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EXISTENCE AND REGULARITY OF ENTROPY SOLUTIONS
FOR SOME NONLINEAR ELLIPTIC EQUATIONS

LAHSEN AHAROUCH, ELHOUSSINE AZROUL

Abstract. This paper concerns the existence and regularity of entropy solu-

tions to the Dirichlet problem

Au = − div(a(x, u,∇u)) = f − div φ(u) in Ω

u = 0 on ∂Ω.

In particular, we show the Lq̄-regularity of the solution to this boundary-value

problem.

1. Introduction

Let Ω be a bounded open subset of RN (N ≥ 2), and let p be a real number
such that 2− 1

N < p ≤ N . Consider a Leray Lions operator

Au = −div(a(x, u,∇u)),

where a : Ω× R× RN → RN is a Carathéodory function satisfying for a.e. x ∈ Ω,
all s ∈ R and all ξ 6= ξ̄ ∈ RN the conditions

|a(x, s, ξ)| ≤ β[c(x) + |s|p−1 + |ξ|p−1] (1.1)

a(x, s, ξ).ξ ≥ α|ξ|p (1.2)

〈a(x, s, ξ)− a(x, s, ξ̄), ξ − ξ̄〉 > 0. (1.3)

Here α > 0, β ≥ 0 and c(x) ∈ Lp′(Ω). In the present paper, we study the boundary-
value problem

Au := −div a(x, u,∇u) = f − div φ(u) in Ω
u = 0 on ∂Ω,

(1.4)

where the right hand side is assumed to satisfy

f ∈ L1(Ω), (1.5)

φ ∈ C0(R,RN ). (1.6)
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Recall that, since no growth hypothesis is assumed on the function φ, the term
div φ(u) may be meaningless, even as a distribution for a function v ∈ W 1,r

0 (Ω),
r > 1 (see [4] and [7]).
Definition A function u is called an entropy solution of the Dirichlet problem
(1.4) if,

u ∈W 1,q
0 (Ω), 1 < q < q̄ =

N(p− 1)
N − 1

,

Tk(u) ∈W 1,p
0 (Ω), ∀k > 0,∫

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx ≤
∫

Ω

fTk(u− ϕ) dx+
∫

Ω

φ(u)∇Tk(u− ϕ) dx,

∀ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω),

where Tk(s) is the truncation operator at height k > 0 defined on R.
When φ = 0 and f is a bounded Radon measure, it is known that (1.4) admits

a weak solution u in W 1,q
0 (Ω) with 1 < q < q; see for example [5, 6, 9]. It also

have been shown there, that if f lies in the Orlicz space LLogL(Ω), then the critical
regularity W 1,q

0 (Ω) is attained. Further contributions in this sense can be founded
in the work [3] where the authors have replaced the hypotheses (1.1) and (1.2) by
some general assumptions.

When φ 6= 0 and f ∈ L1(Ω), L. Boccardo proved in [4, Theorem 2.1] that
the boundary-value problem (1.4) admits an entropy solution (in the sense of the
definition 1.7) which belongs to W 1,q

0 (Ω), 1 < q < q. Moreover, the author showed
that if f ∈ LLog(1 + L)(Ω), then the solution belongs to W 1,q

0 (Ω).
Our objective in this paper, is to prove the existence and Lq̄-regularity of an

entropy solution to the boundary value problem (1.4), when φ 6= 0 and f ∈ L1(Ω).
This is possible by replacing (1.1)–(1.3) by the following assumption.

There exist two N -functions P,M with P << M ; six positive real numbers
α, δ, k1, k2, k3, k4; and a function C in EM such that

|a(x, s, ζ)| ≤ C(x) + k1P
−1
M(k2|s|) + k3M

−1
M(k4|ζ|) (1.7)

〈a(x, s, ζ)− a(x, s, ξ), ζ − ξ〉 > 0 (1.8)

a(x, s, ζ)ζ ≥ αM(
|ζ|
δ

), (1.9)

for a.e. x ∈ Ω, for all s ∈ R, and all ξ ∈ RN

2. Preliminaries

LetM : R+ → R+ be anN -function, i.e. M is continuous, convex, withM(t) > 0
for t > 0, M(t)

t → 0 as t → 0, and M(t)
t → ∞ as t → ∞. Equivalently, M admits

the representation:

M(t) =
∫ t

0

a(s) ds

where a : R+ → R+ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for
t > 0 and a(t) tends to ∞ as t→∞.

The conjugate of M is also an N -function and it is defined by M =
∫ t

0
ā(s) ds,

where ā : R+ → R+ is the function ā(t) = sup{s : a(s) ≤ t}.
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An N -function M is said to satisfy the ∆2-condition if, for some k,

M(2t) ≤ kM(t) ∀t ≥ 0. (2.1)

When (2.1) holds only for t ≥ t0 > 0 then M is said to satisfy the ∆2 condition
near infinity.

We will extend these N -functions into even functions on all R. Moreover, we
have the following Young’s inequality

st ≤M(t) +M(s), ∀s, t ≥ 0.

Given two N -functions, we write P << Q to indicate P grows essentially less
rapidly than Q; i.e. for each ε > 0, P (t)

Q(εt) → 0 as t → ∞. This is the case if and
only if

lim
t→∞

Q−1(t)
P−1(t)

= 0.

Let Ω be an open subset of RN . The Orlicz class KM (Ω) (resp. the Orlicz
space LM (Ω) is defined as the set of (equivalence classes of) real valued measurable
functions u on Ω such that∫

Ω

M(u(x)) dx < +∞ (resp.
∫

Ω

M(
u(x)
λ

) dx < +∞ for some λ > 0).

The set LM (Ω) is Banach space under the norm

‖u‖M,Ω = inf
{
λ > 0 :

∫
Ω

M(
u(x)
λ

) dx ≤ 1
}

and KM (Ω) is a convex subset of LM (Ω). The closure in LM (Ω) of the set of
bounded measurable functions with compact support in Ω is denoted by EM (Ω).
The dual of EM (Ω) can be identified with LM (Ω) by means of the pairing

∫
Ω
uv dx,

and the dual norm of LM (Ω) is equivalent to ‖.‖M,Ω.
We now turn to the Orlicz-Sobolev space, W 1LM (Ω) [resp. W 1EM (Ω)] is the

space of all functions u such that u and its distributional derivatives up to order 1
lie in LM (Ω) [resp. EM (Ω)]. It is a banach space under the norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

Thus, W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of product of
N + 1 copies of LM (Ω). Denoting this product by

∏
LM , we will use the weak

topologies σ(
∏
LM ,

∏
EM ) and σ(

∏
LM ,

∏
LM ). The space W 1

0EM (Ω) is defined
as the (norm) closure of the Schwartz space D(Ω) in W 1EM (Ω) and the space
W 1

0LM (Ω) as the σ(
∏
LM ,

∏
EM ) closure of D(Ω) in W 1LM (Ω).

Let W−1LM (Ω) [resp. W−1EM (Ω)] denote the space of distributions on Ω which
can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω) [resp.
EM (Ω)]. It is a Banach space under the usual quotient norm.(for more details see
[1]).

We recall some lemmas introduced in [2] which will be used later.

Lemma 2.1. A domain Ω has the segment property if for every x ∈ ∂Ω there exists
an open set Gx and a nonzero vector yx such that x ∈ Gx and if z ∈ Ω ∩Gx, then
z + tyx ∈ Ω for all 0 < t < 1.
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Lemma 2.2. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. Let M be
an N -function and let u ∈W 1LM (Ω) (resp. W 1EM (Ω)). Then F (u) ∈W 1LM (Ω)
(resp. W 1EM (Ω)). Moreover, if the set D of discontinuity points of F ′ is finite,
then

∂

∂xi
F (u) =

{
F ′(u) ∂

∂xi
u a.e. in {x ∈ Ω : u(x) /∈ D},

0 a.e. in {x ∈ Ω : u(x) /∈ D}

Lemma 2.3. Let F : R → R be uniformly Lipschitzian, with F (0) = 0. We suppose
that the set of discontinuity points of F ′ is finite. Let M be an N -function, then
the mapping F : W 1LM (Ω) → W 1LM (Ω) is sequentially continous with respect to
the weak* topology σ(

∏
LM ,

∏
EM ).

We give now the following lemma which concerns operators of the Nemytskii
type in Orlicz spaces (see [2]).

Lemma 2.4. Let Ω be an open subset of RN with finite measure. Let M,P,Q be
N -functions such that Q << P , and let f : Ω×R → R be a Carathéodory function
such that, for a.e. x ∈ Ω and all s ∈ R:

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskii operator
Nf defined by Nf (u)(x) = f(x, u(x)) is strongly continuous from P(EM (Ω), 1

k2
) =

{u ∈ LM (Ω) : d(u,EM (Ω)) < 1
k2
} into EQ(Ω).

3. Main results

In the sequel we assume that Ω is an open bounded subset of RN , N ≥ 2, with
the segment property, and that M is an N -functions satisfying the ∆2-condition
near infinity. We shall prove the following existence theorems.

Theorem 3.1. Assume that (1.7)–(1.9) hold, 2 − 1
N < p < N , f ∈ L1(Ω), φ ∈

C0(R,RN ), tp

M(t) is nondecreasing near infinity and
∫∞

.
tp−1

M(t) dt < ∞. Then the
problem,

Tk(u) ∈W 1
0LM (Ω), ∀k > 0∫

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx ≤
∫

Ω

fTk(u− ϕ) dx+
∫

Ω

φ(u)∇Tk(u− ϕ) dx,

∀ ϕ ∈W 1
0LM (Ω) ∩ L∞(Ω)

(3.1)

admits at least one solution u ∈W 1,q
0 (Ω).

When p = N we assume, in addition, that There exists an N -function H such
that H(tN ) is equivalent to M(t).

Theorem 3.2. Assume that for p = N the above hypothesis hold, (1.7)–(1.9) hold,
f ∈ L1(Ω), φ ∈ C0(R,RN ),

∫∞
.

tN−1

M(t) dt < ∞ and tN

H
−1

(etN′
)

remains bounded near

infinity. Then (3.1) admits at least one solution in W 1,N
0 (Ω).

Proof of Theorems 3.1 and 3.2.
Step 1 The approximate problem and a priori estimate. Let fn be a
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sequence in W−1EM (Ω) ∩ L1(Ω) such that fn → f in L1(Ω), and ‖fn‖1 ≤ ‖f‖1.
Consider the approximate problem

Aun = fn − div φn(un)

un ∈W 1
0LM (Ω)

(3.2)

where φn(x) = φ(Tn(x)). From the work [8], there exists at least one solution
un of the approximate problem (3.2). Moreover, as in [3], there exists a constant
C = C(p, α, ‖f‖1) such that

‖∇un‖Lq(Ω) ≤ C,

which implies that un is bounded in W 1,q
0 (Ω). Then there exists u ∈ W 1,q

0 (Ω) and
a subsequence still denoted by un such that

un ⇀ u weakly in W 1,q
0 (Ω)

un → u strongly in Lq(Ω) and a.e. in Ω.
(3.3)

Moreover, the use of Tk(un) as test function in (3.2) implies that the sequence
Tk(un) is bounded in W 1

0LM (Ω), then there exists a subsequence of Tk(un) still
denoted by Tk(un) such that

Tk(un) ⇀ Tk(u) weakly in W 1
0LM (Ω) for σ(

∏
LM ,

∏
EM )

Tk(un) → Tk(u) strongly in EM (Ω) and a.e. in Ω.
(3.4)

Step 2 Convergence of the gradient. Let Ωr = {x ∈ Ω : |∇Tk(u(x))| ≤
r} and denote by χr the characteristic function of Ωr. Clearly, Ωr ⊂ Ωr+1 and
meas(Ω\Ωr) → 0 as r →∞.
Fix r and let s ≥ r. We have,

0 ≤
∫

Ωr

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)] dx

≤
∫

Ωs

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)] dx

=
∫

Ωs

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

≤
∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx.

On the other hand, let h > k and M = 4k + h. If one takes wn = T2k(un −
Th(un) + Tk(un) − Tk(u)) as test function in (3.2), it is easy to see that ∇wn = 0
when |un| > M . We can write∫

Ω

a(x, TM (un),∇TM (un))∇wn dx =
∫

Ω

fnwn dx+
∫

Ω

φn(un)∇wn dx.

We have∫
Ω

a(x, TM (un),∇TM (un))∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx

≥
∫

Ω

a(x, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(u)) dx

−
∫
|un|>k

|a(x, TM (un),∇TM (un))||∇Tk(u)| dx
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=
∫

Ω

a(x, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(u)χs) dx

−
∫

Ω

a(x, Tk(un),∇Tk(un))(∇Tk(u)−∇Tk(u)χs) dx

−
∫
|un|>k

|a(x, TM (un),∇TM (un))||∇Tk(u)|χs dx

−
∫
|un|>k

|a(x, TM (un),∇TM (un))|(|∇Tk(u)| − |∇Tk(u)|χs) dx .

Then ∫
Ω

a(x, TM (un),∇TM (un))∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx

≥
∫

Ω

a(x, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(u)χs) dx

−
∫

Ω\Ωs

a(x, Tk(un),∇Tk(un))∇Tk(u) dx

−
∫
|un|>k

|a(x, TM (un),∇TM (un))||∇Tk(u)|χs dx

−
∫

Ω\Ωs

|a(x, TM (un),∇TM (un))||∇Tk(u)| dx .

From this inequality, it follows∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

≤
∫
|un|>k

|a(x, TM (un),∇TM (un))||∇Tk(u)|χs dx

+
∫

Ω\Ωs

a(x, Tk(un),∇Tk(un))∇Tk(u) dx

+
∫

Ω\Ωs

|a(x, TM (un),∇TM (un))||∇Tk(u)| dx

+
∫

Ω

fnT2k(un − Th(un) + Tk(un)− Tk(u)) dx

+
∫

Ω

φn(un))∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx

−
∫

Ω

a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

(3.5)
Now, we study each term of the right hand side of the above inequality. We denote
by εi(t) (i = 1, 2, 3, . . . ) various sequences of real numbers which tends to 0 when t
tends to infinity. Remark that a(x, Tµ(un),∇Tµ(un)) is bounded in LM (Ω) for all
µ > 0. Let ε > 0, we have

M(
|∇Tk(u)|χsχ{|un|>k}

ε
) ≤M(

s

ε
) ∈ L1(Ω)

and
|∇Tk(u)|χsχ{|un|>k} → 0 a.e.
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Then by the Lebesgue dominated convergence theorem we deduce that

|∇Tk(u)|χsχ{|un|>k} → 0 in LM (Ω),

which implies that the first term in the right hand side of (3.5) tends to 0 as n
tends to ∞. Concerning the second and third terms on the right hand side of (3.5),
since |a(x, TM (un),∇TM (un))| and |a(x, Tk(un),∇Tk(un))| are bounded in LM (Ω)
then there exist two functions ϕ and ψ in LM (Ω) such that

|a(x, TM (un),∇TM (un))| → ϕ for σ(LM , EM )

|a(x, Tk(un),∇Tk(un))| → ψ for σ(LM , EM ) .
(3.6)

This implies∫
Ω\Ωs

|a(x, TM (un),∇TM (un))||∇Tk(u)| dx→
∫

Ω\Ωs

ϕ|∇Tk(u)| dx (3.7)

and ∫
Ω\Ωs

|a(x, Tk(un),∇Tk(un))||∇Tk(u)| dx→
∫

Ω\Ωs

ψ|∇Tk(u)| dx . (3.8)

On the other hand,

lim
n→∞

∫
Ω

fnT2k(un − Th(un) + Tk(un)− Tk(u)) dx =
∫

Ω

fT2k(u− Th(u)) dx = ε3(h)

and, for n large enough, one can write.∫
Ω

φn(un)∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx

=
∫

Ω

φ(T4k+h(un))∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx,

which yields,

lim
n→∞

∫
Ω

φn(un)∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx

=
∫

Ω

φ(u)∇T2k(u− Th(u) dx = 0.

The right-most term in (3.5) tends to 0: Since a(x, Tk(un),∇Tk(u)χs) converges
strongly to a(x, Tk(u),∇Tk(u)χs) in (EM (Ω))N , using Lemma 2.4 while ∇Tk(un)
tends weakly to ∇Tk(u) by (3.3). We conclude then that

0 ≤ lim sup
n→∞

∫
Ωr

[
a(x, Tk(un),∇Tk(un))

− a(x, Tk(un),∇Tk(u)][∇Tk(un)−∇Tk(u)
]
dx

≤
∫

Ω\Ωs

ϕ|∇Tk(u)| dx+
∫

Ω\Ωs

ψ|∇Tk(u)| dx+
∫

Ω

fT2k(u− Th(u)) dx .

Letting s and h approach infinity we get,∫
Ωr

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)][∇Tk(un)−∇Tk(u)] dx→ 0

as n→∞. Passing to a subsequence if necessary, we can assume that

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)][∇Tk(un)−∇Tk(u)] → 0
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a.e. in Ωr. As in [2], we deduce that there exists a subsequence still denoted by un

such that ∇un → ∇u a.e. in Ω.
Step 3 Passage to the limit. Let ϕ ∈W 1

0LM (Ω)∩L∞(Ω), and setM = k+‖ϕ‖∞
with k > 0. We shall prove that

lim inf
n→∞

∫
Ω

a(x, un,∇un)∇Tk(un − ϕ) dx ≥
∫

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx.

We have: If |un| > M then |un − ϕ| > k which implies

a(x, un,∇un)∇Tk(un − ϕ)

= a(x, TM (un),∇TM (un))(∇un −∇ϕ)χ{|un−ϕ|≤k}

= a(x, TM (un),∇TM (un))(∇TM (un)−∇ϕ)χ{|un−ϕ|≤k}.

Let Ωs = {x ∈ Ω : |∇ϕ| ≤ s} and denote by χs the characteristic function of Ωs.
Then ∫

Ω

a(x, un,∇un)∇Tk(un − ϕ) dx

=
∫

Ω

a(x, TM (un),∇TM (un))(∇TM (un)−∇ϕ)χ{|un−ϕ|≤k} dx

=
∫

Ω

a(x, TM (un),∇TM (un))(∇TM (un)−∇ϕχs)χ{|un−ϕ|≤k} dx

−
∫

Ω

a(x, TM (un),∇TM (un))(∇ϕ−∇ϕχs)χ{|un−ϕ|≤k} dx,

and ∫
Ω

a(x, un,∇un)∇Tk(un − ϕ) dx

≥ −
∫

Ω\Ωs

|a(x, TM (un),∇TM (un))||∇ϕ| dx

+
∫

Ω

[
a(x, TM (un),∇TM (un))− a(x, TM (un),∇ϕχs)

]
× [∇TM (un)−∇ϕχs]χ{|un−ϕ|≤k} dx

+
∫

Ω

a(x, TM (un),∇ϕχs)[∇TM (un)−∇ϕχs]χ{|un−ϕ|≤k} dx.

(3.9)

Similarly to the proof of (3.7), the first term in the right hand side of (3.9) is greater
than a value ε6(s), which implies

lim inf
n→∞

∫
Ω

a(x, un,∇un)∇Tk(un − ϕ) dx

≥ lim
n→∞

∫
Ω

a(x, TM (un),∇ϕχs)[∇TM (un)−∇ϕχs]χ{|un−ϕ|≤k} dx+ ε6(s)

+
∫

Ω

[a(x, TM (u),∇TM (u))− a(x, TM (u),∇ϕχs)]

× [∇TM (u)−∇ϕχs]χ{|u−ϕ|≤k} dx.

(3.10)

From Lemma 2.4, the first term in the right hand side of (3.10) is equal to∫
Ω

a(x, TM (u),∇ϕχs)[∇TM (u)−∇ϕχs]χ{|u−ϕ|≤k} dx+ ε6(s),
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then

lim inf
n→∞

∫
Ω

a(x, un,∇un)∇Tk(un − ϕ) dx

≥
∫

Ω

a(x, TM (u),∇TM (u))[∇TM (u)−∇ϕχs]χ{|u−ϕ|≤k} dx+ ε6(s).

By letting s→ +∞, we obtain

lim inf
n→∞

∫
Ω

a(x, un,∇un)∇Tk(un − ϕ) dx

≥
∫

Ω

a(x, TM (u),∇TM (u))[∇TM (u)−∇ϕ]χ{|u−ϕ|≤k} dx

=
∫

Ω

a(x, u,∇u)∇Tk(u− ϕ) dx.

Now taking Tk(un −ϕ) as test function in (3.7) and passing to the limit we deduce
the desired statement. �

Remark 3.3. If M and M satisfy the ∆2 condition, instead of (1.7) we can assume
the condition:

|a(x, s, ξ)| ≤ c(x) + k1M
−1
M(k2|s|) + k3M

−1
M(k4|ξ|). (3.11)

Then we prove the same result as in Theorems 3.1 and 3.2.

Remark 3.4. If wf belongs to W−1LM (Ω) the statements of Theorems 3.1 and
3.2 still hold.

Example. Let 2 − 1
N < p ≤ N , (N ≥ 2), and let the N -function be M(t) =

tp logαp(e + t) with αp > 1. Then it is easy to verify that M(t) satisfies the
condition of Theorems 3.1 and 3.2.
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