Samir Lahrech, Abderrahim Mbarki, Abdelmalek Ouahab, Said Rais
Abstract:
In this paper, we established some uniformly Ergodic theorems by using
multioperators satisfying the E-k condition introduce in [3].
One consequence, is that if $I-T$ is quasi-Fredholm and satisfies
E-k condition then $T$ is uniformly ergodic.
Also we give some conditions for uniform ergodicity of a commuting
multioperators satisfies condition E-k.
These results are of interest in view of analogous results for unvalued
operators (see, for example [2]) also in view of the recent developments
in the ergodic theory and its applications.
Published September 20, 2006.
Math Subject Classifications: 47A35, 47A13.
Key Words: Average; E-k condition; finite descent; uniform ergodicity.
Show me the PDF file (154K), TEX file, and other files for this article.
Samir Lahrech Département de Mathématiques et Informatique Faculté des Sciences Université Mohammed 1er, Oujda, Maroc email: lahrech@sciences.univ-oujda.ac.ma | |
Abderrahim Mbarki National school of Applied Sciences P.O. Box 669, Oujda University, Morocco email: ambarki@ensa.univ-oujda.ac.ma | |
Abdelmalek Ouahab Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco email: ouahab@sciences.univ-oujda.ac.ma | |
Said Rais Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco email: said_rais@yahoo.fr |
Return to the table of contents for this conference.
Return to the EJDE web page