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A THIRD-ORDER M-POINT BOUNDARY-VALUE PROBLEM OF
DIRICHLET TYPE INVOLVING A P-LAPLACIAN TYPE

OPERATOR

CHAITAN P. GUPTA

Abstract. Let φ, be an odd increasing homeomorphisms from R onto R sat-

isfying φ(0) = 0, and let f : [0, 1] × R × R × R 7→ R be a function satisfy-
ing Caratheodory’s conditions. Let αi ∈ R, ξi ∈ (0, 1), i = 1, . . . , m − 2,

0 < ξ1 < ξ2 < · · · < ξm−2 < 1 be given. We are interested in the existence of

solutions for the m-point boundary-value problem:

(φ(u′′))′ = f(t, u, u′, u′′), t ∈ (0, 1),

u(0) = 0, u(1) =

m−2X
i=1

αiu(ξi), u′′(0) = 0,

in the resonance and non-resonance cases. We say that this problem is at

resonance if the associated problem

(φ(u′′))′ = 0, t ∈ (0, 1),

with the above boundary conditions has a non-trivial solution. This is the case

if and only if
Pm−2

i=1 αiξi = 1. Our results use topological degree methods. In

the non-resonance case; i.e., when
Pm−2

i=1 αiξi 6= 1 we note that the sign of

degree for the relevant operator depends on the sign of
Pm−2

i=1 αiξi − 1.

1. Introduction

In this paper we consider the boundary-value problem

(φ(u′′))′ = f(t, u, u′, u′′), t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi), u′′(0) = 0,
(1.1)

where φ is an odd increasing homeomorphism from R onto R with φ(0) = 0 and
the function f : [0, 1] × R × R × R 7→ R is Caratheodory. Also αi ∈ R, ξi ∈ (0, 1),
for i = 1, 2, . . .m− 2, are such that 0 < ξ1 < ξ2 < · · · < ξm−2 < 1.
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We say that (1.1) is at resonance, if the associated multi-point boundary-value
problem

(φ(u′′))′ = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi), u′′(0) = 0,
(1.2)

has a non-trivial solution.
We are interested here in the existence of solutions for the m-point boundary-

value problem (1.1) in the resonance and in the non-resonance cases.
The study of multipoint second-order boundary-value problems for φ(u) ≡ u was

initiated by Il’in and Moiseev in [16, 17] and has been the subject of many papers,
see for example [2, 3, 8, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 23].

More recently multipoint second-order boundary-value problems containing the
p-Laplace operator or the more general operator −(φ(u′))′ complemented with lin-
ear boundary conditions, have been studied in [1, 4, 6, 22, 26, 27].

Problem (1.1) is at resonance if and only if
∑m−2

i=1 αiξi = 1, having u(t) = ρt as
a non-trivial solution, where ρ ∈ R is an arbitrary constant.

Our aim in this paper is to obtain existence of solutions for problem (1.1), by
using topological degree arguments. Thus, in section 2, we first derive a deformation
lemma that is needed when problem (1.1) is at resonance.

In section 3 an existence theorem for problem (1.1) is derived from this lemma.
Finally in section 4 we consider problem (1.1) when it is non-resonant. The crucial
point here is to prove that the Leray Schauder degree of a certain operator is dif-
ferent from zero which is shown to be an explicit consequence of the non-resonance
condition, i.e.,

∑m−2
i=1 αiξi 6= 1. In addition we obtain the interesting property that

the degree of the operator changes sign when
∑m−2

i=1 αiξi goes from being less than
one to being greater than one.

We shall denote by C[0, 1] (resp. C1[0, 1], C2[0, 1]) the classical space of continu-
ous (resp. continuously differentiable, twice continuously differentiable) real-valued
functions on the interval [0, 1]. The norm in C[0, 1] is denoted by |·|∞. Also, we shall
denote by L1(0, 1) the space of real-valued (equivalence classes of) functions whose
absolute value is Lebesgue integrable on (0, 1). The Brouwer and Leray-Schauder
degree shall be respectively denoted by degB and degLS .

2. A deformation lemma for the resonance case

We begin this section by formulating a general deformation lemma for the solv-
ability of the boundary-value problem (1.1) in the resonance case.

Let f∗ : [0, 1]× R× R× R× [0, 1] 7→ R be a function satisfying Caratheodory’s
conditions; i.e., (i) for all (s, r, q, λ) ∈ R×R×R× [0, 1] the function f∗(·, s, r, q, λ)
is measurable on [0, 1], (ii) for a.e. t ∈ [0, 1] the function f∗(t, . . . , ·) is continuous
on R × R× R × [0, 1], and (iii) for each R > 0 there exists a Lebesgue integrable
function ρR : [0, 1] 7→ R such that |f∗(t, s, r, q, λ)| ≤ ρR(t) for a.e. t ∈ [0, 1] and all
(s, r, q, λ) ∈ R×R× R× [0, 1] with |s| ≤ R, |r| ≤ R, and |q| ≤ R. We suppose that
f(t, s, r, q) = f∗(t, s, r, q, 1) is the given function in problem (1.1).
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We, now, introduce an operator B(u, λ) : C2[0, 1]×[0, 1] 7→ R defined for (u, λ) ∈
C2[0, 1]× [0, 1] by

B(u, λ) = λ
(
u(1)−

m−2∑
i=1

αiu(ξi)
)

+ (1− λ)
( ∫ 1

0

∫ s

0

f∗(τ, u(τ), u′(τ), u′′(τ), λ)dτds

−
m−2∑
i=1

αi

∫ ξi

0

∫ s

0

f∗(τ, u(τ), u′(τ), u′′(τ), λ)dτds
)
.

(2.1)

For λ ∈ [0, 1] we consider the family of boundary-value problems:

(φ(u′′))′ = λf∗(t, u, u′, u′′, λ), t ∈ (0, 1),

u(0) = 0, u′′(0) = 0, B(u, λ) = 0.
(2.2)

Let Ω ⊂ C2[0, 1] be a bounded open set. Let us set for ρ ∈ R, iρ(t) = ρt, for
t ∈ [0, 1], and

X = {iρ : ρ ∈ R},
then X is a one dimensional subspace of C2[0, 1]. Defining i : R 7→ X by i(ρ) = iρ
it is clear that i is an isomorphism from R onto X.

Next let us define F : X 7→ R by

F (iρ) =
∫ 1

0

∫ s

0

f∗(τ, ρτ, ρ, 0, 0)dτds−
m−2∑
i=1

αi

∫ ξi

0

∫ s

0

f∗(τ, ρτ, ρ, 0, 0)dτds,

and set F = F ◦ i, then F : R 7→ R is continuous, and is given by

F(ρ) =
∫ 1

0

∫ s

0

f∗(τ, ρτ, ρ, 0, 0)dτds−
m−2∑
i=1

αi

∫ ξi

0

∫ s

0

f∗(τ, ρτ, ρ, 0, 0)dτds.

We have the following lemma.

Lemma 2.1. Assume that
(i) for λ ∈ (0, 1) the boundary-value problem (2.2) has no solution u ∈ ∂Ω,
(ii) the equation F(ρ) = 0 has no solution for any ρ with iρ(t) ∈ ∂Ω ∩X, and
(iii) the Brouwer degree degB(F,Ω ∩X, 0) 6= 0.

Then the boundary-value problem (1.1) has at least one solution in Ω.

Proof. If the boundary-value problem (1.1) has a solution in ∂Ω, then there is
nothing to prove. Accordingly, let us assume that the boundary-value problem
(1.1) has no solution in ∂Ω. This assumption combined with assumption (i) implies
that the boundary-value problem (2.2) has no solution u ∈ ∂Ω for λ ∈ (0, 1].

Let us define an operator Ψ∗ : C2[0, 1]× [0, 1] 7→ C2[0, 1] by setting for (u, λ) ∈
C2[0, 1]× [0, 1]

Ψ∗(u, λ)(t) =
∫ t

0

(
u′(0) +

∫ s

0

φ−1
(
λ

∫ r

0

f∗(τ, u(τ), u′(τ), u′′(τ), λ)dτ
)
dr

)
ds

+ tB(u, λ),
(2.3)

where B(u, λ) is as defined in equation (2.1).
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We note from our assumptions that the function f∗ satisfies Caratheodory’s
conditions so that for (u, λ) ∈ C2[0, 1] × [0, 1], f∗(t, u(t), u′(t), u′′(t), λ) ∈ L1(0, 1).
Accordingly, the function s ∈ [0, 1] 7→

∫ s

0
f∗(τ, u(τ), u′(τ), u′′(τ), λ)dτ is absolutely

continuous on [0, 1]. Since, now, the integrand in (2.3) is continuous on [0, 1] we
see that the operator Ψ∗ is well defined.

Next, let us suppose that u(t) be a solution to the boundary-value problem (2.2)
for some λ ∈ [0, 1]. We, then, see by integrating the equation in (2.2) and using the
boundary conditions in (2.2) that u(t) satisfies the equation

u(t) = Ψ∗(u, λ)(t), t ∈ [0, 1],

along with
u(0) = 0, u′′(0) = 0,B(u, λ) = 0.

Conversely, let us suppose that for some λ ∈ [0, 1], u(t), t ∈ [0, 1], satisfies the
equation

u(t) = Ψ∗(u, λ)(t). (2.4)
We first see from the equation (2.4) and the definition of Ψ∗(u, λ) that

u(0) = 0.

Next, we obtain, by differentiating the equation (2.4) that

u′(t) = u′(0) +
∫ t

0

φ−1
(
λ

∫ r

0

f∗(τ, u(τ), u′(τ), u′′(τ), λ)dτ
)
dr + B(u, λ), t ∈ [0, 1].

(2.5)
Evaluating (2.5) at t = 0 we see that

B(u, λ) = 0.

Again, we obtain, by differentiating (2.5) that

u′′(t) = φ−1
(
λ

∫ t

0

f∗(τ, u(τ), u′(τ), u′′(τ), λ)dτ
)
. (2.6)

Evaluating the equation (2.6) at t = 0 we see that

u′′(0) = 0.

Also, equation (2.6) further implies that φ(u′′(t)) is absolutely continuous on [0, 1]
and

(φ(u′′(t)))′ = λf∗(t, u(t), u′(t), u′′(t), λ), t ∈ [0, 1].
Thus u(t), t ∈ (0, 1), is a solution to the boundary-value problem (2.2). We have,
accordingly, proved that u(t), t ∈ (0, 1), is a solution to the boundary-value problem
(2.2) if and only if u(t), t ∈ [0, 1], is a solution to the equation (2.4).

We observe that it is easy to show, using standard arguments, that Ψ∗ : C2[0, 1]×
[0, 1] 7→ C2[0, 1] is a completely continuous operator. If, now, u(t) ∈ ∂Ω is a
solution to the boundary-value problem (1.1) then we are done. Accordingly, let us
assume that the boundary-value problem (1.1) has no solution on ∂Ω. Since, now,
f∗(t, s, r, q, 1) = f(t, s, r, q) for all (t, s, r, q) ∈ [0, 1] × R × R × R we see that the
assumption (i) of the lemma implies that

u 6= Ψ∗(u, λ) for all u ∈ ∂Ω and λ ∈ (0, 1].

We, next, assert that u 6= Ψ∗(u, 0) for all u ∈ ∂Ω. Indeed, let u ∈ ∂Ω be such
that u = Ψ∗(u, 0). It then follows from the definition of Ψ∗, as given in (2.3),
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that u(t) = ρt = iρ(t), with ρ = u′(0) + B(u, 0), u′(t) = ρ + B(u, 0), u′′(0) = 0,
B(u, 0) = 0, u ∈ ∂Ω ∩X, and

B(u, 0) =
∫ 1

0

∫ s

0

f∗(τ, u(τ), u′(τ), u′′(τ), 0)dτds

−
m−2∑
i=1

αi

∫ ξi

0

∫ s

0

f∗(τ, u(τ), u′(τ), u′′(τ), 0)dτds

=
∫ 1

0

∫ s

0

f∗(τ, ρτ, ρ, 0, 0)dτds−
m−2∑
i=1

αi

∫ ξi

0

∫ s

0

f∗(τ, ρτ, ρ, 0, 0)dτds

= F(ρ) = 0.

But this contradicts the assumption (ii) of the lemma. We thus get that

u 6= Ψ∗(u, λ) for all u ∈ ∂Ω and λ ∈ [0, 1].

Thus degLS(I − Ψ∗(·, λ),Ω, 0) is well defined for all λ ∈ [0, 1]. By the homotopy
invariance property of Leray-Schauder degree we obtain immediately that

degLS(I −Ψ∗(·, 1),Ω, 0) = degLS(I −Ψ∗(·, 0),Ω, 0) = degB(I −Ψ∗(·, 0)|X ,Ω0, 0),
(2.7)

where, Ω0 = Ω ∩X. Now since for v ∈ X(
I −Ψ∗(·, 0)

)
v = −iF (v),

we have

degLS(I −Ψ∗(·, 1),Ω, 0) = degB(−iF (·),Ω0, 0) = −degB(iF (·),Ω0, 0).

Since, i−1 ◦ iF (·) ◦ i = F , we obtain by using a standard formula in degree theory
that

degB(iF (·),Ω0, 0)) = degB(F , i−1(Ω0), 0)).
Hence, by assumption (iii) of the lemma, it follows that degLS(I−Ψ∗(·, 1),Ω, 0) 6= 0.
Thus, the mapping Ψ ≡ Ψ∗(·, 1) : C2[0, 1] 7→ C2[0, 1] has at least one fixed-point in
Ω and hence the boundary value problem (1.1) has at least one solution in Ω. This
completes the proof of the lemma. �

3. Existence Theorems

We shall assume that for any constants Λ ≥ 0, A > 0 with Λ < A it holds that

α̃(A,Λ) ≡ lim sup
z→∞

φ(A+Λ
A−Λz + c)
φ(z)

<∞. (3.1)

We need the following lemma in the proof of our existence theorems.

Lemma 3.1. Let g : [0, 1] 7→ R be a strictly increasing (resp. strictly decreasing)
function on [0, 1]. Then the function G : (0, 1] ↪→ R defined for t ∈ (0, 1] by

G(t) =
1
t

∫ t

0

g(s)ds

is strictly increasing (resp. decreasing) function on (0, 1]. In particular,
∫ 1

0
g(s)ds−

1
t

∫ t

0
g(s)ds > 0 (resp. < 0) for every t ∈ (0, 1). Moreover, given αi ≥ 0, ξi ∈ (0, 1),

i = 1, 2, · · ·,m−2 with
∑m−2

i=1 αiξi = 1 we have
∫ 1

0
g(s)ds−

∑m−2
i=1 αi

∫ ξi

0
g(s)ds > 0

(resp. < 0).
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Proof. Let us suppose that g is a strictly increasing function on [0, 1]. Now we see
that

G′(t) =
g(t)
t

− 1
t2

∫ t

0

g(s)ds =
1
t2

(
∫ t

0

(g(t)− g(s))ds > 0,

for every t ∈ (0, 1]. Accordingly, G is strictly increasing on (0, 1] and
∫ 1

0
g(s)ds −

1
t

∫ t

0
g(s)ds > 0 for every t ∈ (0, 1). Finally, we see that∫ 1

0

g(s)ds−
m−2∑
i=1

αi

∫ ξi

0

g(s)ds

=
m−2∑
i=1

αiξi(
∫ 1

0

g(s)ds− 1
ξi

∫ ξi

0

g(s)ds) > 0.

Similarly G is strictly decreasing on (0, 1] and
∫ 1

0
g(s)ds−

∑m−2
i=1 αi

∫ ξi

0
g(s)ds < 0

when g is a strictly decreasing function on [0, 1]. This completes the proof of the
lemma. �

Theorem 3.2. Let f : [0, 1]×R×R×R 7→ R in the boundary-value problem (1.1)
be a continuous function and satisfies the following conditions:

(i) there exist non-negative functions d1(t), d2(t), d3(t), and r(t) in L1(0, 1)
such that

|f(t, u, v, w)| ≤ d1(t)φ(|u|) + d2(t)φ(|v|) + d3(t)φ(|w|) + r(t),

for all t ∈ [0, 1], u, v, w ∈ R,
(ii) there exist constants Λ ≥ 0, B ≥ 0, A > 0 with Λ < A and a v0 > 0 such

that for all v with |v| > v0, all t ∈ [0, 1] and all u, w ∈ R one has

|f(t, u, v, w)| ≥ −Λ|u|+A|v| − Λ|w| −B,

(iii) there exists an R > 0 such that for all ρ, with |ρ| > R, either

ρf(t, ρt, ρ, 0) > 0, for all t ∈ [0, 1], or

ρf(t, ρt, ρ, 0) < 0, for all t ∈ [0, 1].

Suppose, further, that

α̃(A,Λ)(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖d3‖L1(0,1) < 1. (3.2)

Then, given αi ≥ 0, ξi ∈ (0, 1), i = 1, 2, · · ·,m−2 with
∑m−2

i=1 αiξi = 1 the boundary
value problem (1.1) has at least one solution in u(t) ∈ C2[0, 1].

Proof. We first choose an ε > 0 be such that

(α̃(A,Λ) + ε)(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖d3‖L1(0,1) < 1,

which is possible to do, in view of (3.2). We consider the family of boundary-value
problems:

(φ(u′′(t)))′ = λf(t, u(t), u′(t), u′′(t)), t ∈ (0, 1), λ ∈ [0, 1],

u(0) = 0, B(u, λ) = 0, u′′(0) = 0,
(3.3)

where B(u, λ) is as defined in (2.1). Let u(t) be a solution to the boundary-value
problem (3.3) for some λ ∈ (0, 1). Then either there exists a t0 ∈ [0, 1] such that

|u′(t0)| ≤ v0 (3.4)
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or |u′(t)| > v0 for all t ∈ [0, 1]. In case, |u′(t)| > v0 for all t ∈ [0, 1], we claim that
there exists a τ0 ∈ [0, 1] such that f(τ0, u(τ0), u′(τ0), u′′(τ0)) = 0. Indeed, let us
suppose that f(t, u(t), u′(t), u′′(t)) 6= 0 for all t ∈ [0, 1]. It then follows from the con-
tinuity of f(t, u(t), u′(t), u′′(t)) on the interval [0, 1] either f(t, u(t), u′(t), u′′(t)) > 0
for all t ∈ [0, 1] or f(t, u(t), u′(t), u′′(t)) < 0 for all t ∈ [0, 1]. Let us first suppose
that f(t, u(t), u′(t), u′′(t)) > 0 for all t ∈ [0, 1]. It then follows from the boundary
condition in (2.4) that

λ
[ ∫ 1

0

(
u′(0) +

∫ s

0

φ−1
(
λ

∫ r

0

f(τ, u(τ), u′(τ), u′′(τ))dτ
)
dr

)
ds

−
m−2∑
i=1

αi

∫ ξi

0

(
u′(0) +

∫ s

0

φ−1
(
λ

∫ r

0

f(τ, u(τ), u′(τ), u′′(τ))dτ
)
dr

)
ds

]
+ (1− λ)

[ ∫ 1

0

∫ r

0

f(τ, u(τ), u′(τ), u′′(τ))dτds

−
m−2∑
i=1

αi

∫ ξi

0

∫ r

0

f(τ, u(τ), u′(τ), u′′(τ))dτdr
]

= 0.

(3.5)

We, next, see that the functions∫ t

0

(
u′(0) +

∫ s

0

φ−1
(
λ

∫ r

0

f(τ, u(τ), u′(τ), u′′(τ))dτ
)
dr

)
ds,∫ s

0

∫ r

0

f(τ, u(τ), u′(τ), u′′(τ))dτdr

are strictly increasing functions on (0, 1], in view of our assumption

f(t, u(t), u′(t), u′′(t)) > 0

for all t ∈ [0, 1]. We then get from Lemma 3.1 and (3.5) that 0 > 0, a contradiction.
Similarly, the supposition f(t, u(t), u′(t), u′′(t)) < 0 for all t ∈ [0, 1] leads to the
contradiction 0 < 0. Hence, there must exist a τ0 ∈ [0, 1] such that

f(τ0, u(τ0), u′(τ0), u′′(τ0)) = 0, (3.6)

proving the claim. We next see from (3.6) and assumption (ii) that

|u′(τ0)| ≤
B

A
+

Λ
A
‖u‖∞ +

Λ
A
‖u′′‖∞. (3.7)

Thus we see from (3.4) and (3.7) that there exists a τ1 ∈ [0, 1] (either t0 or τ0) such
that

|u′(τ1)| ≤ v0 +
B

A
+

Λ
A
‖u‖∞ +

Λ
A
‖u′′‖∞. (3.8)

It then follows from the equation u′(t) = u′(τ1) +
∫ t

τ1
u′′(s)ds and (3.8) that

‖u′‖∞ ≤ A+ Λ
A− Λ

‖u′′‖∞ +
Av0 +B

A− Λ
. (3.9)

Next, we see by integrating the equation in (3.3) from 0 to t ∈ [0, 1] and noting
u′′(0) = 0, that

φ(u′′(t)) = λ

∫ t

0

f(τ, u(τ), u′(τ), u′′(τ))dτ. (3.10)
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It now follows from equations (3.10), (3.8) using assumption (i), the fact that
u(0) = 0 implies ‖u‖∞ ≤ ‖u′‖∞ that

φ(|u′′(t)|)
≤ φ(‖u‖∞)‖d1‖L1(0,1) + φ(‖u′‖∞)‖d2‖L1(0,1) + φ(‖u′′‖∞)‖d3‖L1(0,1) + ‖r‖L1(0,1)

≤ (‖d1‖L1(0,1) + ‖d2‖L1(0,1))φ(
A+ Λ
A− Λ

‖u′′‖∞ +
Av0 +B

A− Λ
)

+ ‖d3‖L1(0,1))φ(‖u′′‖∞) + ‖r‖L1(0,1)

≤ ((α̃(A,Λ) + ε)(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖d3‖L1(0,1))φ(‖u′′‖∞)

+ Cε(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖r‖L1(0,1),

and hence
φ(‖u′′‖∞) ≤ ((α̃(A,Λ) + ε)(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖d3‖L1(0,1))φ(‖u′′‖∞)

+ Cε(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖r‖L1(0,1).

(3.11)
It now follows from (3.2), the estimates (3.11), (3.9) and ‖u‖∞ ≤ ‖u′‖∞ that there
exists an R0 > R , where R is as in assumption (iii), such that the family of
boundary value problems (3.3) have no solution on the boundary of a bounded
open set Ω = B(0, R̃) ⊂ C2[0, 1], for every R̃ ≥ R0. Accordingly, we see that the
family of boundary value problems (3.3) satisfy condition (i) of Lemma 2.1. Next,
we see from assumption (iii) and Lemma 3.1 for all ρ, |ρ| > R, that∫ 1

0

∫ s

0

f(τ, ρτ, ρ, 0)dτds−
m−2∑
i=1

αi

∫ ξi

0

∫ s

0

f(τ, ρτ, ρ, 0)dτds

is strictly positive or strictly negative. Accordingly, we see that f∗(t, u, v, w, λ) =
f(t, u, v, w) satisfies the condition (ii) of Lemma 2.1.

Finally, we again see from assumption (iii), the continuity in ρ ∈ R of the function

ψ(ρ) =
∫ 1

0

∫ s

0

f(τ, ρτ, ρ, 0)dτds−
m−2∑
i=1

αi

∫ ξi

0

∫ s

0

f(τ, ρτ, ρ, 0)dτds

and the assumption that R̃ > R, that F (i eR(t)) and F (i− eR(t)) have opposite signs.
It follows immediately that F (iρ(t)) = 0 for an odd number of ρ ∈ (−R̃, R̃) which
implies that the Brouwer degree degB(F,Ω ∩X, 0) 6= 0. Thus the condition (iii) of
Lemma 2.1 is also satisfied. Thus it follows from Lemma 2.1 that the boundary
value problem (1.1) has at least one solution in Ω. This completes the proof of the
theorem. �

4. A result for the non-resonance case

In this section we will consider problem (1.1) in the non-resonance case. Problem
(1.1) is in the non-resonance case if problem (1.2) has only the trivial solution. This
holds if and only if the αi, ξi satisfy

∑m−2
i=1 αiξi 6= 1. We assume henceforth that

αi, ξi satisfy this condition. Notice that we do not assume a sign condition on the
α′is. In addition, we shall assume that for any σ, 0 < σ < 1, it holds that

α̃(σ) = lim sup
z→∞

φ( 1
1−σ z)
φ(z)

<∞. (4.1)
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Let us set ξm−1 = 1, αm−1 = −1, σij = αi(ξi−ξj) for i 6= j and σjj =
∑m−1

i=1 αiξj
for i, j = 1, 2, ·, ·, ·,m−1. We note that the assumption

∑m−2
i=1 αiξi 6= 1 is equivalent

to
∑m−1

i=1 αiξi 6= 0. Also, for each j = 1, 2, ·, ·, ·,m− 1 we have

m−1∑
i=1

σij =
m−1∑

i=1,i 6=j

σij + σjj =
m−1∑

i=1,i 6=j

αi(ξi − ξj) +
m−1∑
i=1

αiξj =
m−1∑
i=1

αiξi 6= 0.

It follows that
m−1∑
i=1

(σij)+ 6=
m−1∑
i=1

(σij)−,

for j = 1, 2, ·, ·, ·,m − 1, where for α ∈ R, α+ = max(α, 0) and α− = max(−α, 0).
Let us set

σ∗ =


min{

Pm−1
i=1 (σij)

+Pm−1
i=1 (σij)−

,
Pm−1

i=1 (σij)
−Pm−1

i=1 (σij)+
} if

∑m−1
i=1 (σij)+ 6= 0 and∑m−1
i=1 (σij)− 6= 0 for all j,

0, otherwise.

(4.2)

Note that 0 ≤ σ∗ < 1. The main result of this section is the following theorem.

Theorem 4.1. Let f : [0, 1]×R×R×R 7→ R be a function satisfying Caratheodory’s
conditions such that the following condition holds:
there exist non-negative functions d1(t), d2(t), d3(t), and r(t) in L1(0, 1) such that

|f(t, u, v, w)| ≤ d1(t)φ(|u|) + d2(t)φ(|v|) + d3(t)φ(|w|) + r(t),

for a. e. t ∈ [0, 1] and all u, v, w ∈ R. Suppose, further,

α̃(σ∗)(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖d3‖L1(0,1) < 1, (4.3)

where σ∗ is as defined in (4.2) and α̃ is as defined in (4.1).
Then, the boundary-value problem (1.1) has at least one solution u ∈ C2[0, 1].

We need the following variant of an a priori estimate from [14] in the proof of
Theorem 4.1 and present this in the following lemma.

Lemma 4.2. Let u ∈ C1[0, 1], be such that u′′ ∈ L∞(0, 1) and satisfies

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi),

with
∑
αiξi 6= 1. If

∑m−1
i=1 (σij)+ 6= 0, and

∑m−1
i=1 (σij)− 6= 0 for all j, then

‖u′‖∞ ≤ 1
1− σ∗

‖u′′‖∞. (4.4)

If one of
∑m−1

i=1 (σij)+,
∑m−1

i=1 (σij)− is zero for some j = 1, 2, . . . ,m − 1, then
u′(η0) = 0 for some η0 ∈ [0, 1], and

‖u′‖∞ ≤ ‖u′′‖∞. (4.5)

Proof. We first, note, that the assumption

u(1) =
m−2∑
i=1

αiu(ξi)
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is equivalent to
m−1∑
i=1

αiu(ξi) = 0,

with ξm−1 = 1, αm−1 = −1 and the non-resonant condition
∑m−2

i=1 αiξi 6= 1 is
equivalent to

∑m−1
i=1 αiξi 6= 0.

Next, for each j = 1, 2, ·, ·, ·,m−1 we have u(ξj) = ξju
′(ηjj) for some ηjj ∈ [0, 1].

Also for i, j = 1, 2, ·, ·, ·,m − 1 with i 6= j we have u(ξi) − u(ξj) = u′(ηij)(ξi − ξj)
for some ηij ∈ [0, 1]. Accordingly,

m−1∑
i=1,i 6=j

αiu
′(ηij)(ξi − ξj) =

m−1∑
i=1,i 6=j

αi(u(ξi)− u(ξj))

= −
m−1∑
i=1

αiu(ξj) = −
m−1∑
i=1

αiξju
′(ηjj),

using the mean-value theorem and the assumptions u(0) = 0,
∑m−1

i=1 αiu(ξi) = 0
(equivalently, u(1) =

∑m−2
i=1 αiu(ξi)). We thus get

∑m−1
i=1 σiju

′(ηij) = 0, and hence∑m−1
i=1 (σij)+u′(ηij) =

∑m−1
i=1 (σij)−u′(ηij). So there must exist χ1

j and χ2
j in [0, 1]

such that ( m−1∑
i=1

(σij)+
)
u′(χ1

j ) =
( m−1∑

i=1

(σij)−
)
u′(χ1

j ). (4.6)

If one of
∑m−1

i=1 (σij)+,
∑m−1

i=1 (σij)− is zero for some j = 1, 2, . . . ,m − 1 then it
follows from (4.6) that there is an η0 ∈ [0, 1] (indeed one of χ1

j or χ2
j ) such that

u′(η0) = 0 and the estimate (4.5) is immediate.
Next, suppose that

∑m−1
i=1 (σij)+ 6= 0 and

∑m−1
i=1 (σij)− 6= 0 for every j =

1, 2, . . . ,m − 1. Then either u′(χ1
j ) = u′(χ1

j ) = 0 for some j = 1, 2, . . . ,m − 1,
in which case the estimate (4.5) is immediate, or u′(χ1

j ) 6= u′(χ1
j ) for every j =

1, 2, . . . ,m − 1. It follows that there exist η1, η2 ∈ [0, 1] with u′(η1) 6= u′(η2) such
that

u′(η1) = σ∗u′(η2). (4.7)

The estimate (4.4) is now immediate from (4.1), (4.7) and the equation

u′(t) = u′(η1) +
∫ t

η1

u′′ds.

This completes the proof of the lemma. �

Proof of Theorem 4.1. We consider the family of boundary-value problems:

(φ(u′′(t)))′ = λf(t, u(t), u′(t), u′′(t)), t ∈ (0, 1), λ ∈ [0, 1],

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi), u′′(0) = 0.
(4.8)
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Also, we define an operator Ψ∗ : C2[0, 1] × [0, 1] 7→ C2[0, 1] by setting for (u, λ) ∈
C2[0, 1]× [0, 1]

Ψ∗(u, λ) =
∫ t

0

(
u′(0) +

∫ s

0

φ−1
(
λ

∫ r

0

f∗(τ, u(τ), u′(τ), u′′(τ), λ)dτ
)
dr

)
ds

+ t
(
u(1)−

m−2∑
i=1

αiu(ξi)
)
.

Following standard arguments, it can be proved that Ψ∗ is a completely continuous
operator. Furthermore reasoning in an entirely similar way as we did in the proof
of Lemma 2.1 it can be proved that u is a solution to the family of boundary-value
problems (4.8) if and only if u is a fixed point for the operator Ψ∗(·, λ); i.e., u
satisfies

u = Ψ∗(u, λ).

We will show next that there is a constant R > 0 independent of λ ∈ [0, 1] such
that if u satisfies (4.8) for some λ ∈ [0, 1] then ‖u‖C2[0,1] < R.

We note first that if u satisfies

u = Ψ∗(u, 0),

then we must have u = 0. Indeed from the definition of Ψ∗ or from problem (4.8),
it follows that u(t) = ρt with ρ = u′(0) = u′(t), for all t ∈ [0, 1]. Then from the
second boundary condition in (4.8), and the assumption

∑m−2
i=1 αiξi 6= 1, we find

that ρ = 0, implying that u(t) = 0 for all t ∈ [0, 1].
In the rest of the argument we will assume that λ ∈ (0, 1]. Also we will suppose

that σ∗ > 0 since the proof for the case σ∗ = 0 is simpler.
Let us choose ε > 0 such that

(α̃(σ∗) + ε)(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖d3‖L1(0,1) < 1, (4.9)

which can be done in view of the assumption (4.3). Next, we have from the definition
of α̃, as given in (4.1), that there exists a constant C1

ε such that

φ(
1

1− σ∗
z) ≤ (α̃(σ∗) + ε)φ(z) + C1

ε , for all z. (4.10)

Let, now, u be a solution of the family of boundary-value problems (4.8). Then
u ∈ C2[0, 1] with φ(u′′(t)) absolutely continuous on [0, 1] and satisfies

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi), u′′(0) = 0.

We, now, use the estimates

‖u‖∞ ≤ ‖u′‖∞, ‖u′‖∞ ≤ 1
1− σ∗

‖u′′‖∞, φ(‖u′′‖∞) ≤ ‖(φ(u′′))′‖L1(0,1) (4.11)
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and the inequality (4.10) to get

‖(φ(u′′))′‖L1(0,1)

≤ φ(‖u‖∞)‖d1‖L1(0,1) + φ(‖u′‖∞)‖d2‖L1(0,1)

+ φ(‖u′′‖∞)‖d3‖L1(0,1) + ‖r‖L1(0,1)

≤ (‖d1‖L1(0,1) + ‖d2‖L1(0,1))φ(
1

1− σ∗
‖u′′‖∞)

+ φ(‖u′′‖∞)‖d3‖L1(0,1) + ‖r‖L1(0,1)

≤
(
α̃(σ∗) + ε

)
(‖d1‖L1(0,1) + ‖d2‖L1(0,1))φ(‖u′′‖∞) + ‖d3‖L1(0,1)φ(‖u′′‖∞) + Cε

≤ [(α̃(σ∗) + ε
)
(‖d1‖L1(0,1) + ‖d2‖L1(0,1)) + ‖d3‖L1(0,1)]‖(φ(u′′))′‖L1(0,1) + Cε,

where
Cε = ‖r‖L1(0,1) + C1

ε (‖d1‖L1(0,1) + ‖d2‖L1(0,1)).
It, now, follows from (4.9) that there exists a constant R0 > 0, independent of
λ ∈ (0, 1] such that if u is a solution of the family of boundary-value problems (4.8)
then

‖(φ(u′′))′‖L1(0,1)) ≤ R0.

This, combined with (4.11) gives that there exist a constant R > 0 such that

‖u‖C2[0,1] < R.

This in turn implies that degLS(I − Ψ∗(·, λ), B(0, R), 0) is well defined for all λ ∈
[0, 1], where B(0, R) is the ball with center 0 and radius R in C2[0, 1].

In what follows we will use the notation of section 2, thus X will denote the
one dimensional subspace of C2[0, 1] given by X = {iρ : ρ ∈ R}, iρ(t) = ρt and
i : R 7→ X is the isomorphism from R onto X given by i(ρ) = iρ. Let us define the
function G : R 7→ R by

G(ρ) =
( m−2∑

i=1

αiξi − 1
)
ρ, (4.12)

for w ∈ X, w(t) = ρt for some ρ ∈ R. Now, since

(I −Ψ∗(·, 0))(w) = iG(ρ),

it is easy to see that
G = i−1 ◦ (I −Ψ∗(·, 0))|X ◦ i,

and hence, by the homotopy invariance property of Leray-Schauder degree, it follows
that

degLS(I −Ψ∗(·, 1), B(0, R), 0) = degLS(I −Ψ∗(·, 0), B(0, R), 0)

degB(I −Ψ∗(·, 0)|X , X ∩B(0, R), 0) = degB(G, (−R,R), 0).

Thus taking into account (4.12), we obtain the interesting formulas for the degree

degLS(I −Ψ∗(·, 1), B(0, R), 0) =

{
1 if

∑m−2
i=1 αiξi > 1

−1 if
∑m−2

i=1 αiξi < 1.

Hence if
∑m−2

i=1 αiξi 6= 1 we have that degLS(I −Ψ∗(·, 1), B(0, R), 0) 6= 0 and there
is a u ∈ B(0, R) that satisfies

u = Ψ∗(·, 1),
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equivalently u is a solution to the boundary-value problem (4.1). This completes
the proof of the theorem. �
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