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Abstract

We consider the problem K(x)uxx = ut , 0 < x < 1, t ≥ 0, where K(x)
is bounded below by a positive constant. The solution on the boundary
x = 0 is a known function g and ux(0, t) = 0. This is an ill-posed prob-
lem in the sense that a small disturbance on the boundary specification
g, can produce a big alteration on its solution, if it exists. We consider
the existence of a solution u(x, ·) ∈ L2(R) and we use a wavelet Galerkin
method with the Meyer multi-resolution analysis, to filter away the high-
frequencies and to obtain well-posed approximating problems in the scal-
ing spaces Vj . We also derive an estimate for the difference between the
exact solution of the problem and the orthogonal projection, onto Vj , of
the solution of the approximating problem defined in Vj−1.

1 Introduction

In this paper, we consider the following problem, for 0 < α ≤ K(x) < +∞,

K(x)uxx(x, t) = ut(x, t), t ≥ 0, 0 < x < 1
u(0, ·) = g, ux(0, ·) = 0

(1.1)

We assume that this problem has a solution u(x, ·) ∈ L2(R), for K continuous,
and we extend u(x, t) and g to R assuming that both vanish for t < 0.

Problem (1.1) is ill-posed in the sense that a small disturbance on the bound-
ary specification g, can produce a big alteration on its solution, if it exists. This
means that if the solution exists, it does not depend continuously on g (see note
1 below).

We consider the Meyer multi-resolution analysis. The advantage of using this
method is that it has good localization in the frequency domain, since its Fourier
transform has compact support. The orthogonal projection onto Meyer scaling
spaces, can be considered as a low pass filter, cutting off the high frequencies.
We get a version of the Gronwall inequality that we use to obtain an estimate
for the frequency of the solution of the problem (1.1).
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¿From the variational formulation of the approximating problem on the scal-
ing space Vj , we get an infinite-dimensional system of second order ordinary
differential equations with variable coefficients. An estimate obtained for the
solution of this evolution problem, is used to get the stability of the wavelet
Galerkin method. Using an estimate obtained for the difference between the ex-
act solution of the problem (1.1) and its orthogonal projection onto Vj , we get
an estimate for the difference between the exact solution of the problem (1.1)
and the orthogonal projection, onto Vj , of the solution of the approximating
problem defined on the scaling space Vj−1.

Our approach is similar to the one used in [4] for the sideway heat equation.
The problem considered in [4] is an inverse problem for the heat equation with
constant coefficient. There the variational formulation, on the scaling space
Vj , of the approximating problem, produces an infinite-dimensional system of
second order ordinary differential equations with constant coefficients, for which
the solution is known. Stability and convergence of the method follows from
form of this solution.

In section 2, we construct the Meyer multi-resolution analysis. In section
3, we get the estimates of the numerical stability and the convergence of the
wavelet Galerkin method.

For a function h ∈ L1(R)
⋂
L2(R) its Fourier Transform is given by ĥ(ξ) :=∫

R h(x)e
−ixξdx.

2 Meyer multi-resolution analysis

To construct a wavelet basis from a mother wavelet, we need an structure in
L2(R) which allows us to decompose L2(R) in a direct sum of mutually orthog-
onal spaces.

Definition A multi-resolution analysis is a sequence of closed subspaces Vj in
L2(R), called scaling spaces, satisfying:

(M1) Vj ⊆ Vj−1 for all j ∈ Z

(M2)
⋃

j∈Z Vj is dense in L2(R)

(M3)
⋂

j∈Z Vj = {0}

(M4) f ∈ Vj if and only if f(2j ·) ∈ V0

(M5) f ∈ V0 if and only if f(· − k) ∈ V0 for all k ∈ Z

(M6) There exists φ ∈ V0 such that {φ
0,k

: k ∈ Z} is an orthonormal basis in
V0, where φj,k(x) = 2−j/2φ(2−jx − k) for all j, k ∈ Z. The function φ is
called the scaling function of the multi-resolution analysis.
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Remarks 1) M4 and M6 imply {φj,k : k ∈ Z} being an orthonormal basis for
the space Vj .
2) Let φ ∈ L2(R) and Vj = span{φjk}k∈Z where φjk(t) := 2−j/2φ(2−jt− k) and
j ∈ Z. Thus, V0 = span{φ(· − k)}k∈Z. We have that Vj satisfy M1 if only if
φ ∈ V−1, that is, if only if there exists a 2π-periodic square integrable function
m0, such that

φ̂(ξ) = m0(
ξ

2
)φ̂(

ξ

2
).

The Meyer multi-resolution analysis is constructed in the following way: Let
ϕ be the scaling function defined by its Fourier transform by

ϕ̂(ξ) =


1, if |ξ| ≤ 2π/3
cos[π

2 ν(
3
2π |ξ| − 1)] if 2π/3 ≤ |ξ| ≤ 4π/3

0, otherwise,

where ν is a differentiable function satisfying

ν(x) =

{
0 if x ≤ 0
1 if x ≥ 1

(2.1)

ν(x) + ν(1− x) = 1 (2.2)

¿From (2.2), it follows that
∑

k∈Z |ϕ̂(ξ + 2kπ)|2 = 1, which is equivalent to
the orthonormality of ϕ(· − k), k ∈ Z. Then M6 is satisfied. Here m0 can be
constructed on [0, 2π], from ϕ̂, by

m0(ξ) =
∑
l∈Z

ϕ̂(2(ξ + 2πl))

This function is 2π-periodic, square integrable, and, for ξ ∈ [0, 2π],

m0(
ξ

2
)ϕ̂(

ξ

2
) =

∑
l∈Z

ϕ̂(ξ + 4πl)ϕ̂(
ξ

2
) = ϕ̂(ξ)ϕ̂(

ξ

2
) = ϕ̂(ξ)

The second equality above follows from

ϕ̂(ξ + 4πl)ϕ̂(
ξ

2
) = 0, ∀l 6= 0

and the third equality follows from ϕ̂(ξ/2) = 1 for all ξ ∈ supp ϕ̂. Then M1
is satisfied and the other conditions of the definition can also be proved. The
associated mother wavelet is given by (see [2])

ψ̂(ξ) = eiξ/2m0(ξ/2 + π)ϕ̂(ξ/2)

= eiξ/2
∑
l∈Z

ϕ̂(ξ + 2π(2l + 1))ϕ̂(ξ/2)

= eiξ/2[ϕ̂(ξ + 2π) + ϕ̂(ξ − 2π)]ϕ̂(ξ/2)
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or equivalently,

ψ̂(ξ) =


eiξ/2 sin[π

2 ν(
3
2π |ξ| − 1)], if 2π

3 ≤ |ξ| ≤ 4π
3

eiξ/2 cos[π
2 ν(

3
4π |ξ| − 1)], if 4π

3 ≤ |ξ| ≤ 8π
3

0, otherwise.

The function ψ is the Meyer wavelet.
Now, we consider the Meyer multi-resolution analysis. We have

ψ̂jk(ξ) =
∫

R
ψjk(x)e−ixξdx

=
∫

R
2−

j
2ψ(2−jx− k)e−ixξdx

=
∫

R
2j/2ψ(y − k)e−i2jyξdy

= 2j/2

∫
R
ψ(t)e−i2j(t+k)ξdt

= 2j/2

∫
R
ψ(t)e−i2jtξ−i2jkξdt = 2j/2e−i2jkξψ̂(2jξ)

Since supp(ψ̂) =
{
ξ : 2

3π ≤ |ξ| ≤ 8
3π

}
we have that

supp(ψ̂jk) =
{
ξ;

2
3
π2−j ≤ |ξ| ≤ 8

3
π2−j

}
∀k ∈ Z (2.3)

Furthermore,

supp(ϕ̂jk) =
{
ξ; |ξ| ≤ 4

3
π2−j

}
∀k ∈ Z (2.4)

Now we consider the orthogonal projection onto Vj , Pj : L2(R) → Vj ,

Pjf(t) =
∑
k∈Z

〈f, ϕjk〉ϕjk(t)

The hypothesis M1 and M2 imply that limj→−∞ Pjf = f , for all f ∈ L2(R).
This means that from a representation of f in a given scale, we can get f by
adding details which are given at higher frequencies. ¿From (2.4), we see that
Pj filters away the frequencies higher than 4

3π2−j (low pass filter).
We have, for all f ∈ L2(R),

f = Pjf − Pjf + f

= Pjf + (I − Pj)f

=
∑
k∈Z

〈f, ϕjk〉ϕjk +
∑
l≤j

∑
k∈Z

〈f, ψlk〉ψlk

This implies

P̂jf(ξ) = f̂(ξ) for |ξ| ≤ 2
3
π2−j (2.5)
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since, by (2.3), ψ̂lk(ξ) = 0 for all l ≤ j and |ξ| ≤ 2
3π2−j .

Considering the corresponding orthogonal projections in the frequency space,
P̂j : L2(R) → V̂j = span{ϕ̂jk}k∈Z,

P̂jf =
∑
k∈Z

1
2π
〈f, ϕ̂jk〉ϕ̂jk

we have

P̂j f̂ =
∑
k∈Z

1
2π
〈f̂ , ϕ̂jk〉ϕ̂jk =

∑
k∈Z

〈f, ϕjk〉ϕ̂jk = P̂jf

Then (2.5) implies that

‖(I − Pj)f‖ =
1√
2π
‖[(I − Pj)f ]∧‖ =

1√
2π
‖(I − P̂j)f̂‖

=
1√
2π
‖(I − P̂j)χj f̂‖ ≤ ‖χj f̂‖

(2.6)

where χj is the characteristic function in (−∞,− 2
3π2−j ] ∪ [ 23π2−j ,+∞).

3 Results of Stability and Convergence

Hereafter, the multi-resolution analysis considered corresponds to the Meyer
multi-resolution analysis with scaling function ϕ. The next lemma is a version
of the Gronwall inequality.

Lemma 3.1 Let u and v be positive continuous functions, x ≥ a and c > 0. If
u(x) ≤ c+

∫ x

a

∫ s

a
v(τ)u(τ) dτds then

u(x) ≤ c exp
( ∫ x

a

∫ s

a

v(τ) dτds
)
.

Proof. Let w(x) = c +
∫ x

a

∫ s

a
v(τ)u(τ) dτds. Then w′(x) =

∫ x

a
v(τ)u(τ) dτ .

Therefore,

w′′(x) = v(x)u(x) ≤ v(x)w(x) and
w′′(x)
w(x)

≤ v(x)

Now
w′′(x)
w(x)

= (
w′

w
)′(x) + (

w′(x)
w(x)

)2

Thus
(

w′

w

)′(x) ≤ v(x) which implies

w′(x)
w(x)

≤
∫ x

a

v(τ) dτ and (lnw(x))′ ≤
∫ x

a

v(τ) dτ ;
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Therefore,

lnw(x)− lnw(a) ≤
∫ x

a

∫ s

a

v(τ) dτds

Since w(a) = c, lnw(x)− ln c ≤
∫ x

a

∫ s

a
v(τ) dτds, which implies

ln
w(x)
c

≤
∫ x

a

∫ s

a

v(τ) dτds and w(x) ≤ c exp
( ∫ x

a

∫ s

a

v(τ) dτds
)
.

Since, by hypothesis, u(x) ≤ w(x), we have

u(x) ≤ c exp
( ∫ x

a

∫ s

a

v(τ) dτds
)

which completes the proof. �

Applying the Fourier Transform with respect to time in Problem (1.1), we
obtain the following problem in the frequency space:

ûxx(x, ξ) =
iξ

K(x)
û(x, ξ), 0 < x < 1, ξ ∈ R

û(0, ξ) = ĝ(ξ), ûx(0, ·) = 0

whose solution satisfies

û(x, ξ) = ĝ(ξ) +
∫ x

0

∫ s

0

iξ

K(τ)
û(τ, ξ) dτds

Then, from lemma 3.1, for ĝ(ξ) 6= 0, we have

|û(x, ξ)| ≤ |ĝ(ξ)| exp
[
|ξ|

∫ x

0

∫ s

0

1
K(τ)

dτds
]

(3.1)

The next lemma corresponds to proposition 3.1 in [4], when K(x) is constant.

Lemma 3.2 The operator Dj(x) defined by

[(Dj)lk(x)]l∈Z, k∈Z =
[ 1
K(x)

〈ϕ′jl, ϕjk〉
]

l∈Z,k∈Z

satisfies the following three conditions: 1) (Dj)lk(x) = −(Dj)kl(x)
2) (Dj)lk(x) = (Dj)(l−k)0(x). Hence, (Dj)lk(x) are equal along diagonals.
3) ‖Dj(x)‖ ≤ π2−j

K(x)

Proof. This proof follows quite closely the proof in [4] for Dj(x) independent
of x.
1) As we already know, ϕ̂j0(ξ) = 2j/2ϕ̂(2jξ), ϕ̂jk(ξ) = 2j/2e−ikξ2j

ϕ̂(2jξ) =
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e−ikξ2j

ϕ̂j0(ξ), and the Fourier transform of the scaling function ϕ is even. Then
ϕ̂j0(ξ) = ϕ̂j0(−ξ) and

(Dj)lk(x) =
1

K(x)
〈ϕ′jl, ϕjk〉 =

1
K(x)

1
2π
〈ϕ̂′jl, ϕ̂jk〉

=
1

K(x)
1
2π

∫
R
ϕ̂′jl(ξ)ϕ̂jk(ξ) dξ

=
i

K(x)
1
2π

∫
R
ξϕ̂jl(ξ)ϕ̂jk(ξ) dξ

=
i

K(x)
1
2π

∫
R
ξe−i(l−k)ξ2j

|ϕ̂j0(ξ)|2dξ

Then

(Dj)lk(x) =
i

K(x)
1
2π

∫
R
(−ω)e−i(k−l)ω2j

|ϕ̂j0(−ω)|2dω

= − i

K(x)
1
2π

∫
R
ωe−i(k−l)ω2j

|ϕ̂j0(ω)|2dω

= − i

K(x)
1
2π

∫
R
ωϕ̂jk(ω)ϕ̂jl(ω) dω

= − 1
K(x)

1
2π

∫
R
ϕ̂′jk(ω)ϕ̂jl(ω) dω.

Thus

(Dj)lk(x) = − 1
K(x)

1
2π
〈ϕ̂′jk, ϕ̂jl〉 = − 1

K(x)
〈ϕ′jk, ϕjl〉 = −(Dj)kl(x)

2) As proved above

(Dj)lk(x) =
i

K(x)
1
2π

∫
R
ξe−i(l−k)ξ2j

|ϕ̂j0(ξ)|2dξ = (Dj)(l−k)0(x)

Then (Dj)lk(x) is equal along diagonals.
3) We have

‖Dj(x)‖ =
∥∥ 1
K(x)

Bj

∥∥ =
1

K(x)
‖Bj‖

where (Bj)lk = 〈ϕ′jl, ϕjk〉. ¿From results 1) and 2), we have (Bj)lk = −(Bj)kl,
(Bj)lk = 1

2π

∫
R ξe

−i(l−k)ξ2j |ϕ̂j0(ξ)|2dξ = (Bj)(l−k)0 and (Bj)lk is constant along
diagonals. We will show that ‖Bj‖ ≤ π2−j . Thus, we will have

‖Dj(x)‖ ≤
π

K(x)
2−j

For |t| ≤ π2−j ,

Γj(t) =i2−j
[
(t− 2−j+1π)|ϕ̂j0(t− 2−j+1π)|2 + t|ϕ̂j0(t)|2

+ (t+ 2−j+1π)|ϕ̂j0(t+ 2−j+1π)|2
]
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Extend Γj periodically to R and expand it in Fourier series as

Γj(t) =
∑
k∈Z

γke
ikt2j

We have γk = bk for all k, where bk is the element in diagonal k of Bj . In fact,
since ϕ̂j0(t) = 0 for |t| ≥ 4

3π2−j , it follows that

γk =
1

2−j+1π

∫ π2−j

−π2−j

Γj(t)e−ikt2j

dt

=
i

2π

∫ π2−j

−π2−j

(t− 2−j+1π)|ϕ̂j0(t− 2−j+1π)|2e−ikt2j

dt

+
i

2π

∫ π2−j

−π2−j

t|ϕ̂j0(t)|2e−ikt2j

dt

+
i

2π

∫ π2−j

−π2−j

(t+ 2−j+1π)|ϕ̂j0(t+ 2−j+1π)|2e−ikt2j

dt

Making a change of variable, we obtain:

γk =
i

2π

∫ −π2−j

−3π2−j

t|ϕ̂j0(t)|2e−ikt2j

dt+
i

2π

∫ π2−j

−π2−j

t|ϕ̂j0(t)|2e−ikt2j

dt

+
i

2π

∫ 3π2−j

π2−j

t|ϕ̂j0(t)|2e−ikt2j

dt

=
i

2π

∫ 3π2−j

−3π2−j

t|ϕ̂j0(t)|2e−ikt2j

dt

=
i

2π

∫
R
t|ϕ̂j0(t)|2e−ikt2j

dt = bk

Now, ‖Bj‖ = sup‖f‖=1 ‖Bjf‖ where ‖f‖2 =
∑

k∈Z |fk|2. Let F (t) =
∑

k∈Z fke
ikt2j

and define W (t) = Γj(t)F (t). We have

W (t) =
∑
k∈Z

ωke
ikt2j

and ωk =
∑
l∈Z

bk−lfl = (Bjf)k

Hence

‖ω‖2 =
∑
k∈Z

|ωk|2 =
1

2π2−j

∫ π2−j

−π2−j

|W (t)|2dt

=
1

2π2−j

∫ π2−j

−π2−j

|Γj(t)F (t)|2dt

≤ sup
|t|≤π2−j

|Γj(t)|2
1

2π2−j

∫ π2−j

−π2−j

|F (t)|2dt

= sup
|t|≤π2−j

|Γj(t)|2‖f‖2
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Then
‖Bj‖ ≤ sup

|t|≤π2−j

|Γj(t)|2

On the other hand, Γj is an odd function. Hence

sup
|t|≤π2−j

|Γj(t)|2 = sup
0≤t≤π2−j

|Γj(t)|2

But, for 0 ≤ t ≤ π2−j , we have t + π2−j+1 ≥ π2−j+1 and t − π2−j+1 ≤ 0.
Hence

ϕ̂j0(t+ π2−j+1) = 0 and (t− π2−j+1)|ϕ̂j0(t− π2−j+1)|2 ≤ 0

for t ∈ [0, π2−j ]. Thus

sup
0≤t≤π2−j

|Γj(t)|2 ≤ π2−j+1 sup
0≤t≤π2−j

t|ϕ̂j0(t)|2

= π2−j+1 sup
0≤t≤π2−j

(t2j)|ϕ̂(2jt)|2

= π2−j+1 sup
0≤s≤π

s|ϕ̂(s)|2

By definition of ϕ̂ we have |ϕ̂(s)|2 ≤ 1
2π and therefore s|ϕ̂(s)|2 ≤ π

2π = 1
2 for

0 ≤ s ≤ π. Then

sup
0≤t≤π2−j

|Γj(t)|2 ≤ sup
0≤s≤π

s|ϕ̂(s)|2 ≤ π2−j+1

2
= π2−j

Thus

‖Dj(x)‖ =
1

K(x)
‖Bj‖ ≤

1
K(x)

sup
|t|≤π2−j

|Γj(t)|2 ≤
π2−j

K(x)

which completes the proof of lemma 3.2. �

Let us now consider the following approximating problem in Vj , where the
projection in the first equation of (3.2) is due to the fact that we can have ϕ ∈ Vj

with ϕ′ /∈ Vj (see note 2 below),

K(x)uxx(x, t) = Pjut(x, t), t ≥ 0, 0 < x < 1
u(0, ·) = Pjg ux(0, ·) = 0

u(x, t) ∈ Vj

(3.2)

Its variational formulation is

〈K(x)uxx − ut, ϕjk〉 = 0
〈u(0, ·), ϕjk〉 = 〈Pjg, ϕjk〉, 〈ux(0, ·), ϕjk〉 = 〈0, ϕjk〉, k ∈ Z

where ϕjk is the orthonormal basis of Vj given by the scaling function ϕ. Con-
sider uj a solution of the approximating problem (3.2), given by uj(x, t) =
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∑
l∈Z wl(x)ϕjl(t). Then, we have (uj)t(x, t) =

∑
l∈Z wl(x)ϕ′jl(t) and (uj)xx(x, t) =∑

l∈Z w
′′
l (x)ϕjl(t). Therefore,

K(x)(uj)xx(x, t)− (uj)t(x, t) = K(x)
∑
l∈Z

w′′l (x)ϕjl(t)−
∑
l∈Z

wl(x)ϕ′jl(t)

Hence

〈K(x)(uj)xx − (uj)t, ϕjk〉 = 0

⇐⇒ 〈
∑
l∈Z

K(x)w′′l ϕjl −
∑
l∈Z

wlϕ
′
jl, ϕjk〉 = 0

⇐⇒
∑
l∈Z

K(x)w′′l 〈ϕjl, ϕjk〉 =
∑
l∈Z

wl〈ϕ′jl, ϕjk〉

⇐⇒ K(x)w′′k =
∑
l∈Z

wl〈ϕ′jl, ϕjk〉 k ∈ Z.

Therefore,

d2

dx2
wk =

∑
l∈Z

wl
1

K(x)
〈ϕ′jl, ϕjk〉 and

d2

dx2
wk =

∑
l∈Z

wl(Dj)lk(x)

where, as defined before, (Dj)lk(x) = 1
K(x) 〈ϕ

′
jl, ϕjk〉. Thus, we get an infinite-

dimensional system of ordinary differential equations

d2

dx2
w = −Dj(x)w

w(0) = γ, w′(0) = 0
(3.3)

where γ is given by

Pjg =
∑
z∈Z

γzϕjz =
∑
z∈Z

〈g, ϕjz〉ϕjz

Lemma 3.3 If w is a solution of the evolution problem of second order (3.3),
then

‖w(x)‖ ≤ ‖γ‖ exp
(
2−jπ

∫ x

0

∫ s

0

1
K(τ)

dτ ds
)

Proof Since w(x) = γ +
∫ x

0

∫ s

0
(−Dj)(τ)w(τ) dτds,

‖w(x)‖ ≤ ‖γ‖+
∫ x

0

∫ s

0

‖Dj(τ)‖‖w(τ)‖ dτ ds

By lemma 3.2 this implies

‖w(x)‖ ≤ ‖γ‖+
∫ x

0

∫ s

0

2−jπ

K(x)
‖w(τ)‖ dτ ds.
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Then by lemma 3.1 we have

‖w(x)‖ ≤ ‖γ‖ exp
(
2−jπ

∫ x

0

∫ s

0

1
K(τ)

dτds
)

which completes the proof. �

Theorem 3.4 (Stability of the wavelet Galerkin method) Let uj and vj

be solutions in Vj of the approximating problems (3.2) for the boundary specifi-
cations g and g̃, respectively. If ‖g − g̃‖ ≤ ε then

‖uj(x, ·)− vj(x, ·)‖ ≤ ε exp
(2−j−1π

α
x2

)
where α satisfies 0 < α ≤ K(x) < +∞ as in the definition of the problem (1.1).
For j such that 2−j ≤ 2α

π log ε−1 we have

‖uj(x, ·)− vj(x, ·)‖ ≤ ε1−x2

Proof. uj(x, t) =
∑

l∈Z wl(x)ϕjl(t), vj(x, t) =
∑

l∈Z w̃l(x)ϕjl(t) where w and
w̃ are solutions of the Galerkin problem (3.3) with conditions w(0) = γ and
w̃(0) = γ̃, respectively. So, by lemma 3.3 and linearity of (3.3) we have

‖uj(x, ·)− vj(x, ·)‖ = ‖w(x)− w̃(x)‖

≤ ‖γ − γ̃‖ exp(2−jπ

∫ x

0

∫ s

0

1
K(τ)

dτds)

≤ ε exp(2−jπ

∫ x

0

∫ s

0

1
α
dτds)

= ε exp(2−j−1 π

α
x2)

For j = j(ε) such that 2−j ≤ 2α
π log ε−1, we have

‖uj(x, ·)− vj(x, ·)‖ ≤ ε exp(x2 log ε−1) = ε1−x2

which completes the proof. �
Now, we are interested in the solutions u(x, ·) ∈ L2(R) of problem (1.1),

for the functions g ∈ L2(R) such that ĝ(·) exp(| · |/(2α)) ∈ L2(R), where ĝ is
the Fourier Transform of g. The Inverse Fourier Transform of exp(− ξ2+|ξ|

2α ), for
instance, satisfies this condition. Define

f := ĝ(·) exp
( | · |
2α

)
∈ L2(R) (3.4)

Proposition 3.5 If u(x, t) is a solution of problem (1.1), then

‖u(x, ·)− Pju(x, ·)‖ ≤ ‖f‖L2(R) exp(−1
3
π

α
2−j(1− x2))

where f is given by (3.4).
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Proof ¿From (2.6) and (3.1), we have

‖(I − Pj)u(x, ·)‖ ≤ ‖χj û(x, ·)‖

= [
∫
|ξ|> 2

3 π2−j

|û(x, ξ)|2 dξ]1/2

≤ [
∫
|ξ|> 2

3 π2−j

|ĝ(ξ)|2 exp[2|ξ|
∫ x

0

∫ s

0

1
K(τ)

dτ ds] dξ]1/2

Then

‖(I − Pj)u(x, ·)‖ ≤ [
∫
|ξ|> 2

3 π2−j

|ĝ(ξ)|2 exp(|ξ|x
2

α
) dξ]1/2

≤ [
∫
|ξ|> 2

3 π2−j

|f(ξ)|2 exp(−|ξ|
α

) exp(
|ξ|
α
x2)dξ]1/2

= [
∫
|ξ|> 2

3 π2−j

|f(ξ)|2 exp(−|ξ|
α

(1− x2)) dξ]1/2

For |x| < 1,

‖(I − Pj)u(x, ·)‖ ≤ [
∫

R
|f(ξ)|2 dξ]1/2 exp(− (2/3)π2−j

2α
(1− x2))

≤ ‖f‖L2(R) exp(−1
3
π

α
2−j(1− x2))

which completes the proof. �

Proposition 3.6 If u is a solution of problem (1.1) and uj−1 is a solution of
the approximating problem in Vj−1 then

û(x, ξ) = ûj−1(x, ξ) for |ξ| ≤ 4
3
π2−j (3.5)

Consequently,
Pju(x, ·) = Pjuj−1(x, ·) (3.6)

Proof Let Λ(x, ξ) = û(x, ξ) − ûj−1(x, ξ). We will show that Λ(x, ξ) = 0 for
|ξ| ≤ 4

3π2−j . Consider the approximating problem in Vj−1:

K(x)(uj−1)xx = Pj−1(uj−1)t t ∈ R, 0 < x < 1
uj−1(0, ·) = Pj−1g, (uj−1)x(0, ·) = 0

uj−1(x, ·) ∈ Vj−1

Applying the Fourier transform with respect to time, we have

K(x)(ûj−1)xx(x, ξ) = P̂j−1[(uj−1)t ]̂ (x, ξ) = P̂j−1(iξûj−1(x, ξ))
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for 0 ≤ x < 1, ξ ∈ R, with the conditions: ûj−1(0, ξ) = P̂j−1ĝ(ξ) and
(ûj−1)x(0, ·) = 0. Now, by (2.5),

P̂j−1(iξûj−1(x, ξ)) = iξûj−1(x, ξ) and P̂j−1û(0, ξ) = û(0, ξ)

for |ξ| ≤ 4
3π2−j . Thus, for |ξ| ≤ 4

3π2−j , we have

K(x)Λxx(x, ξ)− iξΛ(x, ξ)
= K(x)ûxx(x, ξ)−K(x)(ûj−1)xx(x, ξ)− iξ[û(x, ξ)− ûj−1(x, ξ)] = 0

Λ(0, ξ) = û(0, ξ)− ûj−1(0, ξ) = û(0, ξ)− P̂j−1ĝ(ξ) = û(0, ξ)− P̂j−1û(0, ξ) = 0

Λx(0, ξ) = ûx(0, ξ)− (ûj−1)x(0, ξ) = 0

Hence, for |ξ| ≤ 4
3π2−j , fixed, Λ(x, ξ) is solution on 0 ≤ x < 1 of the problem

K(x)Λxx(x, ξ)− iξΛ(x, ξ) = 0, 0 < x < 1
Λ(0, ξ) = 0, Λx(0, ξ) = 0

This problem has an unique solution Λ(x, ξ) = 0, for all x ∈ [0, 1). Thus,

û(x, ξ) = ûj−1(x, ξ) for |ξ| ≤ 4
3
π2−j

Now, (3.6) is consequence of (3.5) and the definition of P̂j . �

Theorem 3.7 Let u be a solution of (1.1) with the condition u(0, ·) = g, and
let f be given by (3.4). Let vj−1 be a solution of (3.2) in Vj−1 for the boundary
specification g̃ such that ‖g − g̃‖ ≤ ε. If j = j(ε) is such that 2−j = α

π log ε−1,
then

‖Pjvj−1(x, ·)− u(x, ·)‖ ≤ ε1−x2
+ ‖f‖L2(R) · ε

1
3 (1−x2)

Proof Note that

‖Pjvj−1(x, ·)− u(x, ·)‖ ≤ ‖Pjvj−1(x, ·)− Pju(x, ·) + Pju(x, ·)− u(x, ·)‖
≤ ‖Pjvj−1(x, ·)− Pju(x, ·)‖+ ‖Pju(x, ·)− u(x, ·)‖ .

Let uj−1 be a solution of (3.2) in Vj−1 for the boundary specification g. By
(3.6), Pju(x, ·) = Pjuj−1(x, ·). Thus, by theorem 3.4, we have

‖Pjvj−1(x, ·)− Pju(x, ·)‖ = ‖Pjvj−1(x, ·)− Pjuj−1(x, ·)‖

≤ ‖vj−1(x, ·)− uj−1(x, ·)‖ ≤ ε1−x2

Now, by proposition 3.5,

‖Pju(x, ·)− u(x, ·)‖ ≤ ‖f‖L2(R) exp(−1
3
π

α
2−j(1− x2)) ≤ ‖f‖L2(R) · ε

1
3 (1−x2)

Then ‖Pjvj−1(x, ·)− u(x, ·)‖ ≤ ε1−x2
+ ‖f‖L2(R)ε

1
3 (1−x2) �
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Conclusion

We had considered solutions u(x, ·) ∈ L2(R) of the problem K(x)uxx = ut,
0 < x < 1 , t ≥ 0 , with boundary specification g and ux(0, ·) = 0, where K(x)
is bounded below by a positive constant. The inequality (3.1) implies that a
solution of the problem above will be in L2(R) if ĝ has a rapid decay at high
frequencies. Since the Meyer wavelet has compact support in the frequency
domain, it cuts the high frequencies. Utilizing a wavelet Galerkin method with
the Meyer multi-resolution analysis, we regularize the ill-posedness of the prob-
lem, approaching it by well-posed problems in the scaling spaces, as shown by
theorem 3.4. We had shown the convergence of the wavelet Galerkin method
applied to our problem, with an estimate error, in theorem 3.7. A more direct
result would be to have a similar estimate for the difference between the exact
solution of the problem and the solution of the approximating problem defined
on the scaling space Vj . We are working towards this goal at the moment.

Notes: 1) Consider the problem

uxx(x, t) = ut(x, t), t ≥ 0, 0 < x < 1
u(0, ·) = gn, ux(0, ·) = 0 ,

where

gn(t) =

{
n−2 cos 2n2t, if 0 ≤ t ≤ t0

0, if t > t0 .

The solution of this problem is

un(x, t) =

{∑∞
j=0 n

−2 cos(2n2t+ j π
2 ) (

√
2nx)2j

(2j)! , if 0 ≤ t ≤ t0

0, if t > t0 .

Note that gn(t) converges uniformly to zero as n tends to infinity, while for
x > 0, the solution un(x, t) does not tend to zero. This example was inspired
by [1].
2) Note that (ϕjl)′ /∈ Vj . In fact, if (ϕjl)′ ∈ Vj then (ϕjl)′ =

∑
k∈Z αkϕjk.

Hence

(̂ϕjl)′ =
∑
k∈Z

αkϕ̂jk

So, we would have

i2j/2e−i2j lξξϕ̂(2jξ) =
∑
k∈Z

αk2j/2e−i2j/2ξϕ̂(2jξ)

This equality implies ξ =
∑

k∈Z αke
−i[2j(k−l)ξ+ π

2 ].
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