2006 International Conference in honor of Jacqueline Fleckinger. Electron. J. Diff. Eqns., Conference 16 (2007), pp. ??

A minimax formula for the principal eigenvalues of Dirichlet problems and its applications

Tomas Godoy, Jean-Pierre Gossez, Sofia R. Paczka

Abstract:
A minimax formula for the principal eigenvalue of a nonselfadjoint Dirichlet problem was established in [8,18]. In this paper we generalize this formula to the case where an indefinite weight is present. Our proof requires less regularity and, unlike that in [8,18], does not rely on semigroups theory nor on stochastic differential equations. It makes use of weighted Sobolev spaces. An application is given to the study of the uniformity of the antimaximum principle.

Published May 15, 2007.
Math Subject Classifications: 35J20, 35P15.
Key Words: Nonselfadjoint elliptic problem; principal eigenvalue; indefinite weight; minimax formula; weighted Sobolev spaces; degenerate elliptic equations; antimaximum principle.

Show me the PDF file (347K), TEX file, and other files for this article.

Tomas Godoy
FAMAF, Univ. Nacional Córdoba
Ciudad Universitaria, 5000 Córdoba, Argentina
email: godoy@mate.uncor.edu
Jean-Pierre Gossez
Département de Mathématique, C. P. 214
Université Libre de Bruxelles
B-1050 Bruxelles, Belgium
email: gossez@ulb.ac.be
Sofia Rosalia Paczka
FAMAF, Univ. Nacional Córdoba
Ciudad Universitaria, 5000 Córdoba, Argentina
email: paczka@mate.uncor.edu

Return to the table of contents for this conference.
Return to the EJDE web page