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an international conference in her honor

Abstract. In this paper, we obtain some results about the existence of solu-

tions to the system

−
NX

k,j=1

∂

∂xk

`
ρkj,i

∂ui

∂xj

´
+ qiui = µimiui + gi(x, u1, . . . , un),

for i = 1, . . . , n defined in RN .

[section]

1. Introduction

1.1. The problem settings. We study the elliptic system

−
N∑

k,j=1

∂

∂xk

(
ρkj,i

∂ui

∂xj

)
+ qiui = µimiui + gi(x, u1, . . . , un) in RN , (1.1)

for i = 1, . . . , n. We consider the following hypotheses for each i = 1, . . . , n:

(H1) qi ∈ L2
loc(RN ) ∩ L

p
2
loc(RN ), p > N , such that lim|x|→+∞ qi(x) = +∞ and

qi ≥ const > 0.
(H2) For all j, k = 1, . . . , N , ρkj,i = ρjk,i and there exists positive constants

αi, βi such that for all ξ = (ξ1, . . . , ξN ) ∈ RN ,

αi|ξ|2 ≤
N∑

k,j=1

ρkj,iξjξk ≤ βi|ξ|2.

(H3) mi ∈ L∞(RN ), mi ≥ const > 0.

We will specify later the form and the hypotheses on each gi and we denote by µi

real parameters for i = 1, . . . , n. The variational space is denoted by Vq1(RN ) ×
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· · · × Vqn
(RN ) where for i = 1, . . . , n, Vqi

(RN ) is the completion of D(RN ), the set
of C∞ functions with compact support, under the norm

‖u‖ρi,qi
=

( ∫
RN

[
N∑

k,j=1

ρkj,i
∂u

∂xj

∂u

∂xk
+ qiu

2]
)1/2

. (1.2)

Due to hypothesis (H2), Vqi
(RN ) is also the completion of D(RN ) under the norm

‖u‖qi
=

( ∫
RN

|∇u|2 + qiu
2
)1/2

. (1.3)

We recall that the embedding of each Vqi
(RN ) into L2(RN ) is compact. We denote

by

‖u‖mi =
( ∫

RN

miu
2
)1/2

(1.4)

for all u ∈ L2(RN ). According to the hypothesis (H3), ‖ · ‖mi is a norm in L2(RN ),
equivalent to the usual norm so the embedding of Vqi

(RN ) into (L2(RN ), ‖ · ‖mi
)

is still compact. We denote by Mi the operator of multiplication by mi in L2(RN )
and by Lρi the operator defined by

Lρi
u := −

N∑
k,j=1

∂

∂xk
(ρkj,i

∂u

∂xj
). (1.5)

The operator (Lρi
+ qi)−1Mi : (L2(RN ), ‖ · ‖mi

) → (L2(RN ), ‖ · ‖mi
) is positive

self-adjoint and compact. So its spectrum is discrete and consists of a positive
sequence tending to 0. We denote by λi the inverse of the first eigenvalue and by
φi the corresponding eigenfunction which satisfy

(Lρi + qi)φi = λimiφi in RN , (1.6)

λi > 0 and ‖φi‖mi = 1. (We recall that λi is simple and φi > 0 (see for example
[1, 2, 4, 9, 21, 24] and Proposition 1.1 below.) By the Courant-Fischer formulas,

λi = inf
{∫

RN [
∑N

k,j=1 ρkj,i
∂φ
∂xj

∂φ
∂xk

+ qiφ
2]∫

RN miφ2
, φ ∈ D(RN )

}
. (1.7)

The aim of this paper is to study the existence of solutions for the system (1.1). This
extends earlier results obtained for the Laplacian operator in a bounded domain
(see [17, 18]), for an operator of divergence form in a bounded domain (when each
ρkj,i is independent of j, see [14]), for equations or systems involving Schrödinger
operators −∆+qi in RN (see [3, 11, 12, 13, 15]). The methods to get the existence of
solutions are the Lax-Milgram Theorem for linear systems, applications of the sub
and super solutions method, or the bifurcation method. Note that an important
tool to obtain positive solutions is the Maximum Principle. We present in this paper
a classification of different results for the existence of solutions for the system (1.1).
Since these results are refinements of results obtained for Schrödinger operators
whose potentials tend to infinity at infinity, we will only express the results for
operators of divergence form studied here with some simple sketches of the proofs.
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1.2. Review of results for the scalar case (i = 1). We consider here the
following equation, in a variational sense,

−
N∑

k,j=1

∂

∂xk
(ck,j

∂u

∂xj
) + qu = λmu+ g in RN . (1.8)

We assume the following: The potential q satisfies (H1), the coefficients ck,j satisfy
(H2), the weight m satisfies (H3), the constant λ is a real parameter and finally
g ∈ L2(RN ). We let Lc be the operator defined by Lcu := −

∑N
k,j=1

∂
∂xk

(ck,j
∂u
∂xj

)
and M the multiplication operator given by the function m. Since the operator
(Lc + q)−1M : (L2(RN ), ‖ · ‖m) → (L2(RN ), ‖ · ‖m) is positive self-adjoint and
compact, then its spectrum is discrete and consists of a positive sequence tending
to 0. We denote by λc,q the inverse of the first (largest) eigenvalue of the operator
(Lc + q)−1M .

As in [1, 2, 4, 9, 20], we have the following result.

Proposition 1.1. The eigenvalue λc,q is simple and there exists an associated
eigenfunction φc,q which is a strictly positive and continuous function in RN .

We recall that the above result is well known for the case of bounded domains
or the case where Lc + q = −∆ + q is a Schrödinger operator in RN.

Proof. First, we conclude from [25, Theorem 7.1] that every solution ψ ∈ L2(RN )
of the equation (Lc + q − λc,qm)ψ = 0 in L2(RN ) is a continuous function in RN .

Next, we will show that λc,q is simple and it has an eigenfunction which is
strictly positive. To do this, we follow [1]. Note that λc,q is of finite multiplicity.
If in contrast λc,q is not simple, then there exists an eigenfunction, say, ψ, which
changes sign. It follows that ψ+ := max (ψ, 0) is also an eigenfunction associated
with λc,q. Let Ω+ := {x ∈ RN , ψ(x) > 0}; we denote by λ+ the inverse of the first
eigenvalue of (Lc + q)−1M defined on Ω+ with the Dirichlet boundary condition.
Then λc,q = λ+. Since Ω+ 6= RN , ψ and ψ+ are linearly independent. Hence, by
considering all domains Ω∗ such that Ω+ ⊂ Ω∗ ⊂ RN , we can construct an infinite
number of linearly independent eigenfunctions associated with λc,q, contradicting
the fact that λc,q is of finite multiplicity. Therefore, we have shown that λc,q is
simple and every eigenfunction of it does not change sign.

To complete the proof, we consider a non-negative eigenfunction φ of λc,q and
need to showing that φ > 0. Assuming that there exists y ∈ RN such that φ(y) = 0.
Let R > 0 and r > 0 be such that B(y, r) ⊂ B(0, R). Using the Harnack Inequality
for the operator Lc + q − λc,qm (see [20, Theorem 8.20], [25, Theorem 8.1]), we
have supB(y,4r) φ ≤ C infB(y,r) φ = 0, and we deduce that φ = 0 in B(y, r) (for any
r > 0). Therefore φ ≡ 0, which is impossible, since φ is an eigenfunction. �

We have the following weak Maximum Principle for (1.8).

Theorem 1.1 (The weak Maximum Principle). Assume that λ < λc,q, g ≥ 0 and
u is a solution of the equation (1.8). Then u ≥ 0.

Proof. The idea is to multiply the equation (1.8) by u− = Max(0,−u), then to use
the characterisation of λc,q (see (1.7)) in order to obtain (λc,q−λ)

∫
RN m(u−)2 ≤ 0.

Therefore, under the conditions λc,q−λ > 0 and m > 0 we obtain that u− = 0. �

By using the Lax-Milgram Theorem we obtain the existence of a solution for the
equation (1.8).
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Theorem 1.2. Assume λ < λc,q. Then there exists a unique solution u ∈ Vq(RN )
for the equation (1.8). Moreover, by the Maximum Principle, if g ≥ 0, then this
solution u satisfies u ≥ 0.

Proof. Let l : (Vq(RN ))2 → R be the quadratic form given by

l(u, v) :=
∫

RN

[
N∑

k,j=1

ck,j
∂u

∂xj

∂v

∂xk
+ quv − λmuv] ∀(u, v) ∈ (Vq(RN ))2.

Let α be a real number such that λ+ α > 0. Consider the norm

‖u‖c,q+αm :=
( ∫

RN

[
N∑

k,j=1

ckj
∂u

∂xj

∂u

∂xk
+ (q + αm)u2]

)1/2

u ∈ Vq(RN ).

It follows from the characterisation (1.7) of λc,q that l(u, u) ≥ λc,q−λ
λc,q+α‖u‖

2
c,q+αm. So

the continuous bilinear form l is coercive. By the Lax-Milgram theorem, we get the
existence of a unique weak solution u for the equation (1.8). Moreover, if g ≥ 0, by
Theorem 1.1, we have u ≥ 0. �

1.3. Properties of M-matrices. We say that a matrix is positive if all its entries
are nonnegative and we say that a matrix is positive definite if this matrix is
symmetric and if all its principal minors are strictly positive. We recall some
results about the M-matrices (see [5, Theorem 2.3, p.134]). Let I be the identity
matrix. A matrix M = sI −B is called a non singular M-matrix, if B is a positive
matrix and s is a real number such that s > ρ(B), where ρ(B) denotes the spectral
radius of B.

Proposition 1.2. If M is a matrix with nonpositive off-diagonal entries, then the
following five conditions are equivalent.

(P0) M is a non singular M-matrix.
(P1) All the principal minors of M are strictly positive.
(P2) M is semi-positive, i.e., there exists X >> 0 such that MX >> 0. Here

X >> 0 means that the entries of X are strictly positive.
(P3) M has a positive inverse.
(P4) There exists a diagonal matrix D, D > 0 such that tMD+DM is positive

definite.

2. Results for linear systems

In this section, we consider the system (1.1) in the form

−
N∑

k,j=1

∂

∂xk
(ρkj,i

∂ui

∂xj
) + qiui = µimiui +

n∑
j=1;j 6=i

aijuj + fi in RN , (2.1)

i = 1, . . . , n. We consider the hypotheses:

(H4) For all i, j = 1, . . . , n, aij ∈ L∞(RN ).
(H5) For all i = 1, . . . , n, fi ∈ L2(RN ).
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2.1. Case of a cooperative system: aij ≥ 0 (∀i 6= j). We obtain here results
for the Maximum Principle and the existence of solutions for a linear cooperative
system. We use classical methods as in [1, 3, 12, 14, 17, 18]. For a cooperative
system we suppose also the following hypothesis

(H6) For all i, j, i 6= j ⇒ aij ≥ 0.
For each i 6= j, since each weight mi is bounded below by a positive constant, we
deduce the existence of positive constants Kij such that aij ≤ Kij

√
mi
√
mj . Note

that in the particular case where mi = 1 for each i, we can take Kij = ‖aij‖L∞(RN ).
We denote by L = (lij) the n× n-matrix given as follows

lii := λi − µi and lij := −Kij (i 6= j). (2.2)

For such a system, we have the following maximum principle.

Theorem 2.1. Assume (H1)–(H6) are satisfied. If the matrix L is a non singular
M-matrix, then the cooperative system (2.1) satisfies the Maximum Principle.

Proof. Assume that for all i = 1, . . . , n, fi ≥ 0. Let u = (u1, . . . , un) be a solution of
the system (2.1) and define u−i = max(0,−ui). Multiplying by u−i and integrating
over RN , we obtain∫

RN

[
N∑

k,j=1

ρkj,i
∂ui

∂xj

∂u−i
∂xk

+qiuiu
−
i ] = µi

∫
RN

miuiu
−
i +

n∑
j=1;j 6=i

∫
RN

aijuju
−
i +

∫
RN

fiu
−
i .

Due to the characterisation of λi (see (1.7)), we obtain

λi

∫
RN

mi(u−i )2 ≤ µi

∫
RN

mi(u−i )2 +
n∑

j=1;j 6=i

Kij(
∫

RN

mi(u−i )2)1/2(
∫

RN

mj(u−j )2)1/2.

Thus, if we denote by tX = (x1, . . . , xn) where xi = (
∫

RN mi(u−i )2)1/2, we have
LX ≤ 0. Since L is a non singular M-matrix, we can deduce that X ≤ 0, so X = 0
and therefore ui ≥ 0 for each i. �

Existence and uniqueness of a solution is stated as follows.

Theorem 2.2. Assume (H1)–(H6) are satisfied. If the matrix L (given by (2.2))
is a non singular M-matrix, then the cooperative system (2.1) has a unique solution
u = (u1, . . . , un) ∈ Vq1(RN ) × · · · × Vqn

(RN ). Moreover, due to the Maximum
Principle, if fi ≥ 0 for all i, then this solution u satisfies ui ≥ 0 for i = 1, . . . , n.

Proof. We suppose that L is a non singular M-matrix. Using (P4) (see Proposition
1.2), we introduce D a diagonal positive matrix such that tLD + DL is positive
definite. We denote by d1, . . . , dn the diagonal entries of the diagonal matrix D.
As for one equation, the method is based on the Lax-Milgram theorem.

Let α be a positive number such that for all 1 ≤ i ≤ n, µi + α > 0. Let
l : (Vq1(RN )× · · · × Vqn

(RN ))2 → R be defined by

l(u, v) =
n∑

i=1

di

∫
RN

[ N∑
k,j=1

ρkj,i
∂ui

∂xj

∂vi

∂xk

+ (qi + αmi)uivi − (µi + α)miuivi −
n∑

j=1;j 6=i

aijujvi

]
,
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if u = (u1, . . . , un) ∈ Vq1(RN ) × · · · × Vqn
(RN ), and v = (v1, . . . , vn) ∈ Vq1(RN ) ×

· · · × Vqn
(RN ). We denote by

‖ui‖ρi,qi+αmi =
( ∫

RN

[
N∑

k,j=1

ρkj,i
∂ui

∂xj

∂ui

∂xk
+ (qi + αmi)u2

i ]
)1/2

. (2.3)

By the characterisation of λi (see (1.7)) and the Cauchy-Schwartz inequality, we
get:

l(u, u) ≥
n∑

i=1

di
λi − µi

λi + α
‖ui‖2ρi,qi+αmi

−
n∑

i,j=1;i 6=j

diKij√
λi + α

√
λj + α

‖ui‖ρi,qi+αmi‖uj‖ρj ,qj+αmj .

Setting tX = (x1, . . . , xn) with xi = ‖ui‖ρi,qi+αmi√
λi+α

, we get:

l(u, u) ≥t XDLX =
1
2

tX[tLD +DL]X.

Since tLD+DL is positive definite, we deduce that l is coercive. Therefore, by the
Lax-Milgram Theorem, we get the existence and the uniqueness of a weak solution
for the system (2.1). �

2.2. Case of a non necessarily cooperative system. We give a very similar
result for the existence and uniqueness of a solution for the system (2.1) as the
one obtained for a cooperative system. We do not give the proof which is exactly
the same as for Theorem 2.2. We note that for all i, j, i 6= j there exists positive
constants K ′

ij such that |aij | ≤ K ′
ij

√
mi
√
mj . We denote by L′ = (l′ij) the n × n-

matrix given by:

l′ii := λi − µi and l′ij := −K ′
ij (i 6= j). (2.4)

Existence and uniqueness of a solution is stated as follows.

Theorem 2.3. Assume (H1)–(H5) are satisfied. If the matrix L′ (given by (2.4)) is
a non singular M-matrix, then the system (2.1) has a unique solution in Vq1(RN )×
· · · × Vqn(RN ).

3. Results for semilinear systems

In this section, we consider system (1.1) in the form:

−
N∑

k,j=1

∂

∂xk
(ρkj,i

∂ui

∂xj
) + qiui = µimiui +

n∑
j=1;j 6=i

aijuj + fi(x, u1, . . . , un) in RN ,

(3.1)
i = 1, . . . , n.

We consider also the following hypotheses which hold for each i = 1, . . . , n:
(H7) fi is Lipschitz respect to ui uniformly in x.
(H8) There exists θi ∈ L2(RN ) such that 0 ≤ fi(x, u1, . . . , un) ≤ θi for all

u1 ≥ 0, . . . , un ≥ 0.
(H9) There exists θi ∈ L2(RN ) such that |fi(x, u1, . . . , un)| ≤ θi for all u1, . . . , un.

We obtain two results for the existence of a solution for the system (3.1), which is
either cooperative or non cooperative.
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3.1. Case of a cooperative system: aij ≥ 0 (∀i 6= j). As in [3, 14, 18], we use
a sub and super solutions method with a Schauder Fixed Point Theorem to obtain
the existence of a positive solution if system (3.1) is cooperative.

Theorem 3.1. Assume (H1)–(H4), (H6)–(H8) are satisfied. If the matrix L (given
by (2.2) is a non singular M-matrix, then the system (3.1) has at least one positive
solution in Vq1(RN )× · · · × Vqn

(RN ).

Proof. We consider the system

−
N∑

k,j=1

∂

∂xk
(ρkj,i

∂ui

∂xj
) + qiui = µimiui +

n∑
j=1;j 6=i

aijuj + θi in RN , (3.2)

i = 1, . . . , n. Applying Theorem 2.2 we deduce that the system (3.2) has a unique
solution (which is positive by the Maximum Principle) u0 = (u0

1, . . . , u
0
n). Moreover,

by (H8), u0 is a super solution of the system (3.1). Note also that u0 = (0, . . . , 0)
is a sub solution of the system (3.1). We denote by σ = [u0, u

0].
To show the existence of positive solutions to system (3.1), we choose a positive

real number α to be such that µi +α > 0 for all i. Let T : (L2(RN ))n → (L2(RN ))n

be defined as follows: If u = (u1, . . . , un), then T (u) := v = (v1, . . . , vn), v satisfies
the equations

−
N∑

k,j=1

∂

∂xk
(ρkj,i

∂vi

∂xj
)+(qi+αmi)vi = (µi+α)miui+

n∑
j=1;j 6=i

aijuj+fi(x, u1, . . . , un)

(3.3)
in RN for each i = 1, . . . , n. Note that, by the scalar case, T is well defined and
T (σ) ⊂ σ. As in [3], using the compact embedding of each Vqi

(RN ) into L2(RN ),
we can prove that T is continuous and that T (σ) is compact. By the Schauder
Fixed Point Theorem, we deduce the existence of u = (u1, . . . , un) ∈ σ such that
T (u) = u. Equivalently, u is a positive solution of the system (3.1). �

3.2. Case of a non cooperative semilinear system. For a non cooperative
system, we obtain the following result.

Theorem 3.2. Assume (H1)–(H4), (H7), (H9) are satisfied. If the matrix L′ (given
by (2.4)) is a non singular M-matrix, then the system (3.1) has at least one solution
in Vq1(RN )× · · · × Vqn

(RN ).

Proof. We proceed exactly as for Theorem 3.1 by considering a sub and a super
solution of the system (3.1) and using the Schauder Fixed Point Theorem. To do
so, we consider the following system

−
N∑

k,j=1

∂

∂xk
(ρkj,i

∂ui

∂xj
) + qiui = µimiui +

n∑
j=1;j 6=i

|aij |uj + θi in RN , (3.4)

for i = 1, . . . , n. Applying Theorem 2.2, we deduce that the system (3.4) has a
unique solution (which is positive by the Maximum Principle) u0 = (u0

1, . . . , u
0
n).

Moreover, by (H8), u0 is a super solution of the system (3.1). Note also that −u0

is a sub solution of the system (3.1). We denote by σ = [−u0, u0].
Let α be a positive real number such that µi + α > 0 for all i. Let T :

(L2(RN ))n → (L2(RN ))n be defined as follows: If u = (u1, . . . , un), then T (u) :=
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v = (v1, . . . , vn), where v is determined by the equations:

−
N∑

k,j=1

∂

∂xk
(ρkj,i

∂vi

∂xj
)+(qi+αmi)vi = (µi+α)miui+

n∑
j=1;j 6=i

aijuj+fi(x, u1, . . . , un)

in RN for i = 1, . . . , n. Note that, by the scalar case, T is well defined and such
that T (σ) ⊂ σ. As in Theorem 3.1, we can prove that T is continuous and that
T (σ) is compact. By the Schauder Fixed Point Theorem, we deduce the existence
of u = (u1, . . . , un) ∈ σ such that T (u) = u. Clearly, u is also a solution of the
system (3.1). �

If we relax the hypothesis about each weight mi i.e. if we do not suppose
that each weight mi is bounded, then for the case where the system (3.1) is non
necessarily cooperative we cannot apply the method developed for the Theorem
3.2. Indeed, the operator T would no longer be continuous from (L2(RN ))n to
(L2(RN ))n ; moreover, even if we define T from (L2∗(RN ))n to (L2∗(RN ))n, we
would lose the compact embedding of each Vqi

(RN ) into L2∗(RN ). So we use, as in
[11, 12], an approximation method due to Boccardo, Fleckinger and de Thélin (see
[6]). For the following result, we assume that

N ≥ 3, 0 ≤ mi ∈ L
N
2 (RN ), mi 6= 0.

We recall that λ(mi) has been defined by (1.7). We denote by L′′ = (l′′ij) the
n× n-matrix given by:

l′′ii := λ(mi)− µi and l′′ij := −K ′
ij (i 6= j),

where K ′
ij is a positive constant such that |aij | ≤ K ′

ij

√
mi
√
mj .

Theorem 3.3. Assume (H1), (H2), (H4), (H7), (H9) are satisfied. Assume that
N ≥ 3, 0 ≤ mi ∈ L

N
2 (RN ), mi 6= 0. Assume also that for all i = 1, . . . , n,

mi ∈ L∞loc(RN ) ∩ L1(RN ). If the matrix L′′ is a non singular M-matrix, then the
system (3.1) has at least one solution in Vq1(RN )× · · · × Vqn

(RN ).

Proof. Let ε ∈]0, 1[ and Bε = B(0, 1/ε) = {x ∈ RN , |x| < 1/ε}. Let 1Bε
be the

indicator function of Bε and let α be a positive real such that for i, µi + α > 0.
Define Λ = 1Bε

.
Let Tε : (L2(RN ))n → (L2(RN ))n be defined as follows: If u = (u1, . . . , un) ∈

(L2(RN ))n, then Tε(u) := v = (v1, . . . , vn) where v is determined by the equations:

Lρivi+(qi+αmi)vi = (µi+α)
miui

1 + εmi|ui|
Λ+

n∑
j=1,j 6=i

aij
uj

1 + ε|uj |
Λ+fi(x, u1, . . . , un)

(3.5)
in RN , for i = 1, . . . , n. By the scalar case, Tε is well defined and if we denote by
hi = maxj,j 6=i((µi + α), |aij |)) 1

ε Λ ∈ L2(RN ), the equation (Lρi
+ qi + αmi)ξε,i =

nhi + θi in RN admits a positive solution ξε,i in Vqi
(RN ). So ξε = (ξε,1, . . . , ξε,n) is

a super solution for (3.5) and ζε = (ζε,1, . . . , ζε,n) = −ξε is a sub solution for (3.5).
Let σε := [ζε, ξε]. Then Tε(σε) ⊂ σε.

We prove easily that Tε is a continuous function (by the hypotheses (H4), (H7)
and using the function l : R → R defined by l(x) = x

1+|x| , which is Lipschitz and
which satisfies: for all x, y ∈ R, |l(x)− l(y)| ≤ |x− y|).
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We prove also easily that Tε(σε) is compact (due to the hypotheses (H4) and
(H9)). So by the Schauder Fixed Point Theorem, we can deduce the existence of
uε = (u1,ε, . . . , un,ε) ∈ σε such that Tε(uε) = uε.

Note that for i, (εui,ε)ε is a bounded sequence in Vqi
(RN ).

Indeed, by (3.5) and (H9) we get

‖εui,ε‖2ρi,qi+αmi
≤ µi + α

λ(mi) + α
‖εui,ε‖2ρi,qi+αmi

+
n∑

j=1,j 6=i

K ′
ij(

∫
RN

mj)1/2‖εui,ε‖mi + ‖θi‖L2(RN )‖εui,ε‖L2(RN ),

and so we can deduce the existence of a positive constant K, (independent of ε)
such that ‖εui,ε‖ρi,qi+αmi ≤ K.

Since the embedding of Vqi
(RN ) into L2(RN ) is compact, we deduce that (for

a subsequence) there exists u∗i such that εui,ε → u∗i as ε → 0 strongly in L2(RN )
and weakly in Vqi

(RN ). Using the Dominated Convergence Theorem, due to (H9),
we can pass to the limit (see (3.5)) and we can conclude that u∗i is a weak solution
of

(Lρi
+ qi + αmi)u∗i = (µi + α)

miu
∗
i

1 +mi|u∗i |
+

n∑
j=1,j 6=i

aij

u∗j
1 + |u∗j |

in RN . (3.6)

Moreover, if we set tX = (x1, . . . , xn) with xi = (
∫

RN miu
∗2
i )1/2, using (3.6) we

obtain L′′X ≤ 0. Since L′′ is a non singular M-matrix, we deduce that X = 0 i.e.
for i, u∗i = 0.

We prove now by contradiction that for i, (ui,ε)ε is bounded in Vqi
(RN ), We

suppose that (for a subsequence) there exists i0 such that ‖ui0,ε‖ρi0 ,qi0+αmi0
→ +∞

as ε→ 0. Let

tε = max
i
‖ui,ε‖ρi,qi+αmi and zi,ε =

1
tε
ui,ε.

Since (zi,ε)ε is a bounded sequence in Vqi
(RN ), there exists zi such that zi,ε → zi

as ε→ 0 strongly in L2(RN ) and weakly in Vqi(RN ). We can pass to the limit (see
(3.5)) and conclude that zi is a weak solution of

(Lρi
+ qi + αmi)zi = (µi + α)mizi +

n∑
j=1,j 6=i

aijzj in RN .

Then, we can prove that for all i, zi = 0. However, there exists a sequence (εn) such
that there exists i1, ‖zi1,εn‖ρi1 ,qi1+αmi1

= 1. But zi1,εn → zi1 = 0 as n→ +∞. So
we get a contradiction.

Finally, there exists u0
i such that ui,ε → u0

i strongly in L2(RN ) and weakly in
Vqi(RN ). We can pass to the limit (see (3.5)) and to obtain

(Lρi + qi + αmi)u0
i = (µi + α)miu

0
i +

n∑
j=1,j 6=i

aiju
0
j + fi(u0

1, . . . , u
0
n) in RN

for all i. This completes the proof. �
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3.3. A bifurcation result. In this section, we obtain a result for the existence
of solutions for the system (1.1) by considering bifurcating solutions from the zero
solution. We proceed here as in [10, 13, 15]. In this section, we suppose that the
hypotheses (H1)–(H3) as well as (H10) are satisfied, where (H10) reads as follows:

(i) for i = 1, . . . , n, gi : RN ×Rn → R, defined by gi(x, y1, . . . , yn) with x ∈ RN

and (y1, . . . , yn) ∈ Rn, satisfies For all x ∈ RN , gi(x, 0, . . . , 0) = 0.
(ii) For i = 1, . . . , n, gi is Frechet differentiable with respect to each variable yj

and each derivative ∂gi

∂yj
(x, .) is continuous and bounded, uniformly in x.

(iii) For all i, j = 1, . . . , n, ∂gi

∂yj
(x, 0, . . . , 0) = 0.

Note that gi is Lipschitz in (y1, . . . , yn) uniformly in x. We denote by V =
Πn

i=1Vqi
(RN ) and by 〈., .〉V the inner product in V (i.e. for v = (v1, . . . , vn) ∈ V

and all w = (w1, . . . , wn) ∈ V , 〈v, w〉V =
∑n

i=1〈vi, wi〉ρi,qi (see (1.2))). We define
the operator T : Rn × V → V , T = (T 1, . . . , Tn) by:

〈T i(µ, u), vi〉ρi,qi =
∫

RN

[
N∑

k,j=1

ρkj,i
∂ui

∂xj

∂vi

∂xk
+ qiuivi − µimiuivi − gi(x, u)vi]. (3.7)

for i = 1, . . . , n, T i : Rn × V → Vqi
(RN ), if µ = (µ1, . . . , µn) ∈ Rn, u =

(u1, . . . , un) ∈ V , for all vi ∈ Vqi(RN ). We proceed in this section exactly as
in [15] and so we give only the steps on each proofs.

Proposition 3.1. The operator T is well defined. Furthermore, for each i, the
operator T i is continuous, Frechet differentiable with continuous derivatives given
by: For all φ ∈ Vqi

(RN ) and for all ψ ∈ Vqi
(RN ),

if j 6= i, T i
µj

= 0, 〈T i
uj

(µ, u)φ, ψ〉ρi,qi = −
∫

RN

∂gi

∂yj
(x, u)φψ,

if j = i, 〈T i
µi

(µ, u), φ〉ρi,qi
= −

∫
RN

miuiφ and

〈T i
ui

(µ, u)φ, ψ〉ρi,qi
=

∫
RN

[
N∑

k,j=1

ρkj,i
∂φ

∂xj

∂ψ

∂xk
+ qiφψ − µimiφψ −

∂gi

∂yi
(x, u)φψ],

if j 6= i, T i
µj ui

= 0 = T i
µi uj

,

if j = i, 〈T i
µi ui

(µ, u)φ, ψ〉ρi,qi
= −

∫
RN

miφψ and T k
µi ui

= 0 if k 6= i.

Proposition 3.2. The operator Tu(λ, 0) is a continuous self-adjoint operator with
λ = (λ1, . . . , λn). The kernel of Tu(λ, 0), denoted by N(Tu(λ, 0)) is generated by
{Φ1, . . . ,Φn} where for i = 1, . . . , n, Φi = (0, . . . , 0, φi, 0, . . . , 0).

Moreover, if we denote by R(Tu(λ, 0)) the range of the operator Tu(λ, 0), we
have:

(1) codim(R(Tu(λ, 0))) = n
(2) for i = 1, . . . , n, Tµi u(λ, 0)Φi /∈ R(Tu(λ, 0))
(3) dim(Span{Tµi u(λ, 0)Φi, 1 ≤ i ≤ n}) = n.

Proof. Since Tu(λ, 0) = (T 1
u(λ, 0), . . . , Tn

u (λ, 0)), using (H10)(iii), we get that for
i = 1, . . . , n, T i

u(λ, 0) is a continuous self-adjoint operator. Therefore, Tu(λ, 0) is a
continuous self-adjoint operator too.
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We have: for all v = (v1, . . . , vn) ∈ V ,

v ∈ N(Tu(λ, 0))

if and only if for all w ∈ V, 〈Tu(λ, 0)v, w〉V = 0

if and only if for i = 1, . . . , n, vi ∈ Span{φi}
if and only if v ∈ Span{Φ1, . . . ,Φn} where Φi = (0, . . . , 0, φi, 0, . . . , 0).

Therefore codimR(Tu(λ, 0)) = n.
Now we prove that Tµiu(λ, 0)Φi /∈ R(Tu(λ, 0)) for all i. Note that we have

identified Tµiu(λ, 0).(1,Φi) with Tµiu(λ, 0)Φi. We have: 〈Tµiu(λ, 0)Φi,Φi〉V =
−

∫
RN miφ

2
i 6= 0. Therefore, Tµiu(λ, 0)Φi is not orthogonal to Φi. Now since

N(Tu(λ, 0)) = Span{Φ1, . . . ,Φn} and R(Tu(λ, 0)) = N(Tu(λ, 0))⊥V , we deduce
that Tµiu(λ, 0)Φi /∈ R(Tu(λ, 0)). Moreover, let (α1, . . . , αn) ∈ Rn be such that:∑n

j=1 αjTµju(λ, 0)Φj = 0. Fix i, 1 ≤ i ≤ n. So that 〈
∑n

j=1 αjTµju(λ, 0)Φj ,Φi〉V =
0 and

n∑
j=1

αj〈T i
µju(λ, 0)Φj , φi〉ρi,qi

= 0.

This implies that −αi

∫
RN miφ

2
i = 0 and thus αi = 0. Consequently, we have that

dim(Span{Tµiu(λ, 0)Φi, 1 ≤ i ≤ n}) = n, completing the proof. �

Although we cannot apply directly the results obtained in [16], as in [15] we
follow the proof of [16, Theorem 1.7] to obtain the following result.

Theorem 3.4. Assume that the hypotheses (H1), (H2), (H10) are satisfied. Then
there exist a constant ε0 > 0, a neighbourhood U of (λ, 0) (with λ = (λ1, . . . , λn)
and 0 = (0, . . . , 0) ∈ V ) and a continuous function H : (−ε0, ε0) → U such that
T (H(ε)) = 0 for all ε ∈ (−ε0, ε0).

Note that T (H(ε)) = 0 with H(ε) = (µ, u) ∈ U for µ = (µ1, . . . , µn) in a
neighbourhood of λ = (λ1, . . . , λn) and u = (u1, . . . , un) in a neighbourhood of
0 = (0, . . . , 0) signifies that (µ, u) is a non trivial solution of the system (1.1).

Proof. As in [16], we introduce the following function h : R × Rn × V → V be
defined as follows: For all (α, µ,w) ∈ R× Rn × V ,

h(α, µ,w) :=

{
1
αT (µ, αΦ1 + · · ·+ αΦn + αw) if α 6= 0
Tu(µ, 0)(Φ1 + · · ·+ Φn + w) if α = 0

(3.8)

Since for i = 1, . . . , n, Φi ∈ N(Tu(λ, 0)), we deduce that h(0, λ, 0) = 0.
Let g : Rn × V → V be given by g(µ,w) := Tu(µ, 0)(Φ1 + · · · + Φn + w) for all

(µ,w) ∈ Rn × V . For all ξ = (ξ1, . . . , ξn) ∈ Rn and v = (v1, . . . , vn) ∈ V we have
that

Dg(µ,w)(ξ, v) =
n∑

i=1

ξiTµiu(µ, 0)(Φ1 + · · ·+ Φn + w) + Tu(µ, 0)v,

where Dg is the Frechet derivative of g. It follows that

Dg(λ, 0)(ξ, v) =
n∑

i=1

ξiTµiu(λ, 0)Φi + Tu(λ, 0)v since Tµiu(λ, 0)Φj = 0 (j 6= i)

for all ξ ∈ Rn and v ∈ V .
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By Proposition 3.2, we deduce that Dg(λ, 0) is a linear homeomorphism from
Rn × V onto V . Hence, the implicit function theorem implies the existence of a
neighbourhood U ′ of (λ, 0), of a constant ε0 > 0 and of a function K : (−ε0, ε0) →
U ′ such that h(ε, µ, w) = 0 (see (3.8)) with ε ∈ (−ε0, ε0) and K(ε) = (µ,w) =
(K1ε,K2ε) ∈ U ′. Therefore for ε ∈ (−ε0, ε0), T (K1ε, ε(Φ1 + · · · + Φn + K2ε)) = 0
and if we set H(ε) := (K1ε, ε(Φ1 + · · ·+Φn +K2ε)), then we have that T (H(ε)) = 0
for all ε ∈ (−ε0, ε0). �

Finally, we study the global nature of the continuum of solutions obtained by
bifurcation from the (λ, 0) solution in a particular case. As in [13, 15], we follow a
method developed in [10] and using the [23, Theorems 1.3 and 1.40], we obtain the
following result.

Theorem 3.5. Assume (H1), (H2), (H10) are satisfied. Assume also that for all
i, j, λi = λj. We denote by λ0 := λi for all i = 1, . . . , n. Then, there exists a
continuum C of non trivial solutions for the system (1.1) obtained by bifurcation
from the (λ0, 0) solution, which is either unbounded or contains a point (µ, 0) where
µ 6= λ0 is the inverse of an eigenvalue of the operator A = (L1, . . . , Ln) (where Li is
defined by for u = (u1, . . . , un) ∈ V and φ ∈ Vqi(RN ), 〈Liu, φ〉ρi,qi =

∫
RN miuiφ.)

Since λ0 is simple, the continuum C has two connected subsets C+ and C− which
satisfy also the above alternatives.

Proof. First, we define an operator S by setting S(µ, u) = u − T (µ, u), S =
(S1, . . . , Sn) i.e. for all µ ∈ R, for all u = (u1, . . . , un) ∈ V , for all vi ∈ Vqi(RN ),

〈Si(µ, u), vi〉ρi,qi
=

∫
RN

[µmiuivi + gi(x, u)vi].

So u = (u1, . . . , un) is a solution of the system (1.1) if and only if u = S(µ, u). We
write Si(µ, u) = µLiu+Hiu where for all vi ∈ Vqi

(RN ),

〈Liu, vi〉ρi,qi =
∫

RN

miuivi and 〈Hiu, vi〉ρi,qi =
∫

RN

gi(x, u)vi.

So S(µ, u) = µAu+Hu with Au = (L1u, . . . , Lnu) and Hu = (H1u, . . . ,Hnu).
To apply the results in [23], we must prove that Si : R × V → Vqi(RN ) is

continuous and compact, that Li : V → Vqi
(RN ) is linear and compact, that

Hiu = O(‖u‖V ) for u = (u1, . . . , un) near 0 = (0, . . . , 0) uniformly on bounded
intervals of µ and that 1

λ0
is a simple eigenvalue of A (which is true because it is a

simple eigenvalue of (Lρi
+ qi)−1Mi.)

Let ((µp, up))p be a bounded sequence in R×V , with up = (u1p, . . . , unp). Since
the embedding of each Vqi(RN ) into L2(RN ) is compact, there exists a convergent
subsequence, denoted also by ((µp, up))p in R× (L2(RN ))n. We have:

‖Si(µp, up)− Si(µm, um)‖2ρi,qi

= (µp − µm)
∫

RN

miuip[Si(µp, up)− Si(µm, um)]

+ µm

∫
RN

mi(uip − uim)[Si(µp, up)− Si(µm, um)]

+
∫

RN

[gi(x, up)− gi(x, um)][Si(µp, up)− Si(µm, um)].
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We deduce that (Si(µp, up))p is a Cauchy sequence and therefore a convergent
sequence. So Si is compact for all i = 1, . . . , n and S = (S1, . . . , Sn) is also
compact. Moreover we have for each i that

‖Liup − Lium‖2ρi,qi
=

∫
RN

mi(uip − uim)[Liup − Lium]

and thus
‖Liup − Lium‖ρi,qi ≤ const.‖uip − uim‖L2(Ω).

Therefore (Liup)p is a Cauchy sequence, so Li is compact and A is compact too.
Finally we have:

‖Hiu‖2ρi,qi
=

∫
RN

gi(x, u)Hiu ≤ const‖u‖V ‖Hiu‖ρi,qi
.

So Hiu = O(‖u‖V ) and therefore Hu = O(‖u‖V ). �

4. Existence of positive solutions in RN for a particular case

In this section, we follow a method developed in [22] for the p-Laplacian in a
bounded domain of RN , then in [13] for an equation defined in RN and involving a
Schrödinger operator with a potential satisfying the hypothesis (H1) and a weight
satisfying the hypothesis (H3) and in [15] for a system defined in RN and involving
Schrödinger operators with potentials satisfying the hypothesis (H1) and weights
satisfying the hypothesis (H3). We redefine the system (1.1) for this section.

We write (1.1) in the form

(Lρi
+ qi)ui = µimiui +

n∑
j=1;j 6=i

aiju
p
i u

q
j +

n∑
j=1;j 6=i

fiju
p+q
j in RN , i = 1, . . . , n (4.1)

where N = 3, 4; γ = 2∗ = 2N
N−2 = 6, 4 and p and q are positive integers be such

that p+ q < γ.
We define for sufficiently large numbers C > 0 the sets

Xqi,C = {φ ∈ Vqi(RN ) : there exists a positive constant s such that

φi ≤ sφ ≤ C a. e. }
(4.2)

(the sets are non-empty by the properties of φi). We impose the following assump-
tions:
(H11) For i, j = 1, . . . , n, aij ∈ L∞(RN ) and fij ∈ L∞(RN ).
(H12) For i, j = 1, . . . , n, fij ≥ 0 a.e.
(H13) For i = 1, . . . , n, there exists ji ∈ {1, . . . , n} − {i} such that the following

items hold:
(1) Denote Ωi,+ := {x ∈ RN , aiji

> 0} and Ωi,− := {x ∈ RN , aiji
< 0}.

Then meas(Ωi,+) 6= 0, meas(Ωi,−) 6= 0.
(2) For each k ∈ {1, . . . , n}−{i, ji}, aik is a nonnegative function, aik = 0

in Di where Di is a measurable subset of Ωi,− with positive measure.
(3) For each k ∈ {1, . . . , n}, fik = 0 in Di.

(H14) There exists ε > 0 and l ≥ 1 such that for i = 1, . . . , n, aiji ≥ −εmi and
ε < µi

p(lC)p+q−1

(H15) For each i = 1, . . . , n, there exists a positive constant kiji
such that kiji

≤
(p+q)

lq(lC)p+q−1 and aijj
≥ −kiji

fiji
φp+q−1

ji
a.e.



72 L. CARDOULIS EJDE/CONF/16

We denote by

Fi(u1, . . . , un) =
∫

RN

[
n∑

j=1,j 6=i

aiju
p+1
i uq

j + (p+ 1)
n∑

j=1,j 6=i

fiju
p+q
j ui] (4.3)

for i = 1, . . . , n and all (u1, . . . , un) ∈ Vq1(RN )× · · · × Vqn
(RN ) and by

Hµi
(v) =

∫
RN

[
N∑

k,j=1

ρkj,i
∂v

∂xj

∂v

∂xk
+ qiv

2 − µimiv
2] (4.4)

for all i = 1, . . . , n and all v ∈ Vqi(RN ). Let

λ∗i = sup
vi∈Vqi

(RN ),vi≥0

{
inf

φ∈Φvi

{∫
RN

∑N
k,j=1 ρkj,i

∂vi

∂xj

∂φ
∂xk

+ qiviφ∫
RN miviφ

}}
(4.5)

and

λ∗∗i = sup
vi∈Xqi,C

{
inf

φ∈Φvi

{∫
RN

∑N
k,j=1 ρkj,i

∂vi

∂xj

∂φ
∂xk

+ qiviφ∫
RN miviφ

}}
(4.6)

where
Φvi :=

{
φ ∈ D(RN ), φ ≥ 0, such that for j 6= i, there exists

vj ∈ Vqj (RN ), vj ≥ 0 and
∂Fi

∂ui
(v1, . . . , vn)(φ) ≥ 0

} (4.7)

and where ∂Fi

∂ui
denotes the i-th partial derivative of Fi.

Note that the existences of λ∗i and λ∗∗i are due to the hypotheses (H4), (H11),
(H12) and that λ∗∗i ≤ λ∗i . Assume the following hypotheses for i = 1, . . . , n:
(H16) λ∗∗i < +∞.
(H17) λ∗i < +∞.

We proceed exactly as in [15] in this section; so that we will give only the steps of
the proofs.

Lemma 4.1. (1) For i = 1, . . . , n, and all φ ∈ D(RN ),

∂Fi

∂ui
(u1, . . . , un)(φ) = (p+ 1)

n∑
j=1,j 6=i

∫
RN

[aiju
p
i u

q
jφ+ fiju

p+q
j φ],

H ′
µi

(v)(φ) = 2
∫

RN

[
N∑

k,j=1

ρkj,i
∂v

∂xj

∂φ

∂xk
+ qivφ− µimivφ].

(2) (u1, . . . , un) ∈ Vq1(RN ) × · · · × Vqn
(RN ) is a supersolution (resp. subso-

lution) of the system (4.1) if and only if for all φ ∈ D(RN ), φ ≥ 0, for
i = 1, . . . , n,

H ′
µi

(ui)(φ) ≥ 2
p+ 1

∂Fi

∂ui
(u1, . . . , un)(φ) ( resp. ≤).

(3) For i = 1, . . . , n, all φ ∈ D(RN ), for all t > 0,
∂Fi

∂ui
(tu1, . . . , tun)(φ) = tp+q ∂Fi

∂ui
(u1, . . . , un)(φ) and H ′

µi
(tui)(φ) = tH ′

µi
(ui)(φ).

As in [13, 15, 22], we obtain the following lemma.

Lemma 4.2. For i = 1, . . . , n, we have λi ≤ λ∗∗i .
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Proof. Suppose (for example) that λ1 > λ∗∗1 . Because of the characterisation of λ1

(see (1.6), (1.7) and (4.4), we have Hλ1(φ1) = 0. By the definition of λ∗∗1 (see (4.6)),
there exists φ ∈ D(RN ), φ ≥ 0, there exists (v2, . . . , vn) ∈ Vq2(RN )×· · ·×Vqn(RN ),
vi ≥ 0, such that ∂F1

∂u1
(φ1, v2, . . . , vn)(φ) ≥ 0 and∫

RN [
∑N

k,j=1 ρkj,1
∂φ1
∂xj

∂φ
∂xk

+ q1φ1φ]∫
RN m1φ1φ

≤ λ∗∗1 < λ1.

So H ′
λ1

(φ1)(φ) < 0. Moreover, we have for all η > 0,

Hλ1(φ1 + ηφ) = Hλ1(φ1) + ηH ′
λ1

(φ1)(φ) + ‖ηφ‖h(ηφ) with h(ηφ) → 0

as η → 0. Therefore, for η small enough, we have Hλ1(φ1 + ηφ) < 0 contradicting
the definition of λ1. �

We obtain now the main result of this section.

Theorem 4.3. Assume (H1)–(H4), (H11)-(H16) are satisfied. If for i = 1, . . . , n,
λi + ε(lC)p+q−1 < µi < λ∗∗i , then the system (4.1) has at least one positive solution
in Xq1,C × · · · ×Xqn,C .

Proof. Since for all i, µi < λ∗∗i , due to the definition of λ∗∗i (see (4.6)), we can
deduce the existence of v∗i ∈ Xqi,C such that for all φ ∈ Φv∗i

, H ′
µi

(v∗i )(φ) > 0.
We proceed exactly as in [15] to prove that there exists a real t ∈ (0, l) for which

(tv∗1 , . . . , tv
∗
n) is a supersolution of the system (4.1). Suppose that for all t ∈ (0, l),

(tv∗1 , . . . , tv
∗
n) is not a supersolution of the system (4.1). Then for all t ∈ (0, l), there

exist it ∈ {1, . . . , n} and ψit
≥ 0 such that

H ′
µit

(tv∗it
)(ψit

) <
2

p+ 1
∂Fit

∂uit

(tv∗1 , . . . , tv
∗
n)(ψit).

Consider the sets
Nt =

{
i ∈ {1, . . . , n}, there exists ψ ∈ D(RN ), ψ ≥ 0, such that

H ′
µi

(tv∗i )(ψ) <
2

p+ 1
∂Fi

∂ui
(tv∗1 , . . . , tv

∗
n)(ψ)

} (4.8)

and for it ∈ Nt,

Kit
= {ψ ∈ D(RN ), ψ ≥ 0, H ′

µit
(tv∗it

)(ψ) <
2

p+ 1
∂Fit

∂uit

(tv∗1 , . . . , tv
∗
n)(ψ)}. (4.9)

We prove that there exists t > 0, it ∈ Nt, φ ∈ Kit
, and ψ ∈ Kit

which satisfy
∂Fit

∂uit

(tv∗1 , . . . , tv
∗
n)(φ) < 0 and

∂Fit

∂uit

(tv∗1 , . . . , tv
∗
n)(ψ) > 0.

So we have

H ′
µit

(v∗it
)(φ) <

2
p+ 1

tp+q−1 ∂Fit

∂uit

(v∗1 , . . . , v
∗
n)(φ) < 0, (4.10)

0 < H ′
µit

(v∗it
)(ψ) <

2
p+ 1

tp+q−1 ∂Fit

∂uit

(v∗1 , . . . , v
∗
n)(ψ). (4.11)

(Note that ψ ∈ Φv∗it
(see (4.7).) Since ∂Fit

∂uit
(v∗1 , . . . , v

∗
n) is a continuous function,

there exists α ∈ (0, 1) such that
∂Fit

∂uit

(v∗1 , . . . , v
∗
n)(αφ+ (1− α)ψ) = 0.
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Thus we deduce that αφ + (1 − α)ψ ∈ Φv∗it
and so H ′

µit
(v∗it

)(αφ + (1 − α)ψ) > 0.
But using (4.10) and (4.11) we have

0 < αH ′
µit

(v∗it
)(φ) + (1− α)H ′

µit
(v∗it

)(ψ)

<
2

p+ 1
tp+q−1[α

∂Fit

∂uit

(v∗1 , . . . , v
∗
n)(φ) + (1− α)

∂Fit

∂uit

(v∗1 , . . . , v
∗
n)(ψ)] = 0

and we get a contradiction. Therefore there exists t ∈ (0, l), for which (tv∗1 , . . . , tv
∗
n)

is a supersolution of the system (4.1). Note that for i = 1, . . . , n, tv∗i ≥ sφi if
0 < s ≤ t.

Using (H11)–(H13), we can prove that (sφ1, . . . , sφn) is a subsolution of system
(4.1) with s > 0 be such that s ≤ t ≤ l and 1

l ≤ sp+q−1 (which is possible with
l ≥ 1). Let σ = [sφ1, tv

∗
1 ] × · · · × [sφn, tv

∗
n] and the operator T be defined by

T (u1, . . . , un) = (v1, . . . , vn) with (v1, . . . , vn) solution of

(Lρi
+ qi)vi = µimiui +

n∑
j=1;j 6=i

aiju
p
i u

q
j +

n∑
j=1;j 6=i

fiju
p+q
j in RN , (4.12)

for i = 1, . . . , n. We want to prove that T (σ) ⊂ σ.
Let (u1, . . . , un) ∈ σ and T (u1, . . . , un) = (v1, . . . , vn). By (4.12) we can write

for i = 1, . . . , n,

(Lρi
+ qi)(vi − sφi) = µimiui +

n∑
j=1;j 6=i

aiju
p
i u

q
j +

n∑
j=1;j 6=i

fiju
p+q
j − sλimiφi.

Since for all k, uk ≥ sφk, using (H14) aiji
≥ −εmi, we can deduce that

(Lρi
+ qi)(vi − sφi) ≥ [µi − λi − εsp+q−1φp−1

i φq
ji

]misφi. (4.13)

But φp−1
i φq

ji
≤ Cp+q−1, sp+q−1 ≤ lp+q−1 and λi + ε(lC)p+q−1 ≤ µi, so we deduce

from (4.13) that (Lρi
+ qi)(vi − sφi) ≥ 0. By the Maximum Principle, we obtain

that vi ≥ sφi for all i = 1, . . . , n. Moreover we have: For all i = 1, . . . , n,

(Lρi
+ qi)(tv∗i − vi) ≥ µimi(tv∗i − ui) +

n∑
j=1;j 6=i

aij [(tv∗i )p(tv∗j )q − up
i u

q
j ]

+
n∑

j=1;j 6=i

fij [(tv∗j )p+q − up+q
j ].

So we can rewrite this equation in form

(Lρi
+ qi)(tv∗i − vi)

≥ µimi(tv∗i − ui) +
n∑

j=1;j 6=i

aij(tv∗i − ui)u
q
j [

p−1∑
k=0

(tv∗i )kup−1−k
i ]

+
n∑

j=1;j 6=i

(tv∗j − uj)[aij(tv∗i )p(
q−1∑
k=0

(tv∗j )kuq−1−k
j ) + fij(

p+q−1∑
k=0

(tv∗j )kup+q−1−k
j )].
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Since (u1, . . . , un) ∈ σ, we get

(Lρi + qi)(tv∗i − vi)

≥ (tv∗i − ui)[µimi + aiji
uq

ji
(
p−1∑
k=0

(tv∗i )kup−1−k
i )]

+ (tv∗ji
− uji

)[aiji
(tv∗i )p(

q−1∑
k=0

(tv∗ji
)kuq−1−k

ji
) + fiji

(
p+q−1∑

k=0

(tv∗ji
)kup+q−1−k

ji
)].

(4.14)
Since uq

ji
(
∑p−1

k=0(tv
∗
i )kup−1−k

i ) ≤ p(lC)p+q−1, using (H14) we deduce that

µimi + aiji
uq

ji
(
p−1∑
k=0

(tv∗i )kup−1−k
i ) ≥ 0. (4.15)

Similarly, using (H15) and sp+q−1 ≥ 1
l , we get

fiji(
∑p+q−1

k=0 (tv∗ji
)kup+q−1−k

ji
)

(tv∗i )p(
∑q−1

k=0(tv
∗
ji

)kuq−1−k
ji

)
≥ (p+ q)fiji

(sφji
)p+q−1

q(lC)p+q−1

and so

aiji(tv
∗
i )p(

q−1∑
k=0

(tv∗ji
)kuq−1−k

ji
) + fiji(

p+q−1∑
k=0

(tv∗ji
)kup+q−1−k

ji
) ≥ 0. (4.16)

Therefore, by (4.14), (4.15), (4.16), we obtain (Lρi
+ qi)(tv∗i − vi) ≥ 0 and so by

the Maximum Principle we deduce that vi ≤ tv∗i for all i = 1, . . . , n. We conclude
that (v1, . . . , vn) ∈ σ. Finally, note that T is a continuous and compact operator
(by the compact embedding of each Vqi

(RN ) into L2(RN )).
Therefore the Schauder Fixed Point Theorem, implies the existence of at least

one positive solution for the system (4.1). �

To complete this section, we give some conditions which assure the validity of
the hypothesis (H17). First, we recall the following lemma (see [22]).

Lemma 4.4. For i = 1, . . . , n, for all u ∈ Vqi
(RN ), u > 0, for all φ ∈ Vqi

(RN ),
φ ≥ 0, and all µi ∈ R, H ′

µi
(u)((φ

u )αφ)−H ′
µi

(φ)((φ
u )αu) ≤ 0 with α ∈ N, α > 0.

So we get the last theorem of this section.

Theorem 4.5. (i) Assume (H1)–(H4), (H11)-(H13) are satisfied. For i =
1, . . . , n, if Ωi,+ = {x ∈ RN , aiji

(x) > 0} is a nonempty, bounded domain
of RN with a smooth boundary ∂Ωi,+, then λ∗i < +∞.

(ii) Assume (H1)–(H4), (H11) are satisfied.
(1) We assume here that for all i, j, fij = 0. If there exists i ∈ {1, . . . , n}

such that for j 6= i, there exists uj ≥ 0 which satisfies

Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) ≥ 0,

then λ∗i ≤ λi and since λ∗i ≥ λi is always satisfied, then λ∗i = λi < +∞.
(2) If there exists u1 ≥ 0, . . . , un ≥ 0, such that

Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) < 0,

then λi < λ∗i .
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Note that the condition in Theorem 4.5(ii)(2) is verified if we assume also that
the hypothesis (H13) is satisfied and if we take uj ≥ 0 such that supp uj ⊂ Di.

Proof. (i) For i = 1, . . . , n consider the equation (Lρi
+qi)u = λimiu defined in Ωi,+

with Dirichlet condition on ∂Ωi,+. We denote by λi+ the first eigenvalue (which is
simple and positive) and by φi+ the first eigenfunction associated i.e:

(Lρi
+ qi)φi+ = λi+miφi+ in Ωi,+,

φi+ > 0 in Ωi+,

φi+ = 0 on ∂Ωi+.

(4.17)

Since suppφi+ ⊂ Ωi+, by the above lemma, we have

for all ui ∈ D(RN ), H ′
λi+

(ui)((
φi+

ui
)αφi+) ≤ 0

i.e. for all ui ∈ D(RN ), ui ≥ 0,∫
RN [

∑N
k,j=1 ρkj,i

∂ui

∂xj

∂((
φi+
ui

)αφi+)

∂xk
+ qiui(

φi+
ui

)αφi+]∫
RN miui(

φi+
ui

)αφi+

≤ λi+ < +∞. (4.18)

Moreover, for all u1, . . . , ui−1, ui+1, . . . , un ≥ 0,

∂Fi

∂ui
(u1, . . . , un)((

φi+

ui
)αφi+)

= (p+ 1)
n∑

j=1;j 6=i

∫
RN

[aiju
p
i u

q
j(
φi+

ui
)αφi+ + fiju

p+q
j (

φi+

ui
)αφi+] ≥ 0

(4.19)

since supp φi+ ⊂ Ωi+ and by the hypotheses (H11)–(H13). So by (4.18) and (4.19),
for all ui ∈ Vqi

(RN ), ui ≥ 0,

inf
φ∈D(RN )

{∫
RN

∑N
k,j=1 ρkj,i

∂ui

∂xj

∂φ
∂xk

+ qiuiφ∫
RN miuiφ

, φ ≥ 0 such that for j = 1, . . . , n, j 6= i,

there exists vj ∈ Vqj
(RN ), vj ≥ 0 and

∂Fi

∂ui
(v1, . . . , ui, . . . , vn)(φ) ≥ 0

}

≤

∫
RN [

∑N
k,j=1 ρkj,i

∂ui

∂xj

∂((
φi+
ui

)αφi+)

∂xk
+ qiui(

φi+
ui

)αφi+]∫
RN miui(

φi+
ui

)αφi+

≤ λi+ < +∞.

Therefore, λ∗i ≤ λi+ < +∞.
(ii) For the first claim, we assume that for i, j, fij = 0. So we have: for all
u1, . . . , un,

Fi(u1, . . . , un) =
n∑

j=1;j 6=i

∫
RN

aiju
p+1
i uq

j (4.20)

and for all φ,

∂Fi

∂ui
(u1, . . . , un)(φ) = (p+ 1)

n∑
j=1;j 6=i

∫
RN

aiju
p
i u

q
jφ. (4.21)

We suppose that: for j 6= i there exists uj ≥ 0 such that

Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) ≥ 0. (4.22)
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We want to prove that λ∗i ≤ λi. We use again the above lemma with α = p. We
have H ′

λi
(φi)((φi

ui
)pui) = 0 for all ui > 0. So for all ui ≥ 0, H ′

λi
(ui)((φi

ui
)pφi) ≤ 0

i.e., ∫
RN [

∑N
k,j=1 ρkj,i

∂ui

∂xj

∂((
φi
ui

)pui)

∂xk
+ qiui(φi

ui
)pφi]∫

RN miui(φi

ui
)pφi

≤ λi < +∞. (4.23)

Moreover, using (4.20)–(4.22), for all ui > 0, for all j 6= i, there exists uj ≥ 0,

∂Fi

∂ui
(u1, . . . , ui−1, ui, ui+1, . . . , un)((

φi

ui
)pφi)

= (p+ 1)
n∑

j=1;j 6=i

∫
RN

aiju
p
i u

q
j(
φi

ui
)pφi

= (p+ 1)Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) ≥ 0.

(4.24)

Since

inf
φ∈D(RN )

{∫
RN

∑N
k,j=1 ρkj,i

∂ui

∂xj

∂φ
∂xk

+ qiuiφ∫
RN miuiφ

, φ ≥ 0 such that

for j 6= i, there exists uj ∈ Vqj
(RN ), uj ≥ 0 and

∂Fi

∂ui
(u1, . . . , un)(φ) ≥ 0

}

≤

∫
RN [

∑N
k,j=1 ρkj,i

∂ui

∂xj

∂((
φi
ui

)pφi)

∂xk
+ qiui(φi

ui
)pφi]∫

RN miui(φi

ui
)pφi

≤ λi < +∞,

by (4.23) and (4.24), we get that λ∗i ≤ λi and therefore λ∗i = λi.
For the second claim, we assume that there exists u1 ≥ 0, . . . , un ≥ 0 such that

Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) < 0. (4.25)

We denote by

λ−i = inf
φ∈D(RN ), φ≥0

{∫
RN [

∑N
k,j=1 ρkj,i

∂φ
∂xj

∂φ
∂xk

+ qi|φ|2]∫
RN mi|φ|2

,

φ such that Fi(u1, . . . , ui−1, φ, ui+1, . . . , un) > 0
}
.

(4.26)

Let
Wi =

{
φ ∈ Vqi

(RN ), φ ≥ 0, Fi(u1, . . . , ui−1, φ, ui+1, . . . , un) > 0
}
.

Since Wi ⊂ Vqi
(RN ), we have λi ≤ λ−i . Since φi 6∈ Wi, by the continuity of the

function Fi, we deduce that λi < λ−i (see (1.7) and (4.26).
We prove now that λ−i ≤ λ∗i . As in [15], we prove that there exists u−i ∈Wi,

λ−i =

∫
RN [

∑N
k,j=1 ρkj,i

∂u−i
∂xj

∂u−i
∂xk

+ qi|u−i |2]∫
RN mi|u−i |2

. (4.27)

After that, we prove that λ−i ≤ λ∗i . Suppose that λ−i > λ∗i . Then there exists
φ ∈ Φu−i

such that∫
RN [

∑N
k,j=1 ρkj,i

∂u−i
∂xj

∂φ
∂xk

+ qiu
−
i φ]∫

RN miu
−
i φ

≤ λ∗i < λ−i . (4.28)
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Therefore H ′
λ−i

(u−i )(φ) < 0. Since Fi(u1, . . . , ui−1, u
−
i , ui+1, . . . , un) > 0, by conti-

nuity we have Fi(u1, . . . , ui−1, u
−
i + ηφ, ui+1, . . . , un) > 0 for η > 0 small enough.

Moreover, by (4.27) and (4.28) we have H ′
λ−i

(u−i )(φ) < 0 and Hλ−i
(u−i ) = 0, we can

choose η > 0 small enough such that Hλ−i
(u−i + ηφ) < 0. So we obtain that:∫

RN [
∑N

k,j=1 ρkj,i
∂(u−i +ηφ)

∂xj

∂(u−i +ηφ)

∂xk
+ qi(u−i + ηφ)2]∫

RN mi(u−i + ηφ)2
< λ−i

and this contradicts the definition of λ−i . Therefore λ−i ≤ λ∗i . �

5. Remarks

We give several remarks to our conditions and results.
First, note that all the results presented in this paper are true even in a bounded

domain Ω with Dirichlet boundary conditions. Indeed, if we assume that for all
i, qi ∈ L∞(Ω) and qi ≥ 0, if we still define the set Vqi

(Ω) as the completion of
D(Ω) under the norm ‖u‖qi

=
( ∫

Ω
[|∇u|2 + qiu

2]
)1/2, we have Vqi

(Ω) = H1
0 (Ω).

Therefore, we can define the eigenpair (λi, φi) by the Courant-Fischer formulas as
above.

Second, the case where for all i, qi = 0 in RN is quite different. Indeed, if
we define the set Vqi

(RN ) as the completion of D(RN ) under the norm ‖u‖qi
=( ∫

RN |∇u|2
)1/2 then Vqi(RN ) = D1,2 and we lose the compactness of the embedding

of Vqi
(RN ) into L2(RN ). So this case requires the introduction of other weight-

spaces depending on the weights mi and therefore requires other hypotheses upon
the weights mi. For example, we recall from [10] that the equation

−∆u = λmiu in RN

u(x) → 0 as |x| → +∞

admits a positive principle eigenvalue λ(mi), associated with a positive eigenfunc-
tion φmi

such that

λ(mi)
∫

RN

miu
2 ≤

∫
RN

|∇u|2 ( for all u ∈ D1,2)

under the hypotheses that N ≥ 3, 0 ≤ mi ∈ L
N
2 (RN ), mi 6= 0. In [8], for example,

there are results on the existence of a positive principle eigenvalue associated with
a positive eigenfunction for the equation

−∆u = λmiu in RN

u(x) → 0 as |x| → +∞

It is proved that such an eigenvalue exists if mi is negative and bounded away from
0 at infinity, or if N ≥ 3 and |mi| is sufficiently small at infinity (i.e. |mi(x)| ≤

const
(1+|x|2)α with α > 1) but does not exist if N = 1 or N = 2 and

∫
RN mi > 0. When

N ≥ 3 and the weight mi satisfies |mi(x)| ≤ const
(1+|x|2)α , the variational space is

defined by V = {u : RN → R,
∫

RN [|∇u|2 + u2

1+|x|2 ] < +∞}. In this last case, under
the hypotheses that N ≥ 3 and |mi(x)| ≤ const

(1+|x|2)α , our results are still valid with
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the additional conditions that all the parameters µi have to be positive (since the
equation)

−∆u = λmiu in RN

u(x) → 0 as |x| → +∞

(can admit negative eigenvalues).
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