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EXISTENCE OF SOLUTIONS FOR THERMOELASTIC
SEMICONDUCTOR EQUATIONS

XIAOQIN WU

Abstract. We study a model for the semiconductor problem that consists of
a system of dynamic thermoelasticity equations of displacement and semicon-

ductor equations. This problem arises from the observation that semiconductor

devices are too often cracked and broken because of the thermal stresses. Since
the heat source generated by Joule heating is quadratic in the gradient of the

electrical potential, this causes some problem even in analysis. We establish

the existence theorem of a weak solution. The proof is based on time retarding.

1. Introduction

Semiconductors are electrical devices which are extensively used in industrial
world and in our daily life. The so-called “Semiconductor Problem” is a system of
a stationary charge conservation equation of electrical current and two parabolic
equations of electrons and holes. That is,

−div(σ∇ϕ) = p− n+ f

nt − div(dn∇n− µnσn∇ϕ) = g(n, p)(1− np)

pt − div(dp∇p+ µpσp∇ϕ) = g(n, p)(1− np)
(1.1)

where ϕ represents the electrostatic potential, n and p the densities of electrons and
holes, σ the electrical conductivity, dn and dp the diffusion coefficients, µn and µp

the mobilities of electrons and holes, respectively, f the net impurity, g(n, p)(1−np)
the general rate of recombination-generation. This model, which appeared in the
1950’s, has, since then, received much attention (see [1, 5, 15, 20]).

It is a common phenomenon that electrical devices produce heat or temperature.
One of the main reasons for considering the thermoelastic semiconductor problem
is the observation that these devices are too often cracked and broken because
of the thermal stresses. However, the literature on this problem has not dealt
with the thermoelastic aspects of the process, only with the thermal and electrical
conductions.

In this paper we fill in this gap and consider a new model for the thermoe-
lastic semiconductor. The thermoelastic behavior is taken into account, resulting
in a fully coupled system of equations for the temperature, electrical potential and
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elastic displacements. This model consists of an elliptic equation of charge conserva-
tion of electrical current, three hyperbolic equations of displacement of the device,
a parabolic equation of the energy caused by Joule’s heating, and two parabolic
equations of the densities of electrons and holes. For the sake of simplicity, we as-
sume that the material constitutive behavior can be adequately described by linear
thermoelasticity. The nonlinearity resides in the electrical conductivity. Moreover,
Joule’s heating introduces a source term in the heat equation that is quadratic in
the gradient of the electrical potential. This feature makes the problem interesting
also from the mathematical point of view. In this paper we establish the existence
of a weak solution for the problem.

This paper is organized as follows. We present the classical model of thermoe-
lastic semiconductor in Section 2 where we explain in the combined process. The
formulation of a weak solution for this model is presented in Section 3 together
with the assumptions on the data. The statement of our main result is given in
Theorem 3.1. The proof of the existence of a weak solution is presented in Section
4. It is based on a sequence of time retarded problems. The basic idea is the fol-
lowing. First we give a prior estimates, and then construct a sequence of solutions
of approximate problems. By passing to the limits of the sequence, we will obtain
a weak solution.

2. A Model of Thermoelastic Semiconductor Problem

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary Γ = ∂Ω,
representing the isothermal reference configuration of the thermoelastic body, the
semiconductor in our case. We assume that Γ is divided into two relatively open
parts ΓD and ΓN such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = Γ. We denote by ν =
(ν1, . . . , νN ) the outward unit normal to Γ. We assume that the body is held fixed
on ΓD, and the temperature and potential are prescribed there. On ΓN the body
is free, electrically insulted and exchanging heat with the environment. We choose
the Dirichlet conditions on ΓD for the three fields for the sake of simplicity. We use
θ to represent the temperature field, ϕ the electrical potential and u = (u1, . . . , uN )
the displacement field. Let T > 0 and set ΩT = Ω× (0, T ).

The behavior of the system is governed by the energy equation, the equation
of charge conservation and the equations of linear elasticity. In a non-dimensional
form we may write the system (see, e.g., [2, 6, 9, 10, 20]) as

−div(σ(θ)∇ϕ) = p− n+ f,

∂n

∂t
− div(dn∇n− µnσ(θ)n∇ϕ) = g(n, p)(1− np),

∂p

∂t
− div(dp∇p+ µpσ(θ)p∇ϕ) = g(n, p)(1− np),

∂θ

∂t
− ∂

∂xj

(
kij(θ)

∂θ

∂xi

)
= σ(θ)|∇ϕ|2 −mij

∂2ui

∂t∂xj
,

ρ
∂2ui

∂t2
− ∂

∂xj

(
aijkl

∂uk

∂xl
−mijθ

)
= fi.

(2.1)

Here and below, i, j, k, l = 1, . . . , N and summation over repeated indices is em-
ployed. The density ρ > 0 is a constant; K = {kij} and M = {mij} are the
heat conduction and thermal expansion tensors, respectively, and A = {aijkl} is
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the elasticity tensor; f = (f1, . . . , fN ) represents the density of body force. Finally,
σ = σ(θ) is the temperature-dependent electrical conductivity.

The first equation of (2.1) represents the charge conservation of the electrical
potential. The second and third ones represent the exchange of the densities of elec-
trons and holes of the semiconductor. The fourth one represents the heat transfer
equation in terms of the deformation of the semiconductor and the energy, produced
by the so-called Joule heating

J = σ(θ)|∇ϕ|2

generated by the electrical current for the temperature θ. The last one of (2.1) is
the dynamic thermoelasticity equations of displacement of the semiconductor.

To complete the classical formulation of the problem we have to specify the initial
and boundary conditions. We set

ϕ = ϕb, n = nb, p = pb, u = 0, θ = θb, on ΓD × (0, T ),
∂ϕ

∂ν
= 0,

∂n

∂ν
= 0,

∂p

∂ν
= 0,

∂ui

∂ν
= 0, i = 1, . . . , N, on ΓN × (0, T ),

−kij
∂θ

∂xi
νj = h(θ − θa), on ΓN × (0, T ),

n = n0, p = p0, u = u0, ut = u1, θ = θ0, in Ω× {t = 0},

(2.2)

where n0, p0 are the initial densities of electrons and holes, respectively, u0, u1 the
initial displacements and velocities, respectively, θ0 the initial temperature, nb, pb

are the density on ΓD respectively, θb the temperature and ϕb the potential there,
θa the ambient temperature near ΓN , and h the heat exchange coefficient.

Our goal for this “thermoelastic semiconductor” problem is:

Find {ϕ, n, p, θ, u} such that (2.1)-(2.2) are satisfied.

The precise assumptions on the data and the weak formulation are given in the
next section.

We note that, if (the electrical conductivity) σ = 0 at large temperature, the
first equation of (2.1) for ϕ degenerates and the heating term in the fourth equation
of (2.1) vanishes and This degeneracy makes it necessary to consider a capacity
solution ([17, 18]) to this model. Recently, Wu and Xu ([16]) consider a model of
thermoelastic thermistor problem with the degenerate electrical conductivity and
obtain the existence of its capacity solutions. The authors use time retardation to
construct an approximate model whose solution is easily to be obtained and whose
limit is the solution of the original model. The method used in this paper is similar
to the one in that paper. We must note that when ρ∂2ui/∂t

2 may be omitted;
i.e., small ρ or small accelerations, the resulting problem is quasi-static and we will
consider in future.

3. Weak Formulation and Main Result

We present a weak formation for our model, the assumptions on the problem
data and the statement of our existence results. For simplicity we extend nb, pb, θb

to functions defined on ΩT , and denote it by nb, pb, θb. This means that they have
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to satisfy a compatibility condition

nb, pb, θb ∈ H1(ΩT ),

ess sup
(ΓD×(0,T ))∪(Ω×0)

|nb|, |pb|, |θb| <∞,

ϕb ∈ L2(0, T ;H1(Ω)) ∩ L∞(ΩT ).

First, we introduce the following function spaces:

V0 = H1
D(Ω) = {w ∈ H1(Ω) : w = 0 on ΓD}, U0 = H1

D(Ω)N

and denote by V ′0 and U ′0 their dual spaces, respectively. Finally, we assume that
ρ > 0 is constant and that

u0(x) = (u01, . . . , u0N ) ∈ U0,

u1(x) = (u11, . . . , u1N ) ∈ (L2(Ω))N ,

f = (f1, . . . , fN ) ∈ (L2(ΩT ))N , h ∈ (0,∞),

aijkl,
∂

∂t
aijkl ∈ L∞(ΩT ), aijkl = ajikl = aklij ,

aijklηijηkl ≥ λ|η|2 = λ

N∑
i,j=1

η2
ij , ∀η = (ηij),

ηij = ηji, λ > 0,

mij ,
∂

∂t
mij ∈W 1,∞(ΩT ), mij = mji,

kij ∈ L∞(ΩT ), kij = kji,

kijξiξj ≥ λ1|ξ|2, ∀ξ = (ξij), λ1 > 0,

0 < M1 ≤ σ(s) ≤M2,where M1,M2 are constants,
dn, dp, µn, µp are positive constants.

This completes the assumptions. Now we give the definition of weak solutions.

Definition 3.1. {ϕ, n, p, θ, u, v} is said to be a weak solution of problem (2.1)-(2.2)
if {ϕ, n, p, θ, u, v} satisfies

ϕ− ϕb ∈ L∞(0, T ;V0), n− nb ∈ L∞(0, T ;V0)∩ ∈ L2(0, T ;V0),

p− pb ∈ L∞(0, T ;V0)∩ ∈ L2(0, T ;V0), θ − θb ∈ L2(0, T ;V0),

n, p, ϕ ∈ L∞(ΩT ), nt ∈ L2(0, T ;V ′0), pt ∈ L2(0, T ;V ′0), θt ∈ L2(0, T ;V ′0),

u ∈ L∞(0, T ;U0), v ∈ L∞(0, T ;L2(Ω)N ), vt ∈ L2(0, T ;U ′0),

n(x, 0) = n0, p(x, 0) = p0, θ(x, 0) = θ0,

u(x, 0) = u0, v(x, 0) = u1, x ∈ Ω,
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such that, for all η ∈ V0, γ ∈ V0 ∩ L∞(Ω), w ∈ U0, there hold∫
Ω

σ(θ)∇ϕ∇ηdx =
∫

Ω

(n− p+ f)ηdx,

〈nt, η〉+
∫

Ω

(dn∇n− µnσ(θ)n∇ϕ)∇ηdx =
∫

Ω

g(n, p)(1− np)ηdx,

〈pt, η〉+
∫

Ω

(dp∇p+ µpσ(θ)p∇ϕ)∇ηdx =
∫

Ω

g(n, p)(1− np)ηdx,

〈θt, γ〉+
∫

Ω

kij(θ)
∂θ

∂xi

∂γ

∂xj
dx+

∫
ΓN

h(θ − θb)γ dS

=
∫

Ω

σ(θ)|∇ϕ|2γdx+
∫

Ω

mij
∂vi

∂xj
γdx ,

〈vt, w〉+
∫

Ω

(
aijkl

∂uk

∂xl
−mijθ

)∂wi

∂xj
dx =

∫
Ω

fw dx,

v = ut,

(3.1)

where 〈·, ·〉 denotes the duality pairing between V0 and V ′0 or U0 and U ′0.

We note that if ϕ ∈ L2(0, T ;H1(Ω)), then∫
Ω

div(σ(θ)ϕ∇ϕ)ξ dx =
∫

Ω

div(σ(θ)∇ϕ · ϕ)ξ dx

=
∫

Ω

σ(θ)|∇ϕ|2ξ dx+
∫

Ω

div(σ(θ)∇ϕ)ϕξ dx

=
∫

Ω

σ(θ)|∇ϕ|2ξ dx+
∫

Ω

(n− p+ f)ϕξ dx

for all ξ ∈ V0. Thus

σ(θ)|∇ϕ|2 = div(σ(θ)ϕ∇ϕ)− (n− p+ f)ϕ

in the sense of distributions. Hence the forth equation of (3.1) can be written as

〈θt, γ〉+
∫

Ω

kij(θ)
∂θ

∂xi

∂γ

∂xj
dx+

∫
ΓN

h(θ − θb)γ dS

= −
∫

Ω

σ(θ)ϕ∇ϕ∇γdx−
∫

Ω

ϕ(n− p+ f)γdx+
∫

Ω

mij
∂vi

∂xj
γdx.

Theorem 3.1. The problem stated above has a solution.

Formally, we may obtain a priori estimates by multiplying the first equation of
(2.1) by ϕ−ϕb, the second equation by n−nb, the third by p−pb, the forth by θ−θb,
the fifth by ∂ui/∂t, and integrating over Ω. For the necessary calculations to be
valid, u has to be sufficiently regular. To achieve this we construct an approximation
scheme in which θ, n, p, u and ϕ possess the needed regularities. This is based on a
retardation scheme in the time variable. The approximate problems are considered
next.

4. Approximate Problems and Proof of Theorem 3.1

In this section we use the time-retardation method to construct a sequence of
approximate problems that will lead us to the proof of existence for our problem.
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To do that, for fixed function g defined in [0, T ] and m > 0 , let ε = T
m and define

the time-retarded function gε of g by

gε =

{
g(t− ε) if t > ε,

g0 if t ∈ [0, ε],

where g0 will be given. Consider the following approximation problem: for all
ψ ∈ V0, γ ∈ V0 ∩ L∞(Ω), w ∈ U0∫

Ω

σ(θε
ε)∇ϕε∇ψdx =

∫
Ω

(pε − nε + f)ψdx,

〈nε
t , ψ〉+

∫
Ω

(dn∇nε − µnσ(θε
ε)n

ε∇ϕε)∇ψdx =
∫

Ω

g(nε, pε)(1− nεpε)ψdx,

〈pε, ψ〉+
∫

Ω

(dp∇pε + µpσ(θε
ε)p

ε∇ϕε)∇ψdx =
∫

Ω

g(nε, pε)(1− nεpε)ψdx,

〈θε, γ〉+
∫

Ω

kij(θε
ε)
∂θε

∂xi

∂γ

∂xj
dx+

∫
ΓN

h(θε − θb)γ dS

= −
∫

Ω

σ(θε
ε)ϕ

ε∇ϕε∇γdx−
∫

Ω

ϕε(nε − pε + f)γdx−
∫

Ω

mij
∂vε

i

∂xj
γdx,

ρ〈vε
t , w〉+

∫
Ω

aijkl
∂uε

k

∂xl

∂wi

∂xj
dx−

∫
Ω

mijθ
ε ∂wi

∂xj
dx =

∫
Ω

fiwidx,

vε = uε
t

(4.1)

with the following boundary conditions:

ϕε = ϕb, n
ε = nb, p

ε = pb, u
ε = 0, θ = θb, on ΓD × (0, T ),

∂ϕε

∂ν
= 0,

∂nε

∂ν
= 0,

∂pε

∂ν
= 0,

∂uε
i

∂ν
= 0, i = 1, . . . , N, on ΓN × (0, T ),

−kij
∂θε

∂xi
νj = h(θε − θa), on ΓN × (0, T ),

nε = n0, p
ε = p0, u

ε = u0, v
ε = u1, θ

ε = θ0, in Ω× {t = 0},

Here, according to the definition above,

θε
ε = θε(t− ε) = θ0, for t ∈ [0, ε]

is given. With σ(θε
ε) given and the fact that σ is bounded between positive con-

stants, the first three equations of (4.1) are the system of standard elliptic and
parabolic equations of semiconductor devices. The existence and uniqueness of the
solutions of these three equations in [0, ε] are well known (e.g., see [20]). Once we
obtain (ϕε, nε, pε), the rest three equations of (4.1) are standard linear thermoelas-
ticity equations whose existence and uniqueness of the solution (θε, uε, vε) in [0, ε]
are also well known (e.g., see [14]). We proceed inductively on each time interval
[kε, (k + 1)ε] for 0 ≤ k ≤ m to obtain the unique solution of (4.1) in [0, T ].

To take limit as ε → 0 in (4.1) we need some a priori estimates. The following
result is cited from ([20]).

Lemma 4.1. There is a constant C independent of ε such that

0 ≤ nε, pε ≤ C, ‖ϕε‖L∞(ΩT ) ≤ C, ‖ϕε‖H1(Ω) ≤ C,

‖nε‖L2(0,T ;H1(Ω)) + ‖pε‖L2(0,T ;H1(Ω)) ≤ C.



EJDE-2009/CONF/17 EXISTENCE OF SOLUTIONS 261

With the estimates of this lemma and using the same method in [14], we have
the following a priori estimate results for the last two equations of (4.1).

Lemma 4.2. The following estimate holds

sup
0≤t≤T

‖θε(t)‖2
L2 +

∫ T

0

‖∇θε(τ)‖2
L2dτ +

∫ T

0

∫
ΓN

h|θε − θb|2 ds

+ sup
0≤t≤T

‖uε(x, t)‖2
U0

+ sup
0≤t≤T

‖vε(x, t)‖2
L2 dx ≤ C,

where C is a positive constant that depends on the data but is independent of m.

Proof. Using θε − θb as a test function in the forth equation of (4.1), we have∫
Ω

∂θε

∂t
(θε − θb)dx+

∫
Ω

kij(θε
ε)
∂θε

∂xi

∂(θε − θb)
∂xj

dx+
∫

ΓN

h|θε − θb|2 ds

= −
∫

Ω

σ(θε
ε)ϕ

ε∇ϕε∇(θε − θb)dx−
∫

Ω

ϕε(nε − pε + f)(θε − θb)dx

−
∫

Ω

mij
∂vε

i

∂xj
(θε − θb)dx,

from which we derive

1
2
d

dt
‖θε − θb‖2

L2dx+
∫

Ω

kij(θε
ε)
∂(θε − θb)

∂xi

∂(θε − θb)
∂xj

dx+
∫

ΓN

h|θε − θb|2 ds

= −
∫

Ω

∂θb

∂t
(θε − θb)dx−

∫
Ω

kij(θε
ε)
∂θb

∂xi

∂(θε − θb)
∂xj

dx

−
∫

Ω

σ(θε
ε)ϕ

ε∇ϕε∇(θε − θb)dx−
∫

Ω

ϕε(nε − pε + f)(θε − θb)dx

−
∫

Ω

mij
∂vε

i

∂xj
(θε − θb)dx

≤ C

∫
Ω

|θε − θb|dx+
1
2

∫
Ω

kij(θε
ε)
∂θb

∂xi

∂θb

∂xj
dx+

1
2

∫
Ω

kij(θε
ε)
∂(θε − θb)

∂xi

∂(θε − θb)
∂xj

dx

−
∫

Ω

σ(θε
ε)ϕ

ε∇ϕε∇(θ − θb)dx−
∫

Ω

ϕε(nε − pε + f)(θε − θb)dx

−
∫

Ω

mij
∂vε

i

∂xj
(θε − θb)dx.

With the estimates in Lemma 4.1 and by the Poincaré inequality, we have

d

dt
‖θε − θb‖2

L2 + C1‖∇(θε − θb)‖2
L2 +

∫
ΓN

h|θε − θb|2 ds

≤ C2 −
∫

Ω

mij
∂vε

i

∂xj
(θε − θb)dx,

Using vi as a test function in the fifth equation of (4.1), we have

1
2
ρ
d

dt
‖v‖2

L2 +
∫

Ω

aijkl
∂uε

k

∂xl

∂vε
i

∂xj
dx−

∫
Ω

mijθ
ε ∂v

ε
i

∂xj
dx =

∫
Ω

fividx
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Noting that vε
i = ∂uε

i

∂t , we have

1
2
ρ
d

dt
‖v‖2

L2 +
1
2
d

dt

∫
Ω

aijkl
∂uε

k

∂xl

∂uε
i

∂xj
dx

=
1
2

∫
Ω

∂aijkl

∂t

∂uε
k

∂xl

∂uε
i

∂xj
dx+

∫
Ω

mijθ
ε ∂v

ε
i

∂xj
dx+

∫
Ω

fividx

≤ C + C‖∇uε‖2
L2 +

∫
Ω

mijθ
ε ∂v

ε
i

∂xj
dx+ C‖v‖2

L2 .

Integrating by parts and adding the above two estimates we obtain
d

dt

(
‖θε − θb‖2

L2 + ρ‖v‖2
L2 +

∫
Ω

aijkl
∂uε

k

∂xl

∂uε
i

∂xj
dx

)
+ C1‖∇(θε − θb)‖2

L2 +
∫

ΓN

h|θε − θb|2 ds

≤ C + C‖vε‖2
L2 + C‖∇uε‖2

L2

The assumption on aijkl and the Gronwall inequality derive the desired estimates.
�

To use the energy estimates in Lemmas 4.1-4.2 to extract convergence subse-
quences of {ϕε}, {nε}, {pε}, {θε}, {uε} and {vε}, we need the following lemma.

Lemma 4.3. Let B0, B,B1 be Banach spaces with B0 ⊂ B ⊂ B1; assume B0 ↪→ B
is compact and B ↪→ B1 is continuous. Let 1 < p <∞, 1 < q <∞, let B0 and B1

be reflexive, and define

W ≡ {u ∈ Lp(0, T ;B0),
du

dt
∈ Lq(0, T ;B1)}.

Then the inclusion W ↪→ Lp(0, T ;B) is compact.

The Proof of Theorem 3.1 follows from the following lemmas.

Lemma 4.4. There holds θε → θ strongly in L2(0, T ;L2(Ω)) ≡ L2(ΩT ) as ε→ 0.

Proof. From Lemmas 4.1-4.2, there are subsequences, still denoted by the original
ones, such that

θε → θ weakly∗ in L∞(0, T ;L2(Ω)),

θε → θ weakly in L2(0, T ;H1(Ω)),
dθε

dt
→ dθ

dt
weakly in L2(0, T ;H1(Ω)′),

as ε→ 0. By Lemma 4.3,

θε → θ strongly in L2(0, T ;L2(Ω)) ≡ L2(ΩT ),

and hence θε → θ a.e. in ΩT as ε→ 0. Noting that θε
ε(t) = θε(t− ε), we also have

θε
ε → θ a.e. in ΩT . �

Using this lemma, we can extract convergence subsequences of {ϕε}, {vε} and
{uε} in suitable spaces.

Lemma 4.5. There is a subsequence of {ϕε}, still denoted by {ϕε}, such that
ϕε → ϕ strongly in H1(Ω) as ε→ 0.
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Proof. Since {ϕε} is bounded in L∞(0, T ;H1(Ω)), there is a subsequence of {ϕε},
still denoted by {ϕε}, such that

ϕε → ϕ weakly* in L∞(0, T ;H1(Ω)).

By Sobolev’s embedding theorem

ϕε → ϕ strongly in L2(Ω).

Using ϕε − ϕ as a test function in the first equation of (4.1) to get∫
Ω

σ(θε
ε)∇ϕε∇(ϕε − ϕ)dx =

∫
Ω

(nε − pε + f)(ϕε − ϕ)dx

from which, by the assumption of σ, we obtain∫
Ω

|∇(ϕε − ϕ)|2dx

≤ C

∫
Ω

(nε − pε + f)(ϕε − ϕ)dx− C

∫
Ω

σ(θε
ε)∇ϕ∇(ϕε − ϕ)dx

≤ C

∫
Ω

|ϕε − ϕ|dx− C

∫
Ω

(σ(θε
ε)− σ(θ))∇ϕ∇(ϕε − ϕ)dx

− C

∫
Ω

σ(θ)∇ϕ∇(ϕε − ϕ)dx.

Note that ∣∣ ∫
Ω

(σ(θε
ε)− σ(θ))∇ϕ∇(ϕε − ϕ)dx

∣∣
≤

( ∫
Ω

|σ(θε
ε)− σ(θ)|2|∇ϕ|2dx

)1/2( ∫
Ω

|∇(ϕε − ϕ)|2dx
)1/2

.

Since
|σ(θε

ε)− σ(θ)||∇ϕ| ≤ C|∇ϕ|
we have |σ(θε

ε) − σ(θ)||∇ϕ| ∈ L2(Ω). Thus by Lebsegue’s Convergence Theorem,
we derive ∫

Ω

|∇(ϕε − ϕ)|2dx→ 0 as ε→ 0.

This implies that ϕε → ϕ strongly in H1(Ω) as ε→ 0. �

With the help of Lemmas 4.4 and 4.5, it is easy to obtain the following corollary.

Corollary 4.1. As ε→ 0, the first equation of (4.1) becomes the first equation of
(3.1).

Lemma 4.6. There holds nε → n, pε → p weakly in L2(0, T ;H1(Ω)) and strongly
in L2(0, T ;L2(Ω)).

Proof. From Lemmas 4.1-4.2, there are subsequences, still denoted by the original
ones, such that

nε → n, pε → p weakly∗ in L∞(0, T ;L2(Ω)),

nε → n, pε → p weakly in L2(0, T ;H1(Ω)),
dnε

dt
→ dn

dt
,
dpε

dt
→ dp

dt
, weakly in L2(0, T ;H1(Ω)′).
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By Lemma 4.3,

nε → n, pε → p strongly in L2(0, T ;L2(Ω)) ≡ L2(ΩT ),

and hence nε → n and pε → p a.e. in ΩT . �

With the help of Lemmas 4.4-4.6, we obtain

Corollary 4.2. As ε→ 0, the second and third equations of (4.1) go to the second
and third equations of (3.1), respectively.

Lemma 4.7. There hold:

vε → v weakly* in L∞(0, T ;L2(Ω)),
∂vε

∂t
→ ∂v

∂t
weakly in L2(0, T ;H1(Ω)′),

uε → u weakly* in L∞(0, T ;H1(Ω)).

Proof. From Lemma 4.2, we conclude that there exist subsequences, still denoted
by the original ones, such that

vε → v weakly* in L∞(0, T ;L2(Ω)), uε → u weakly* in L∞(0, T ;V0).

Thus
∂vε

∂t
→ ∂v

∂t
weakly in L2(0, T ;H1(Ω)′).

�

With the help of Lemmas 4.4-4.7, we obtain

Corollary 4.3. As ε → 0, the fourth, fifth and sixth equations of (4.1) go to the
fourth, fifth and sixth equations of (3.1), respectively.

Collecting the results in Corollaries 4.1-4.3, we have the proof of Theorem 3.1.
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