2005-Oujda International Conference on Nonlinear Analysis, Oujda, Morocco.
Electron. J. Diff. Eqns., Conference 14 (2006), pp. 191-205.

Non-autonomous inhomogeneous boundary Cauchy problems

Mohammed Filali, Belhadj Karim

Abstract:
In this paper we prove existence and uniqueness of classical solutions for the non-autonomous inhomogeneous Cauchy problem
$$\displaylines{
    \frac{d}{dt}u(t)=A(t)u(t)+f(t), \quad 0 \leq s\leq t\leq T, \cr
    L(t)u(t)=\Phi(t)u(t)+g(t) , \quad  0\leq s\leq t\leq T,  \cr
    u(s)=x.
 }$$
The solution to this problem is obtained by a variation of constants formula.

Published September 20, 2006.
Math Subject Classifications: 34G10, 47D06.
Key Words: Boundary Cauchy problem; evolution families; solution; well posedness; variation of constants formula.

Show me the PDF file (231K), TEX file, and other files for this article.

Mohammed Filali
Département de Mathématiques et Informatique
Faculté des Sciences
Université Mohammed 1er, Oujda, Maroc
email: filali@sciences.univ-oujda.ac.ma
Belhadj Karim
Département de Mathématiques et Informatique
Faculté des Sciences
Université Mohammed 1er, Oujda, Maroc
email: karim@sciences.univ-oujda.ac.ma

Return to the table of contents for this conference.
Return to the EJDE web page