepsilon, q}\right) w_{\varepsilon, q} \in H_{g}^{1}(M) \cap \mathcal{N}_{\varepsilon} \text { for } q \in M \tag{4.4}
\end{equation*}
$$

Namely, $t\left(w_{\varepsilon, q}\right)$ turns out to verify

$$
\begin{equation*}
t\left(w_{\varepsilon, q}\right)^{p-2}=\frac{\int_{M} \varepsilon^{2}\left|\nabla_{g} w_{\varepsilon, q}\right|^{2}+\left|w_{\varepsilon, q}\right|^{2} d \mu_{g}}{\int_{M}\left|w_{\varepsilon, q}\right|^{p} d \mu_{g}} \tag{4.5}
\end{equation*}
$$

Lemma 4.1. Given $\varepsilon>0$ the application $\Phi_{\varepsilon}(q): M \rightarrow H_{g}^{1}(M) \cap \mathcal{N}_{\varepsilon}$ is continuous. Moreover, given $\delta>0$ there exists $\varepsilon_{0}=\varepsilon_{0}(\delta)$ such that, if $\varepsilon<\varepsilon_{0}(\delta)$ then $\Phi_{\varepsilon}(q) \in$ $\mathcal{N}_{\varepsilon} \cap J_{\varepsilon}^{m_{\infty}+\delta}$.

For the proof see [1, Proposition 4.2]. Now, fixed a point $q \in M_{d}^{-}$, let us define the function

$$
\begin{equation*}
\Phi_{\varepsilon}^{\tau}(q)=t\left(w_{\varepsilon, q}\right) w_{\varepsilon, q}-t\left(w_{\varepsilon, \tau q}\right) w_{\varepsilon, \tau q} \tag{4.6}
\end{equation*}
$$

Lemma 4.2. Given $\varepsilon>0$ the application $\Phi_{\varepsilon}^{\tau}(q): M_{d}^{-} \rightarrow H_{g}^{1}(M) \cap \mathcal{N}_{\varepsilon}^{\tau}$ is continuous. Moreover, given $\delta>0$ there exists $\varepsilon_{0}=\varepsilon_{0}(\delta)$ such that, if $\varepsilon<\varepsilon_{0}(\delta)$ then $\Phi_{\varepsilon}^{\tau}(q) \in \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)}$.
Proof. Since $U_{\varepsilon}(z) \chi_{\rho}(z)$ is radially symmetric we set $U_{\varepsilon}(z) \chi_{\rho}(z)=\tilde{U}_{\varepsilon}(|z|)$. We recall that

$$
\begin{gathered}
\left|\exp _{\tau q}^{-1} \tau x\right|=d_{g}(\tau x, \tau q)=d_{g}(x, q)=\left|\exp _{q}^{-1} x\right| \\
\left|\exp _{q}^{-1} \tau x\right|=d_{g}(\tau x, q)=d_{g}(x, \tau q)
\end{gathered}
$$

We have

$$
\begin{aligned}
\tau^{*} \Phi_{\varepsilon}^{\tau}(q)(x) & =-t\left(w_{\varepsilon, q}\right) w_{\varepsilon, q}(\tau x)+t\left(w_{\varepsilon, \tau q}\right) w_{\varepsilon, \tau q}(\tau x) \\
& =-t\left(w_{\varepsilon, q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{q}^{-1}(\tau x)\right|\right)+t\left(w_{\varepsilon, \tau q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{\tau q}^{-1}(\tau x)\right|\right) \\
& =t\left(w_{\varepsilon, \tau q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{q}^{-1}(x)\right|\right)-t\left(w_{\varepsilon, q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{q}^{-1}(\tau x)\right|\right) \\
& =t\left(w_{\varepsilon, q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{q}^{-1}(x)\right|\right)-t\left(w_{\varepsilon, q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{\tau q}^{-1}(x)\right|\right)
\end{aligned}
$$

because by the definition we have $t\left(w_{\varepsilon, q}\right)=t\left(w_{\varepsilon, \tau q}\right)$.
Moreover by definition the support of the function $\Phi_{\varepsilon}^{\tau}$ is $B_{g}(q, \rho) \cup B_{g}(\tau q, \rho)$, and $B_{g}(q, \rho) \cap B_{g}(\tau q, \rho)=\emptyset$ because $\rho<d / 2$ and $q \in M_{d}^{-}$. Finally, because

$$
\begin{gathered}
\int_{M}\left|w_{\varepsilon, q}\right|^{\alpha} d \mu_{g}=\int_{M}\left|w_{\varepsilon, \tau q}\right|^{\alpha} d \mu_{g} \text { for } \alpha=2, p \\
\int_{M}\left|\nabla w_{\varepsilon, q}\right|^{2} d \mu_{g}=\int_{M}\left|\nabla w_{\varepsilon, \tau q}\right|^{2} d \mu_{g}
\end{gathered}
$$

we have

$$
\begin{equation*}
J_{\varepsilon}\left(\Phi_{\varepsilon}^{\tau}(q)\right)=\left(\frac{1}{2}-\frac{1}{p}\right) \frac{1}{\varepsilon^{n}} \int_{M}\left|\Phi_{\varepsilon}^{\tau}(q)\right|^{p} d \mu_{g}=2 J_{\varepsilon}\left(\Phi_{\varepsilon}(q)\right) \tag{4.7}
\end{equation*}
$$

Then by previous lemma we have the claim.
Lemma 4.3. We have $\lim _{\varepsilon \rightarrow 0} m_{\varepsilon}^{\tau}=2 m_{\infty}$
Proof. By the previous lemma and by Remark 2.1 we have that for any $\delta>0$ there exists $\varepsilon_{0}(\delta)$ such that, for $\varepsilon<\varepsilon_{0}(\delta)$

$$
\begin{equation*}
2 m_{\varepsilon} \leq m_{\varepsilon}^{\tau} \leq 2 J_{\varepsilon}\left(\Phi_{\varepsilon}(q)\right) \leq 2\left(m_{\infty}+\delta\right) \tag{4.8}
\end{equation*}
$$

Since $\lim _{\varepsilon \rightarrow 0} m_{\varepsilon}=m_{\infty}$ (see [1, Remark 5.9]) we get the claim.
For any function $u \in \mathcal{N}_{\varepsilon}^{\tau}$ we can define a point $\beta(u) \in \mathbb{R}^{N}$ by

$$
\begin{equation*}
\beta(u)=\frac{\int_{M} x\left|u^{+}(x)\right|^{p} d \mu_{g}}{\int_{M}\left|u^{+}(x)\right|^{p} d \mu_{g}} \tag{4.9}
\end{equation*}
$$

Lemma 4.4. There exists δ_{0} such that, for any $0<\delta<\delta_{0}$ and any $0<\varepsilon<\varepsilon_{0}(\delta)$ (as in Lemma 4.2) and for any function $u \in \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)}$, it holds $\beta(u) \in M_{d}$.
Proof. Since $\tau^{*} u=u$ we set

$$
M^{+}=\{x \in M: u(x)>0\}, \quad M^{-}=\{x \in M: u(x)<0\} .
$$

It is easy to see that $\tau M^{+}=M^{-}$. Then we have

$$
\begin{aligned}
J_{\varepsilon}(u) & =\left(\frac{1}{2}-\frac{1}{p}\right) \frac{1}{\varepsilon^{n}} \int_{M}|u|^{p} d \mu_{g} \\
& =\left(\frac{1}{2}-\frac{1}{p}\right) \frac{1}{\varepsilon^{n}}\left[\int_{M^{+}}\left|u^{+}\right|^{p} d \mu_{g}+\int_{M^{-}}\left|u^{-}\right|^{p} d \mu_{g}\right]=2 J_{\varepsilon}\left(u^{+}\right)
\end{aligned}
$$

By the assumption $J_{\varepsilon}(u) \leq 2\left(m_{\infty}+\delta\right)$ we have $J_{\varepsilon}\left(u^{+}\right) \leq m_{\infty}+\delta$ then by Proposition 5.10 of [1] we get the claim.

Lemma 4.5. There exists $\varepsilon_{0}>0$ such that for any $0<\varepsilon<\varepsilon_{0}$ the composition

$$
\begin{equation*}
I_{\varepsilon}=\beta \circ \Phi_{\varepsilon}^{\tau}: M_{d}^{-} \rightarrow M_{d} \subset \mathbb{R}^{N} \tag{4.10}
\end{equation*}
$$

is well defined, continuous, homotopic to the identity and $I_{\varepsilon}(\tau q)=\tau I_{\varepsilon}(q)$.

Proof. It is easy to check that

$$
\Phi_{\varepsilon}^{\tau}(\tau q)=-\Phi_{\varepsilon}^{\tau}(q), \quad \beta(-u)=\tau \beta(u)
$$

Moreover, by Lemma 4.2 and by Lemma 4.4 for any $q \in M_{d}^{-}$we have $\beta \circ \Phi_{\varepsilon}^{\tau}(q)=$ $\beta\left(\Phi_{\varepsilon}(q)\right) \in M_{d}$, and I_{ε} is well defined.

In order to show that I_{ε} is homotopic to identity, we evaluate the difference between I_{ε} and the identity as follows.

$$
\begin{aligned}
I_{\varepsilon}(q)-q & =\frac{\int_{M}(x-q)\left|w_{\varepsilon, q}^{+}\right|^{p} d \mu_{g}}{\int_{M}\left|w_{\varepsilon, q}^{+}\right|^{p} d \mu_{g}} \\
& =\frac{\int_{B(0, \rho)} z\left|U\left(\frac{z}{\varepsilon}\right) \chi_{\rho}(|z|)\right|^{p}\left|g_{q}(z)\right|^{1 / 2}}{\int_{B(0, \rho)}\left|U\left(\frac{z}{\varepsilon}\right) \chi_{\rho}(|z|)\right|^{p}\left|g_{q}(z)\right|^{1 / 2}} \\
& =\frac{\varepsilon \int_{B(0, \rho / \varepsilon)} z\left|U(z) \chi_{\rho}(|\varepsilon z|)\right|^{p}\left|g_{q}(\varepsilon z)\right|^{1 / 2}}{\int_{B(0, \rho / \varepsilon)}\left|U(z) \chi_{\rho}(|\varepsilon z|)\right|^{p}\left|g_{q}(\varepsilon z)\right|^{1 / 2}}
\end{aligned}
$$

hence $\left|I_{\varepsilon}(q)-q\right|<\varepsilon c(M)$ for a constant $c(M)$ that does not depend on q.
Now, by previous lemma and by Theorem 2.3 we can prove Theorem 1.1 In fact, we know that, if ε is small enough, there exist $G_{\tau}-\operatorname{cat}\left(M-M_{\tau}\right)$ minimizers which change sign, because they are antisymmetric. We have only to prove that any minimizer changes sign exactly once. Let us call $\omega=\omega_{\varepsilon}$ one of these minimizers. Suppose that the set $\left\{x \in M: \omega_{\varepsilon}(x)>0\right\}$ has k connected components M_{1}, \ldots, M_{k}. Set

$$
\omega_{i}= \begin{cases}\omega_{\varepsilon}(x) & x \in M_{i} \cup \tau M_{i} \tag{4.11}\\ 0 & \text { elsewhere }\end{cases}
$$

For all $i, \omega_{i} \in \mathcal{N}_{\varepsilon}^{\tau}$. Furthermore we have

$$
\begin{equation*}
J_{\varepsilon}(\omega)=\sum_{i} J_{\varepsilon}\left(\omega_{i}\right) \tag{4.12}
\end{equation*}
$$

thus

$$
\begin{equation*}
m_{\varepsilon}^{\tau}=J_{\varepsilon}(\omega)=\sum_{i=1}^{k} J_{\varepsilon}\left(\omega_{i}\right) \geq k \cdot m_{\varepsilon}^{\tau} \tag{4.13}
\end{equation*}
$$

so $k=1$, that concludes the proof.

References

[1] V. Benci, C. Bonanno, and A.M. Micheletti; On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds, J. Funct. Anal. 252 (2007), no. 2, 464-489.
[2] V. Benci and G. Cerami; The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal. 114 (1991), no. 1, 79-93.
[3] J. Byeon and J. Park; Singularly perturbed nonlinear elliptic problems on manifolds, Calc. Var. Partial Differential Equations 24 (2005), no. 4, 459-477.
[4] A. Castro and M. Clapp; The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003), no. 2, 579-590.
[5] E. Dancer and S. Yan; Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math 189 (1999), no. 2, 241-262.
[6] E. Dancer, A.M. Micheletti, and Angela Pistoia, Multipeak solutions for some singularly perturbed nonlinear elliptic problems in a Riemannian manifold, to appear on Manus. Math.
[7] C. Gui; Multipeak solutions for a semilinear Neumann problem, Duke Math J. 84 (1996), no. 3, 739-769.
[8] C. Gui, J. Wei, and M. Winter; Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 1, 47-82.
[9] N. Hirano; Multiple existence of solutions for a nonlinear elliptic problem on a Riemannian manifold, Nonlinear Anal., 70 (2009), no. 2, 671-692.
[10] Y. Y. Li; On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998), no. 3-4, 487-545.
[11] C.S. Lin, W.M. Ni, and I. Takagi; Large amplitude stationary solutions to a chemiotaxis system, J. Differential Equations 72 (1988), no. 1, 1-27.
[12] A. M. Micheletti and A. Pistoia; Nodal solutions for a singularly perturbed nonlinear elliptic problem in a Riemannian manifold, to appear on Adv. Nonlinear Stud.
[13] A. M. Micheletti and A. Pistoia; The role of the scalar curvature in a nonlinear elliptic problem in a Riemannian manifold, Calc. Var. Partial Differential Equation, 34 (2009), 233265.
[14] W. M. Ni and I. Takagi; On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), no. 7, 819-851.
[15] W. M. Ni and I. Takagi; Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247-281.
[16] M. Del Pino, P. Felmer, and J. Wei; On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), no. 1, 63-79.
[17] D. Visetti; Multiplicity of solutions of a zero-mass nonlinear equation in a Riemannian manifold, J. Differential Equations, 245 (2008), no. 9, 2397-2439.
[18] J. Wei; On the boundary spike layer solutions to a singularly perturbed Neumann problem, J. Differential Equations 134 (1997), no. 1, 104-133.
[19] J. Wei and M. Winter; Multipeak solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999), no. 2, 585-606.

Marco Ghimenti
Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via Cozzi 53, 20125, Milano, Italy

E-mail address: marco.ghimenti@unimib.it
Anna Maria Micheletti
Dipartimento di Matematica Applicata, Università di Pisa, via Buonarroti 1c, 56100, Pisa, Italy

E-mail address: a.micheletti@dma.it

[^0]: 2000 Mathematics Subject Classification. 35J60, 58G03.
 Key words and phrases. Riemannian manifolds; nodal solutions; topological methods.
 (C) 2010 Texas State University - San Marcos.

 Published July 10, 2010.

