Seventh Mississippi State - UAB Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conf. 17 (2009), pp. 81-94. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A THIRD-ORDER M-POINT BOUNDARY-VALUE PROBLEM OF DIRICHLET TYPE INVOLVING A P-LAPLACIAN TYPE OPERATOR

CHAITAN P. GUPTA

Abstract

Let ϕ, be an odd increasing homeomorphisms from \mathbb{R} onto \mathbb{R} satisfying $\phi(0)=0$, and let $f:[0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ be a function satisfying Caratheodory's conditions. Let $\alpha_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=1, \ldots, m-2$, $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$ be given. We are interested in the existence of solutions for the m-point boundary-value problem: $$
\begin{gathered} \left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}, u^{\prime \prime}\right), \quad t \in(0,1) \\ u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right), \quad u^{\prime \prime}(0)=0 \end{gathered}
$$

in the resonance and non-resonance cases. We say that this problem is at resonance if the associated problem

$$
\left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}=0, \quad t \in(0,1)
$$

with the above boundary conditions has a non-trivial solution. This is the case if and only if $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}=1$. Our results use topological degree methods. In the non-resonance case; i.e., when $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} \neq 1$ we note that the sign of degree for the relevant operator depends on the sign of $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}-1$.

1. Introduction

In this paper we consider the boundary-value problem

$$
\begin{gather*}
\left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}, u^{\prime \prime}\right), \quad t \in(0,1), \\
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right), \quad u^{\prime \prime}(0)=0 \tag{1.1}
\end{gather*}
$$

where ϕ is an odd increasing homeomorphism from \mathbb{R} onto \mathbb{R} with $\phi(0)=0$ and the function $f:[0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is Caratheodory. Also $\alpha_{i} \in \mathbb{R}, \xi_{i} \in(0,1)$, for $i=1,2, \ldots m-2$, are such that $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$.

[^0]We say that (1.1) is at resonance, if the associated multi-point boundary-value problem

$$
\begin{gather*}
\left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}=0, \quad t \in(0,1) \\
u(0)=0, u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right), \quad u^{\prime \prime}(0)=0 \tag{1.2}
\end{gather*}
$$

has a non-trivial solution.
We are interested here in the existence of solutions for the m-point boundaryvalue problem (1.1) in the resonance and in the non-resonance cases.

The study of multipoint second-order boundary-value problems for $\phi(u) \equiv u$ was initiated by Il'in and Moiseev in [16, 17] and has been the subject of many papers, see for example [2, 3, 8, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 23].

More recently multipoint second-order boundary-value problems containing the p-Laplace operator or the more general operator $-\left(\phi\left(u^{\prime}\right)\right)^{\prime}$ complemented with linear boundary conditions, have been studied in [1, 4, 6, 22, 26, 27.

Problem (1.1) is at resonance if and only if $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}=1$, having $u(t)=\rho t$ as a non-trivial solution, where $\rho \in \mathbb{R}$ is an arbitrary constant.

Our aim in this paper is to obtain existence of solutions for problem 1.1, by using topological degree arguments. Thus, in section 2, we first derive a deformation lemma that is needed when problem (1.1) is at resonance.

In section 3 an existence theorem for problem (1.1) is derived from this lemma. Finally in section 4 we consider problem 1.1 when it is non-resonant. The crucial point here is to prove that the Leray Schauder degree of a certain operator is different from zero which is shown to be an explicit consequence of the non-resonance condition, i.e., $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} \neq 1$. In addition we obtain the interesting property that the degree of the operator changes sign when $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}$ goes from being less than one to being greater than one.

We shall denote by $C[0,1]$ (resp. $C^{1}[0,1], C^{2}[0,1]$) the classical space of continuous (resp. continuously differentiable, twice continuously differentiable) real-valued functions on the interval $[0,1]$. The norm in $C[0,1]$ is denoted by $|\cdot|_{\infty}$. Also, we shall denote by $L^{1}(0,1)$ the space of real-valued (equivalence classes of) functions whose absolute value is Lebesgue integrable on $(0,1)$. The Brouwer and Leray-Schauder degree shall be respectively denoted by deg_{B} and $\operatorname{deg}_{L S}$.

2. A deformation lemma for the resonance case

We begin this section by formulating a general deformation lemma for the solvability of the boundary-value problem (1.1) in the resonance case.

Let $f^{*}:[0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times[0,1] \mapsto \mathbb{R}$ be a function satisfying Caratheodory's conditions; i.e., (i) for all $(s, r, q, \lambda) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times[0,1]$ the function $f^{*}(\cdot, s, r, q, \lambda)$ is measurable on $[0,1]$, (ii) for a.e. $t \in[0,1]$ the function $f^{*}(t, \ldots, \cdot)$ is continuous on $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times[0,1]$, and (iii) for each $R>0$ there exists a Lebesgue integrable function $\rho_{R}:[0,1] \mapsto \mathbb{R}$ such that $\left|f^{*}(t, s, r, q, \lambda)\right| \leq \rho_{R}(t)$ for a.e. $t \in[0,1]$ and all $(s, r, q, \lambda) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times[0,1]$ with $|s| \leq R,|r| \leq R$, and $|q| \leq R$. We suppose that $f(t, s, r, q)=f^{*}(t, s, r, q, 1)$ is the given function in problem 1.1.

We, now, introduce an operator $\mathfrak{B}(u, \lambda): C^{2}[0,1] \times[0,1] \mapsto \mathbb{R}$ defined for $(u, \lambda) \in$ $C^{2}[0,1] \times[0,1]$ by

$$
\begin{align*}
\mathfrak{B}(u, \lambda)= & \lambda\left(u(1)-\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right)\right) \\
& +(1-\lambda)\left(\int_{0}^{1} \int_{0}^{s} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), \lambda\right) d \tau d s\right. \tag{2.1}\\
& \left.-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), \lambda\right) d \tau d s\right)
\end{align*}
$$

For $\lambda \in[0,1]$ we consider the family of boundary-value problems:

$$
\begin{gather*}
\left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}=\lambda f^{*}\left(t, u, u^{\prime}, u^{\prime \prime}, \lambda\right), \quad t \in(0,1) \tag{2.2}\\
u(0)=0, \quad u^{\prime \prime}(0)=0, \quad \mathfrak{B}(u, \lambda)=0
\end{gather*}
$$

Let $\Omega \subset C^{2}[0,1]$ be a bounded open set. Let us set for $\rho \in \mathbb{R}, i_{\rho}(t)=\rho t$, for $t \in[0,1]$, and

$$
X=\left\{i_{\rho}: \rho \in \mathbb{R}\right\}
$$

then X is a one dimensional subspace of $C^{2}[0,1]$. Defining $i: \mathbb{R} \mapsto X$ by $i(\rho)=i_{\rho}$ it is clear that i is an isomorphism from \mathbb{R} onto X.

Next let us define $F: X \mapsto \mathbb{R}$ by

$$
F\left(i_{\rho}\right)=\int_{0}^{1} \int_{0}^{s} f^{*}(\tau, \rho \tau, \rho, 0,0) d \tau d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f^{*}(\tau, \rho \tau, \rho, 0,0) d \tau d s
$$

and set $\mathcal{F}=F \circ i$, then $\mathcal{F}: \mathbb{R} \mapsto \mathbb{R}$ is continuous, and is given by

$$
\mathcal{F}(\rho)=\int_{0}^{1} \int_{0}^{s} f^{*}(\tau, \rho \tau, \rho, 0,0) d \tau d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f^{*}(\tau, \rho \tau, \rho, 0,0) d \tau d s
$$

We have the following lemma.
Lemma 2.1. Assume that
(i) for $\lambda \in(0,1)$ the boundary-value problem (2.2) has no solution $u \in \partial \Omega$,
(ii) the equation $\mathcal{F}(\rho)=0$ has no solution for any ρ with $i_{\rho}(t) \in \partial \Omega \cap X$, and
(iii) the Brouwer degree $\operatorname{deg}_{B}(F, \Omega \cap X, 0) \neq 0$.

Then the boundary-value problem 1.1 has at least one solution in $\bar{\Omega}$.
Proof. If the boundary-value problem (1.1) has a solution in $\partial \Omega$, then there is nothing to prove. Accordingly, let us assume that the boundary-value problem (1.1) has no solution in $\partial \Omega$. This assumption combined with assumption (i) implies that the boundary-value problem $(2.2$ has no solution $u \in \partial \Omega$ for $\lambda \in(0,1]$.

Let us define an operator $\Psi^{*}: C^{2}[0,1] \times[0,1] \mapsto C^{2}[0,1]$ by setting for $(u, \lambda) \in$ $C^{2}[0,1] \times[0,1]$

$$
\begin{align*}
\Psi^{*}(u, \lambda)(t)= & \int_{0}^{t}\left(u^{\prime}(0)+\int_{0}^{s} \phi^{-1}\left(\lambda \int_{0}^{r} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), \lambda\right) d \tau\right) d r\right) d s \\
& +t \mathfrak{B}(u, \lambda) \tag{2.3}
\end{align*}
$$

where $\mathfrak{B}(u, \lambda)$ is as defined in equation (2.1).

We note from our assumptions that the function f^{*} satisfies Caratheodory's conditions so that for $(u, \lambda) \in C^{2}[0,1] \times[0,1], f^{*}\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), \lambda\right) \in L^{1}(0,1)$. Accordingly, the function $s \in[0,1] \mapsto \int_{0}^{s} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), \lambda\right) d \tau$ is absolutely continuous on $[0,1]$. Since, now, the integrand in 2.3 is continuous on $[0,1]$ we see that the operator Ψ^{*} is well defined.

Next, let us suppose that $u(t)$ be a solution to the boundary-value problem 2.2 for some $\lambda \in[0,1]$. We, then, see by integrating the equation in (2.2) and using the boundary conditions in 2.2 that $u(t)$ satisfies the equation

$$
u(t)=\Psi^{*}(u, \lambda)(t), t \in[0,1]
$$

along with

$$
u(0)=0, u^{\prime \prime}(0)=0, \mathfrak{B}(u, \lambda)=0
$$

Conversely, let us suppose that for some $\lambda \in[0,1], u(t), t \in[0,1]$, satisfies the equation

$$
\begin{equation*}
u(t)=\Psi^{*}(u, \lambda)(t) \tag{2.4}
\end{equation*}
$$

We first see from the equation (2.4) and the definition of $\Psi^{*}(u, \lambda)$ that

$$
u(0)=0
$$

Next, we obtain, by differentiating the equation (2.4 that
$u^{\prime}(t)=u^{\prime}(0)+\int_{0}^{t} \phi^{-1}\left(\lambda \int_{0}^{r} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), \lambda\right) d \tau\right) d r+\mathfrak{B}(u, \lambda), t \in[0,1]$.
Evaluating (2.5) at $t=0$ we see that

$$
\mathfrak{B}(u, \lambda)=0
$$

Again, we obtain, by differentiating (2.5) that

$$
\begin{equation*}
u^{\prime \prime}(t)=\phi^{-1}\left(\lambda \int_{0}^{t} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), \lambda\right) d \tau\right) \tag{2.6}
\end{equation*}
$$

Evaluating the equation 2.6 at $t=0$ we see that

$$
u^{\prime \prime}(0)=0
$$

Also, equation (2.6) further implies that $\phi\left(u^{\prime \prime}(t)\right)$ is absolutely continuous on $[0,1]$ and

$$
\left(\phi\left(u^{\prime \prime}(t)\right)\right)^{\prime}=\lambda f^{*}\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), \lambda\right), t \in[0,1] .
$$

Thus $u(t), t \in(0,1)$, is a solution to the boundary-value problem 2.2 . We have, accordingly, proved that $u(t), t \in(0,1)$, is a solution to the boundary-value problem (2.2) if and only if $u(t), t \in[0,1]$, is a solution to the equation 2.4).

We observe that it is easy to show, using standard arguments, that $\Psi^{*}: C^{2}[0,1] \times$ $[0,1] \mapsto C^{2}[0,1]$ is a completely continuous operator. If, now, $u(t) \in \partial \Omega$ is a solution to the boundary-value problem (1.1) then we are done. Accordingly, let us assume that the boundary-value problem (1.1) has no solution on $\partial \Omega$. Since, now, $f^{*}(t, s, r, q, 1)=f(t, s, r, q)$ for all $(t, s, r, q) \in[0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ we see that the assumption (i) of the lemma implies that

$$
u \neq \Psi^{*}(u, \lambda) \quad \text { for all } u \in \partial \Omega \text { and } \lambda \in(0,1]
$$

We, next, assert that $u \neq \Psi^{*}(u, 0)$ for all $u \in \partial \Omega$. Indeed, let $u \in \partial \Omega$ be such that $u=\Psi^{*}(u, 0)$. It then follows from the definition of Ψ^{*}, as given in 2.3,
that $u(t)=\rho t=i_{\rho}(t)$, with $\rho=u^{\prime}(0)+\mathfrak{B}(u, 0), u^{\prime}(t)=\rho+\mathfrak{B}(u, 0), u^{\prime \prime}(0)=0$, $\mathfrak{B}(u, 0)=0, u \in \partial \Omega \cap X$, and

$$
\begin{aligned}
\mathfrak{B}(u, 0)= & \int_{0}^{1} \int_{0}^{s} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), 0\right) d \tau d s \\
& -\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), 0\right) d \tau d s \\
= & \int_{0}^{1} \int_{0}^{s} f^{*}(\tau, \rho \tau, \rho, 0,0) d \tau d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f^{*}(\tau, \rho \tau, \rho, 0,0) d \tau d s \\
= & \mathcal{F}(\rho)=0
\end{aligned}
$$

But this contradicts the assumption (ii) of the lemma. We thus get that

$$
u \neq \Psi^{*}(u, \lambda) \quad \text { for all } u \in \partial \Omega \text { and } \lambda \in[0,1]
$$

Thus $\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, \lambda), \Omega, 0\right)$ is well defined for all $\lambda \in[0,1]$. By the homotopy invariance property of Leray-Schauder degree we obtain immediately that

$$
\begin{equation*}
\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, 1), \Omega, 0\right)=\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, 0), \Omega, 0\right)=\operatorname{deg}_{B}\left(I-\left.\Psi^{*}(\cdot, 0)\right|_{X}, \Omega_{0}, 0\right) \tag{2.7}
\end{equation*}
$$

where, $\Omega_{0}=\Omega \cap X$. Now since for $v \in X$

$$
\left(I-\Psi^{*}(\cdot, 0)\right) v=-i_{F(v)}
$$

we have

$$
\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, 1), \Omega, 0\right)=\operatorname{deg}_{B}\left(-i_{F(\cdot)}, \Omega_{0}, 0\right)=-\operatorname{deg}_{B}\left(i_{F(\cdot)}, \Omega_{0}, 0\right)
$$

Since, $i^{-1} \circ i_{F(\cdot)} \circ i=\mathcal{F}$, we obtain by using a standard formula in degree theory that

$$
\left.\left.\operatorname{deg}_{B}\left(i_{F(\cdot)}, \Omega_{0}, 0\right)\right)=\operatorname{deg}_{B}\left(\mathcal{F}, i^{-1}\left(\Omega_{0}\right), 0\right)\right)
$$

Hence, by assumption (iii) of the lemma, it follows that $\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, 1), \Omega, 0\right) \neq 0$. Thus, the mapping $\Psi \equiv \Psi^{*}(\cdot, 1): C^{2}[0,1] \mapsto C^{2}[0,1]$ has at least one fixed-point in $\bar{\Omega}$ and hence the boundary value problem (1.1) has at least one solution in $\bar{\Omega}$. This completes the proof of the lemma.

3. Existence Theorems

We shall assume that for any constants $\Lambda \geq 0, A>0$ with $\Lambda<A$ it holds that

$$
\begin{equation*}
\tilde{\alpha}(A, \Lambda) \equiv \limsup _{z \rightarrow \infty} \frac{\phi\left(\frac{A+\Lambda}{A-\Lambda} z+c\right)}{\phi(z)}<\infty \tag{3.1}
\end{equation*}
$$

We need the following lemma in the proof of our existence theorems.
Lemma 3.1. Let $g:[0,1] \mapsto \mathbb{R}$ be a strictly increasing (resp. strictly decreasing) function on $[0,1]$. Then the function $G:(0,1] \hookrightarrow \mathbb{R}$ defined for $t \in(0,1]$ by

$$
G(t)=\frac{1}{t} \int_{0}^{t} g(s) d s
$$

is strictly increasing (resp. decreasing) function on $(0,1]$. In particular, $\int_{0}^{1} g(s) d s-$ $\frac{1}{t} \int_{0}^{t} g(s) d s>0($ resp.$<0)$ for every $t \in(0,1)$. Moreover, given $\alpha_{i} \geq 0, \xi_{i} \in(0,1)$, $i=1,2, \cdots, m-2$ with $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}=1$ we have $\int_{0}^{1} g(s) d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} g(s) d s>0$ (resp. < 0).

Proof. Let us suppose that g is a strictly increasing function on $[0,1]$. Now we see that

$$
G^{\prime}(t)=\frac{g(t)}{t}-\frac{1}{t^{2}} \int_{0}^{t} g(s) d s=\frac{1}{t^{2}}\left(\int_{0}^{t}(g(t)-g(s)) d s>0\right.
$$

for every $t \in(0,1]$. Accordingly, G is strictly increasing on $(0,1]$ and $\int_{0}^{1} g(s) d s-$ $\frac{1}{t} \int_{0}^{t} g(s) d s>0$ for every $t \in(0,1)$. Finally, we see that

$$
\begin{aligned}
& \int_{0}^{1} g(s) d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} g(s) d s \\
& =\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\left(\int_{0}^{1} g(s) d s-\frac{1}{\xi_{i}} \int_{0}^{\xi_{i}} g(s) d s\right)>0
\end{aligned}
$$

Similarly G is strictly decreasing on $(0,1]$ and $\int_{0}^{1} g(s) d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} g(s) d s<0$ when g is a strictly decreasing function on $[0,1]$. This completes the proof of the lemma.

Theorem 3.2. Let $f:[0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ in the boundary-value problem 1.1p be a continuous function and satisfies the following conditions:
(i) there exist non-negative functions $d_{1}(t), d_{2}(t), d_{3}(t)$, and $r(t)$ in $L^{1}(0,1)$ such that

$$
|f(t, u, v, w)| \leq d_{1}(t) \phi(|u|)+d_{2}(t) \phi(|v|)+d_{3}(t) \phi(|w|)+r(t)
$$

for all $t \in[0,1], u, v, w \in \mathbb{R}$,
(ii) there exist constants $\Lambda \geq 0, B \geq 0, A>0$ with $\Lambda<A$ and a $v_{0}>0$ such that for all v with $|v|>v_{0}$, all $t \in[0,1]$ and all $u, w \in \mathbb{R}$ one has

$$
|f(t, u, v, w)| \geq-\Lambda|u|+A|v|-\Lambda|w|-B
$$

(iii) there exists an $R>0$ such that for all ρ, with $|\rho|>R$, either

$$
\begin{gathered}
\rho f(t, \rho t, \rho, 0)>0, \text { for all } t \in[0,1], \text { or } \\
\rho f(t, \rho t, \rho, 0)<0, \text { for all } t \in[0,1] .
\end{gathered}
$$

Suppose, further, that

$$
\begin{equation*}
\tilde{\alpha}(A, \Lambda)\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\left\|d_{3}\right\|_{L^{1}(0,1)}<1 . \tag{3.2}
\end{equation*}
$$

Then, given $\alpha_{i} \geq 0, \xi_{i} \in(0,1), i=1,2, \cdots, m-2$ with $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}=1$ the boundary value problem (1.1) has at least one solution in $u(t) \in C^{2}[0,1]$.

Proof. We first choose an $\varepsilon>0$ be such that

$$
(\tilde{\alpha}(A, \Lambda)+\varepsilon)\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\left\|d_{3}\right\|_{L^{1}(0,1)}<1,
$$

which is possible to do, in view of (3.2). We consider the family of boundary-value problems:

$$
\begin{gather*}
\left(\phi\left(u^{\prime \prime}(t)\right)\right)^{\prime}=\lambda f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right), \quad t \in(0,1), \lambda \in[0,1] \\
u(0)=0, \quad \mathfrak{B}(u, \lambda)=0, \quad u^{\prime \prime}(0)=0 \tag{3.3}
\end{gather*}
$$

where $\mathfrak{B}(u, \lambda)$ is as defined in 2.1). Let $u(t)$ be a solution to the boundary-value problem (3.3) for some $\lambda \in(0,1)$. Then either there exists a $t_{0} \in[0,1]$ such that

$$
\begin{equation*}
\left|u^{\prime}\left(t_{0}\right)\right| \leq v_{0} \tag{3.4}
\end{equation*}
$$

or $\left|u^{\prime}(t)\right|>v_{0}$ for all $t \in[0,1]$. In case, $\left|u^{\prime}(t)\right|>v_{0}$ for all $t \in[0,1]$, we claim that there exists a $\tau_{0} \in[0,1]$ such that $f\left(\tau_{0}, u\left(\tau_{0}\right), u^{\prime}\left(\tau_{0}\right), u^{\prime \prime}\left(\tau_{0}\right)\right)=0$. Indeed, let us suppose that $f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right) \neq 0$ for all $t \in[0,1]$. It then follows from the continuity of $f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)$ on the interval $[0,1]$ either $f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)>0$ for all $t \in[0,1]$ or $f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)<0$ for all $t \in[0,1]$. Let us first suppose that $f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)>0$ for all $t \in[0,1]$. It then follows from the boundary condition in (2.4) that

$$
\begin{align*}
& \lambda\left[\int_{0}^{1}\left(u^{\prime}(0)+\int_{0}^{s} \phi^{-1}\left(\lambda \int_{0}^{r} f\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau)\right) d \tau\right) d r\right) d s\right. \\
& \left.-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}\left(u^{\prime}(0)+\int_{0}^{s} \phi^{-1}\left(\lambda \int_{0}^{r} f\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau)\right) d \tau\right) d r\right) d s\right] \\
& +(1-\lambda)\left[\int_{0}^{1} \int_{0}^{r} f\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau)\right) d \tau d s\right. \tag{3.5}\\
& \left.-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{r} f\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau)\right) d \tau d r\right] \\
& =0
\end{align*}
$$

We, next, see that the functions

$$
\begin{aligned}
\int_{0}^{t}\left(u^{\prime}(0)+\right. & \left.\int_{0}^{s} \phi^{-1}\left(\lambda \int_{0}^{r} f\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau)\right) d \tau\right) d r\right) d s \\
& \int_{0}^{s} \int_{0}^{r} f\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau)\right) d \tau d r
\end{aligned}
$$

are strictly increasing functions on $(0,1]$, in view of our assumption

$$
f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)>0
$$

for all $t \in[0,1]$. We then get from Lemma 3.1 and 3.5 that $0>0$, a contradiction. Similarly, the supposition $f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)<0$ for all $t \in[0,1]$ leads to the contradiction $0<0$. Hence, there must exist a $\tau_{0} \in[0,1]$ such that

$$
\begin{equation*}
f\left(\tau_{0}, u\left(\tau_{0}\right), u^{\prime}\left(\tau_{0}\right), u^{\prime \prime}\left(\tau_{0}\right)\right)=0 \tag{3.6}
\end{equation*}
$$

proving the claim. We next see from (3.6) and assumption (ii) that

$$
\begin{equation*}
\left|u^{\prime}\left(\tau_{0}\right)\right| \leq \frac{B}{A}+\overline{\frac{\Lambda}{A}}\|u\|_{\infty}+\frac{\Lambda}{A}\left\|u^{\prime \prime}\right\|_{\infty} \tag{3.7}
\end{equation*}
$$

Thus we see from (3.4) and (3.7) that there exists a $\tau_{1} \in[0,1]$ (either t_{0} or $\left.\tau_{0}\right)$ such that

$$
\begin{equation*}
\left|u^{\prime}\left(\tau_{1}\right)\right| \leq v_{0}+\frac{B}{A}+\frac{\Lambda}{A}\|u\|_{\infty}+\frac{\Lambda}{A}\left\|u^{\prime \prime}\right\|_{\infty} \tag{3.8}
\end{equation*}
$$

It then follows from the equation $u^{\prime}(t)=u^{\prime}\left(\tau_{1}\right)+\int_{\tau_{1}}^{t} u^{\prime \prime}(s) d s$ and 3.8 that

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{\infty} \leq \frac{A+\Lambda}{A-\Lambda}\left\|u^{\prime \prime}\right\|_{\infty}+\frac{A v_{0}+B}{A-\Lambda} \tag{3.9}
\end{equation*}
$$

Next, we see by integrating the equation in from 0 to $t \in[0,1]$ and noting $u^{\prime \prime}(0)=0$, that

$$
\begin{equation*}
\phi\left(u^{\prime \prime}(t)\right)=\lambda \int_{0}^{t} f\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau)\right) d \tau \tag{3.10}
\end{equation*}
$$

It now follows from equations (3.10, 3.8 using assumption (i), the fact that $u(0)=0$ implies $\|u\|_{\infty} \leq\left\|u^{\prime}\right\|_{\infty}$ that

$$
\begin{aligned}
& \phi\left(\left|u^{\prime \prime}(t)\right|\right) \\
& \leq \phi\left(\|u\|_{\infty}\right)\left\|d_{1}\right\|_{L^{1}(0,1)}+\phi\left(\left\|u^{\prime}\right\|_{\infty}\right)\left\|d_{2}\right\|_{L^{1}(0,1)}+\phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right)\left\|d_{3}\right\|_{L^{1}(0,1)}+\|r\|_{L^{1}(0,1)} \\
& \leq\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right) \phi\left(\frac{A+\Lambda}{A-\Lambda}\left\|u^{\prime \prime}\right\|_{\infty}+\frac{A v_{0}+B}{A-\Lambda}\right) \\
& \left.\quad+\left\|d_{3}\right\|_{L^{1}(0,1)}\right) \phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right)+\|r\|_{L^{1}(0,1)} \\
& \leq\left((\tilde{\alpha}(A, \Lambda)+\varepsilon)\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\left\|d_{3}\right\|_{L^{1}(0,1)}\right) \phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right) \\
& \quad+C_{\varepsilon}\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\|r\|_{L^{1}(0,1)}
\end{aligned}
$$

and hence

$$
\begin{align*}
\phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right) \leq & \left((\tilde{\alpha}(A, \Lambda)+\varepsilon)\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\left\|d_{3}\right\|_{L^{1}(0,1)}\right) \phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right) \\
& +C_{\varepsilon}\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\|r\|_{L^{1}(0,1)} \tag{3.11}
\end{align*}
$$

It now follows from (3.2), the estimates (3.11), (3.9) and $\|u\|_{\infty} \leq\left\|u^{\prime}\right\|_{\infty}$ that there exists an $R_{0}>R$, where R is as in assumption (iii), such that the family of boundary value problems (3.3) have no solution on the boundary of a bounded open set $\Omega=B(0, \widetilde{R}) \subset C^{2}[0,1]$, for every $\widetilde{R} \geq R_{0}$. Accordingly, we see that the family of boundary value problems (3.3) satisfy condition (i) of Lemma 2.1. Next, we see from assumption (iii) and Lemma 3.1 for all $\rho,|\rho|>R$, that

$$
\int_{0}^{1} \int_{0}^{s} f(\tau, \rho \tau, \rho, 0) d \tau d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f(\tau, \rho \tau, \rho, 0) d \tau d s
$$

is strictly positive or strictly negative. Accordingly, we see that $f^{*}(t, u, v, w, \lambda)=$ $f(t, u, v, w)$ satisfies the condition (ii) of Lemma 2.1 .

Finally, we again see from assumption (iii), the continuity in $\rho \in \mathbb{R}$ of the function

$$
\psi(\rho)=\int_{0}^{1} \int_{0}^{s} f(\tau, \rho \tau, \rho, 0) d \tau d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f(\tau, \rho \tau, \rho, 0) d \tau d s
$$

and the assumption that $\widetilde{R}>R$, that $F\left(i_{\widetilde{R}}(t)\right)$ and $F\left(i_{-\widetilde{R}}(t)\right)$ have opposite signs. It follows immediately that $F\left(i_{\rho}(t)\right)=0$ for an odd number of $\rho \in(-\widetilde{R}, \widetilde{R})$ which implies that the Brouwer degree $\operatorname{deg}_{B}(F, \Omega \cap X, 0) \neq 0$. Thus the condition (iii) of Lemma 2.1 is also satisfied. Thus it follows from Lemma 2.1 that the boundary value problem 1.1 has at least one solution in $\bar{\Omega}$. This completes the proof of the theorem.

4. A Result for the non-Resonance case

In this section we will consider problem (1.1) in the non-resonance case. Problem (1.1) is in the non-resonance case if problem (1.2) has only the trivial solution. This holds if and only if the α_{i}, ξ_{i} satisfy $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} \neq 1$. We assume henceforth that α_{i}, ξ_{i} satisfy this condition. Notice that we do not assume a sign condition on the $\alpha_{i}^{\prime} s$. In addition, we shall assume that for any $\sigma, 0<\sigma<1$, it holds that

$$
\begin{equation*}
\tilde{\alpha}(\sigma)=\limsup _{z \rightarrow \infty} \frac{\phi\left(\frac{1}{1-\sigma} z\right)}{\phi(z)}<\infty \tag{4.1}
\end{equation*}
$$

Let us set $\xi_{m-1}=1, \alpha_{m-1}=-1, \sigma_{i j}=\alpha_{i}\left(\xi_{i}-\xi_{j}\right)$ for $i \neq j$ and $\sigma_{j j}=\sum_{i=1}^{m-1} \alpha_{i} \xi_{j}$ for $i, j=1,2, \cdot, \cdot, \cdot, m-1$. We note that the assumption $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} \neq 1$ is equivalent to $\sum_{i=1}^{m-1} \alpha_{i} \xi_{i} \neq 0$. Also, for each $j=1,2, \cdot, \cdot, \cdot, m-1$ we have

$$
\sum_{i=1}^{m-1} \sigma_{i j}=\sum_{i=1, i \neq j}^{m-1} \sigma_{i j}+\sigma_{j j}=\sum_{i=1, i \neq j}^{m-1} \alpha_{i}\left(\xi_{i}-\xi_{j}\right)+\sum_{i=1}^{m-1} \alpha_{i} \xi_{j}=\sum_{i=1}^{m-1} \alpha_{i} \xi_{i} \neq 0 .
$$

It follows that

$$
\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+} \neq \sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-}
$$

for $j=1,2, \cdot, \cdot, \cdot, m-1$, where for $\alpha \in \mathbb{R}, \alpha^{+}=\max (\alpha, 0)$ and $\alpha^{-}=\max (-\alpha, 0)$. Let us set

$$
\sigma^{*}=\left\{\begin{array}{lc}
\min \left\{\frac{\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+}}{\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-}}, \frac{\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-}}{\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+}}\right\} & \text {if } \sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+} \neq 0 \text { and } \tag{4.2}\\
0, & \sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-} \neq 0 \text { for all } j, \\
& \text { otherwise }
\end{array}\right.
$$

Note that $0 \leq \sigma^{*}<1$. The main result of this section is the following theorem.
Theorem 4.1. Let $f:[0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ be a function satisfying Caratheodory's conditions such that the following condition holds:
there exist non-negative functions $d_{1}(t), d_{2}(t), d_{3}(t)$, and $r(t)$ in $L^{1}(0,1)$ such that

$$
|f(t, u, v, w)| \leq d_{1}(t) \phi(|u|)+d_{2}(t) \phi(|v|)+d_{3}(t) \phi(|w|)+r(t)
$$

for a. e. $t \in[0,1]$ and all $u, v, w \in \mathbb{R}$. Suppose, further,

$$
\begin{equation*}
\tilde{\alpha}\left(\sigma^{*}\right)\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\left\|d_{3}\right\|_{L^{1}(0,1)}<1, \tag{4.3}
\end{equation*}
$$

where σ^{*} is as defined in (4.2) and $\tilde{\alpha}$ is as defined in (4.1).
Then, the boundary-value problem (1.1) has at least one solution $u \in C^{2}[0,1]$.
We need the following variant of an a priori estimate from [14] in the proof of Theorem 4.1 and present this in the following lemma.

Lemma 4.2. Let $u \in C^{1}[0,1]$, be such that $u^{\prime \prime} \in L^{\infty}(0,1)$ and satisfies

$$
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right)
$$

with $\sum \alpha_{i} \xi_{i} \neq 1$. If $\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+} \neq 0$, and $\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-} \neq 0$ for all j, then

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{\infty} \leq \frac{1}{1-\sigma^{*}}\left\|u^{\prime \prime}\right\|_{\infty} \tag{4.4}
\end{equation*}
$$

If one of $\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+}, \sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-}$is zero for some $j=1,2, \ldots, m-1$, then $u^{\prime}\left(\eta_{0}\right)=0$ for some $\eta_{0} \in[0,1]$, and

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{\infty} \leq\left\|u^{\prime \prime}\right\|_{\infty} \tag{4.5}
\end{equation*}
$$

Proof. We first, note, that the assumption

$$
u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right)
$$

is equivalent to

$$
\sum_{i=1}^{m-1} \alpha_{i} u\left(\xi_{i}\right)=0
$$

with $\xi_{m-1}=1, \alpha_{m-1}=-1$ and the non-resonant condition $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} \neq 1$ is equivalent to $\sum_{i=1}^{m-1} \alpha_{i} \xi_{i} \neq 0$.

Next, for each $j=1,2, \cdot, \cdot, \cdot, m-1$ we have $u\left(\xi_{j}\right)=\xi_{j} u^{\prime}\left(\eta_{j j}\right)$ for some $\eta_{j j} \in[0,1]$. Also for $i, j=1,2, \cdot, \cdot, \cdot, m-1$ with $i \neq j$ we have $u\left(\xi_{i}\right)-u\left(\xi_{j}\right)=u^{\prime}\left(\eta_{i j}\right)\left(\xi_{i}-\xi_{j}\right)$ for some $\eta_{i j} \in[0,1]$. Accordingly,

$$
\begin{aligned}
\sum_{i=1, i \neq j}^{m-1} \alpha_{i} u^{\prime}\left(\eta_{i j}\right)\left(\xi_{i}-\xi_{j}\right) & =\sum_{i=1, i \neq j}^{m-1} \alpha_{i}\left(u\left(\xi_{i}\right)-u\left(\xi_{j}\right)\right) \\
& =-\sum_{i=1}^{m-1} \alpha_{i} u\left(\xi_{j}\right)=-\sum_{i=1}^{m-1} \alpha_{i} \xi_{j} u^{\prime}\left(\eta_{j j}\right)
\end{aligned}
$$

using the mean-value theorem and the assumptions $u(0)=0, \sum_{i=1}^{m-1} \alpha_{i} u\left(\xi_{i}\right)=0$ (equivalently, $\left.u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right)\right)$. We thus get $\sum_{i=1}^{m-1} \sigma_{i j} u^{\prime}\left(\eta_{i j}\right)=0$, and hence $\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+} u^{\prime}\left(\eta_{i j}\right)=\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-} u^{\prime}\left(\eta_{i j}\right)$. So there must exist χ_{j}^{1} and χ_{j}^{2} in $[0,1]$ such that

$$
\begin{equation*}
\left(\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+}\right) u^{\prime}\left(\chi_{j}^{1}\right)=\left(\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-}\right) u^{\prime}\left(\chi_{j}^{1}\right) \tag{4.6}
\end{equation*}
$$

If one of $\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+}, \sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-}$is zero for some $j=1,2, \ldots, m-1$ then it follows from 4.6 that there is an $\eta_{0} \in[0,1]$ (indeed one of χ_{j}^{1} or χ_{j}^{2}) such that $u^{\prime}\left(\eta_{0}\right)=0$ and the estimate 4.5 is immediate.

Next, suppose that $\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{+} \neq 0$ and $\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)^{-} \neq 0$ for every $j=$ $1,2, \ldots, m-1$. Then either $u^{\prime}\left(\chi_{j}^{1}\right)=u^{\prime}\left(\chi_{j}^{1}\right)=0$ for some $j=1,2, \ldots, m-1$, in which case the estimate 4.5 is immediate, or $u^{\prime}\left(\chi_{j}^{1}\right) \neq u^{\prime}\left(\chi_{j}^{1}\right)$ for every $j=$ $1,2, \ldots, m-1$. It follows that there exist $\eta_{1}, \eta_{2} \in[0,1]$ with $u^{\prime}\left(\eta_{1}\right) \neq u^{\prime}\left(\eta_{2}\right)$ such that

$$
\begin{equation*}
u^{\prime}\left(\eta_{1}\right)=\sigma^{*} u^{\prime}\left(\eta_{2}\right) \tag{4.7}
\end{equation*}
$$

The estimate 4.4 is now immediate from 4.1, 4.7) and the equation

$$
u^{\prime}(t)=u^{\prime}\left(\eta_{1}\right)+\int_{\eta_{1}}^{t} u^{\prime \prime} d s
$$

This completes the proof of the lemma.
Proof of Theorem 4.1. We consider the family of boundary-value problems:

$$
\begin{align*}
\left(\phi\left(u^{\prime \prime}(t)\right)\right)^{\prime} & =\lambda f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right), \quad t \in(0,1), \lambda \in[0,1] \\
u(0) & =0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right), \quad u^{\prime \prime}(0)=0 \tag{4.8}
\end{align*}
$$

Also, we define an operator $\Psi^{*}: C^{2}[0,1] \times[0,1] \mapsto C^{2}[0,1]$ by setting for $(u, \lambda) \in$ $C^{2}[0,1] \times[0,1]$

$$
\begin{aligned}
\Psi^{*}(u, \lambda)= & \int_{0}^{t}\left(u^{\prime}(0)+\int_{0}^{s} \phi^{-1}\left(\lambda \int_{0}^{r} f^{*}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), \lambda\right) d \tau\right) d r\right) d s \\
& +t\left(u(1)-\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right)\right) .
\end{aligned}
$$

Following standard arguments, it can be proved that Ψ^{*} is a completely continuous operator. Furthermore reasoning in an entirely similar way as we did in the proof of Lemma 2.1 it can be proved that u is a solution to the family of boundary-value problems 4.8 if and only if u is a fixed point for the operator $\Psi^{*}(\cdot, \lambda)$; i.e., u satisfies

$$
u=\Psi^{*}(u, \lambda)
$$

We will show next that there is a constant $R>0$ independent of $\lambda \in[0,1]$ such that if u satisfies (4.8) for some $\lambda \in[0,1]$ then $\|u\|_{C^{2}[0,1]}<R$.

We note first that if u satisfies

$$
u=\Psi^{*}(u, 0)
$$

then we must have $u=0$. Indeed from the definition of Ψ^{*} or from problem (4.8), it follows that $u(t)=\rho t$ with $\rho=u^{\prime}(0)=u^{\prime}(t)$, for all $t \in[0,1]$. Then from the second boundary condition in 4.8 , and the assumption $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} \neq 1$, we find that $\rho=0$, implying that $u(t)=0$ for all $t \in[0,1]$.

In the rest of the argument we will assume that $\lambda \in(0,1]$. Also we will suppose that $\sigma^{*}>0$ since the proof for the case $\sigma^{*}=0$ is simpler.

Let us choose $\varepsilon>0$ such that

$$
\begin{equation*}
\left(\tilde{\alpha}\left(\sigma^{*}\right)+\varepsilon\right)\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\left\|d_{3}\right\|_{L^{1}(0,1)}<1, \tag{4.9}
\end{equation*}
$$

which can be done in view of the assumption (4.3). Next, we have from the definition of $\tilde{\alpha}$, as given in 4.1), that there exists a constant C_{ε}^{1} such that

$$
\begin{equation*}
\phi\left(\frac{1}{1-\sigma^{*}} z\right) \leq\left(\tilde{\alpha}\left(\sigma^{*}\right)+\varepsilon\right) \phi(z)+C_{\varepsilon}^{1}, \text { for all } z \tag{4.10}
\end{equation*}
$$

Let, now, u be a solution of the family of boundary-value problems 4.8). Then $u \in C^{2}[0,1]$ with $\phi\left(u^{\prime \prime}(t)\right)$ absolutely continuous on $[0,1]$ and satisfies

$$
u(0)=0, u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right), u^{\prime \prime}(0)=0
$$

We, now, use the estimates

$$
\begin{equation*}
\|u\|_{\infty} \leq\left\|u^{\prime}\right\|_{\infty},\left\|u^{\prime}\right\|_{\infty} \leq \frac{1}{1-\sigma^{*}}\left\|u^{\prime \prime}\right\|_{\infty}, \phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right) \leq\left\|\left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}\right\|_{L^{1}(0,1)} \tag{4.11}
\end{equation*}
$$

and the inequality 4.10 to get

$$
\begin{aligned}
& \left\|\left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}\right\|_{L^{1}(0,1)} \\
& \leq \phi\left(\|u\|_{\infty}\right)\left\|d_{1}\right\|_{L^{1}(0,1)}+\phi\left(\left\|u^{\prime}\right\|_{\infty}\right)\left\|d_{2}\right\|_{L^{1}(0,1)} \\
& \quad+\phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right)\left\|d_{3}\right\|_{L^{1}(0,1)}+\|r\|_{L^{1}(0,1)} \\
& \leq \\
& \left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right) \phi\left(\frac{1}{1-\sigma^{*}}\left\|u^{\prime \prime}\right\|_{\infty}\right) \\
& \quad+\phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right)\left\|d_{3}\right\|_{L^{1}(0,1)}+\|r\|_{L^{1}(0,1)} \\
& \leq\left(\tilde{\alpha}\left(\sigma^{*}\right)+\varepsilon\right)\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right) \phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right)+\left\|d_{3}\right\|_{L^{1}(0,1)} \phi\left(\left\|u^{\prime \prime}\right\|_{\infty}\right)+C_{\varepsilon} \\
& \leq\left[\left(\tilde{\alpha}\left(\sigma^{*}\right)+\varepsilon\right)\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)+\left\|d_{3}\right\|_{L^{1}(0,1)}\right]\left\|\left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}\right\|_{L^{1}(0,1)}+C_{\varepsilon},
\end{aligned}
$$

where

$$
C_{\varepsilon}=\|r\|_{L^{1}(0,1)}+C_{\varepsilon}^{1}\left(\left\|d_{1}\right\|_{L^{1}(0,1)}+\left\|d_{2}\right\|_{L^{1}(0,1)}\right)
$$

It, now, follows from 4.9 that there exists a constant $R_{0}>0$, independent of $\lambda \in(0,1]$ such that if u is a solution of the family of boundary-value problems 4.8) then

$$
\left.\left\|\left(\phi\left(u^{\prime \prime}\right)\right)^{\prime}\right\|_{L^{1}(0,1)}\right) \leq R_{0}
$$

This, combined with 4.11 gives that there exist a constant $R>0$ such that

$$
\|u\|_{C^{2}[0,1]}<R
$$

This in turn implies that $\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, \lambda), B(0, R), 0\right)$ is well defined for all $\lambda \in$ $[0,1]$, where $B(0, R)$ is the ball with center 0 and radius R in $C^{2}[0,1]$.

In what follows we will use the notation of section 2 , thus X will denote the one dimensional subspace of $C^{2}[0,1]$ given by $X=\left\{i_{\rho}: \rho \in \mathbb{R}\right\}, i_{\rho}(t)=\rho t$ and $i: \mathbb{R} \mapsto X$ is the isomorphism from \mathbb{R} onto X given by $i(\rho)=i_{\rho}$. Let us define the function $G: \mathbb{R} \mapsto \mathbb{R}$ by

$$
\begin{equation*}
G(\rho)=\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}-1\right) \rho \tag{4.12}
\end{equation*}
$$

for $w \in X, w(t)=\rho t$ for some $\rho \in \mathbb{R}$. Now, since

$$
\left(I-\Psi^{*}(\cdot, 0)\right)(w)=i_{G(\rho)}
$$

it is easy to see that

$$
G=\left.i^{-1} \circ\left(I-\Psi^{*}(\cdot, 0)\right)\right|_{X} \circ i
$$

and hence, by the homotopy invariance property of Leray-Schauder degree, it follows that

$$
\begin{gathered}
\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, 1), B(0, R), 0\right)=\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, 0), B(0, R), 0\right) \\
\operatorname{deg}_{B}\left(I-\left.\Psi^{*}(\cdot, 0)\right|_{X}, X \cap B(0, R), 0\right)=\operatorname{deg}_{B}(G,(-R, R), 0)
\end{gathered}
$$

Thus taking into account 4.12, we obtain the interesting formulas for the degree

$$
\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, 1), B(0, R), 0\right)= \begin{cases}1 & \text { if } \sum_{i=1}^{m-2} \alpha_{i} \xi_{i}>1 \\ -1 & \text { if } \sum_{i=1}^{m-2} \alpha_{i} \xi_{i}<1\end{cases}
$$

Hence if $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} \neq 1$ we have that $\operatorname{deg}_{L S}\left(I-\Psi^{*}(\cdot, 1), B(0, R), 0\right) \neq 0$ and there is a $u \in B(0, R)$ that satisfies

$$
u=\Psi^{*}(\cdot, 1)
$$

equivalently u is a solution to the boundary-value problem 4.1). This completes the proof of the theorem.

References

[1] Cuan-zhi, Bai and Fang, Jin-xuan; Existence of multiple positive solutions for nonlinear m-point boundary-value problems, Applied Mathematics and Computation, 140 (2003), 297305.
[2] Feng, W. and Webb, J. R. L. Solvability of three-point boundary-value problems at resonance, Nonlinear Analysis T.M.A. 30 (1997) 3227-3238 .
[3] Feng, W. and Webb, J. R. L.; Solvability of m-point boundary-value problems with nonlinear growth, J. Math. Anal. Appl. 212 (1997) 467-480.
[4] Garcia-Huidobro, M.; Gupta, C. P. and Manasevich, R.; Solvability for a Non-linear ThreePoint Boundary Value problem with p-Laplacian-Like Operator at Resonance . Abstract Analysis and Applications, Vol. 6, No. 4, (2001) pp. 191-213.
[5] Garcia-Huidobro, M.; Gupta, C. P. and Manasevich, R. An m-point boundary-value problem of Neumann type for a p-Laplacian like operator, Nonlinear Analysis 56 (2004) 1071-1089.
[6] Garcia-Huidobro, M. and Manasevich, R.; A three point boundary-value problem containing the operator $-\left(\phi\left(u^{\prime}\right)\right)^{\prime}$, Discrete and Continuous Dynamical Systems, Proceedings of the fourth international conference on dynamical systems and differential equations, Wilmington, (2003), 313-319.
[7] Garcia-Huidobro M., Manasevich R. and Zanolin, F.; Strongly Nonlinear Second Order ODE's with Unilateral Conditions, Differential and Integral Equations 6 (1993) 1057-1078.
[8] Gupta, C. P.; Solvability of a three-point boundary-value problem for a second order ordinary differential equation, Journal of Mathematical Analysis and Applications 168 (1992) 540-551.
[9] Gupta, C. P.; A note on a second order three-point boundary-value problem, Journal of Mathematical Analysis and Applications 186 (1994) 277-281.
[10] Gupta, C. P.; A second order m-point boundary-value problem at resonance, Nonlinear Analysis T.M.A., 24 (1995) 1483-1489.
[11] Gupta, C. P.; Existence theorems for a second order m-point boundary-value problem at resonance. International Jour. Math. \& Math. Sci. 18(1995) pp. 705-710
[12] Gupta, C. P.; Ntouyas, S.; Tsamatos, P. Ch.; On an m-point boundary-value problem for second order ordinary differential equations, Nonlinear Analysis T.M.A. 23 (1994) 1427-1436.
[13] Gupta, C. P.; Ntouyas, S.; Tsamatos, P. Ch.; Solvability of an m-point boundary-value problem for second order ordinary differential equations, Journal of Mathematical Analysis and Applications 189 (1995) 575-584.
[14] Gupta, Chaitan P.; Trofimchuk, Sergej I.; Solvability of a multi-point boundary-value problem and related a priori estimates, Geoffrey J. Butler Memorial Conference in Differential Equations and Mathematical Biology (Edmonton, AB, 1996). Canad. Appl. Math. Quart. 6 (1998), no. 1, 45-60.
[15] Gupta, C. P. and Trofimchuk, S.; Solvability of multi point boundary-value problem of Neumann type, Abstract Analysis and Applications 4 (1999) 71-81.
[16] Il'in ,V. A. and Moiseev, E. I.; Nonlocal boundary-value problem of the first kind for a Sturm Liouville operator in its differential and difference aspects, Differential Equations 23 (1987) 803-810.
[17] Il'in, V. A. and Moiseev, E. I.; Nonlocal boundary-value problem of the second kind for a Sturm Liouville operator, Differential Equations 23 (1987) 979-987.
[18] Liu, B.; Solvability of multi point boundary value problem at resonance (I), Indian Journal of Pure and Applied Mathematics 33 (2002) 475-494.
[19] Liu, B.; Solvability of multi point boundary value problem at resonance (II), Applied Mathematics and Computations 136 (2003) 353-377.
[20] Liu, B. and Yu, J.; Solvability of multi point boundary-value problem at resonance (III), Applied Mathematics and Computations 129 (2002) 119-143.
[21] Liu, B.; Solvability of multi point boundary value problem at resonance (IV), Applied Mathematics and Computations 143 (2003) 275-299.
[22] Liu, Y. and Ge, W.; Multiple positive solutions to a three-point boundary value problem with p-Laplacian, Journal of Mathematical Analysis and Applications 277 (2003) 293-302.
[23] Ma, Rayun and Castañeda, Nelson; Existence of Solutions of Nonlinear m-point Boundary Value Problems, Journal of Mathematical Analysis and Applications 256 (2001) 556-567.
[24] Sedziwy, S.; Multipoint boundary-value problems fro a second order differential equations, Journal of Mathematical Analysis and Applications 236 (1999) 384-398.
[25] Thompson, H. B. and Tisdell, C.; Three-point boundary-value problems for second-order, ordinary, differential equations, Math. Comput. Modelling 34 (2001), no. 3-4, 311-318.
[26] Wang, J.-Y and Jiang, D.; A unified approach to some two-point, three-point, and four-point boundary value problems with Carathéodory functions, Journal of Mathematical Analysis and Applications 211 (1997) 223-232.
[27] Wang, J.-Y. and Zheng, D.-W.; On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian, ZAAM $\mathbf{7 7}$ (1997) 477-479.

Chaitan P. Gupta
Department of Mathematics, 084, University of Nevada, Reno, NV 89557, USA
E-mail address: gupta@unr.edu

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B15, 34L30.
 Key words and phrases. m-point boundary value problems; p-Laplace type operator; nonresonance; resonance; topological degree.
 (C) 2009 Texas State University - San Marcos.

 Published April 15, 2009.

