2002-Fez conference on Partial Differential Equations,
Electronic Journal of Differential Equations, Conference 09, 2002, pp 139-147.
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

Nonlinear elliptic systems with exponential nonlinearities *

Said El Manouni \& Abdelfattah Touzani

Abstract

In this paper we investigate the existence of solutions for $$
\begin{gathered} -\operatorname{div}\left(a\left(|\nabla u|^{N}\right)|\nabla u|^{N-2} u\right)=f(x, u, v) \quad \text { in } \Omega \\ -\operatorname{div}\left(a\left(|\nabla v|^{N}\right)|\nabla v|^{N-2} v\right)=g(x, u, v) \quad \text { in } \Omega \\ u(x)=v(x)=0 \quad \text { on } \partial \Omega . \end{gathered}
$$

Where Ω is a bounded domain in $\mathbb{R}^{N}, N \geq 2, f$ and g are nonlinearities having an exponential growth on Ω and a is a continuous function satisfying some conditions which ensure the existence of solutions.

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$ be a bounded domain with smooth boundary $\partial \Omega$.
In this paper we shall be concerned with existence of solutions for the problem

$$
\begin{array}{cc}
-\operatorname{div}\left(a\left(|\nabla u|^{N}\right)|\nabla u|^{N-2} u\right)=f(x, u, v) & \text { in } \Omega \\
-\operatorname{div}\left(a\left(|\nabla v|^{N}\right)|\nabla v|^{N-2} v\right)=g(x, u, v) & \text { in } \Omega \tag{1.1}\\
u(x)=v(x)=0 & \text { on } \partial \Omega .
\end{array}
$$

Where the nonlinearities $f, g: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuous functions having an exponential growth on Ω : i.e.,
(H1) For all $\delta>0$ $\lim _{|(u, v)| \rightarrow \infty} \frac{|f(x, u, v)|+|g(x, u, v)|}{e^{\delta\left(|u|^{N}+|v|^{N}\right)^{1 /(N-1)}}}=0 \quad$ Uniformly in Ω.

Let us mention that there are many results in the scalar case for problem involving exponential growth in bounded domains; see for example [4], [6]. The

[^0]objective of this paper is to extend these results to a more general class of elliptic systems using variational method. Here we will make use the approach stated by Rabinowitz [8].

Note that for nonlinearities having polynomial growth, several results of such problem have been established. We can cite, among others, the articles: [9] and [10]. In order to prove the compactness condition of the functional associated to a problem (1.1) we assume the following hypothesis
(H2) $u \frac{\partial F}{\partial u} \geq \frac{\mu}{2} F$ and $v \frac{\partial F}{\partial v} \geq \frac{\mu}{2} F$, where $F=F(x, u, v)$ and such that $\frac{\partial F}{\partial u}=$ $f(x, u, v), \frac{\partial F}{\partial v}=g(x, u, v)$ with $F(x, u, v)>0$ for $u>0$ and $v>0$, $F(x, u, v)=0$ for $u \leq 0$ or $v \leq 0$ with $\mu>N$ and $U=(u, v) \in \mathbb{R}^{2}$.
We shall find weak-solution of (1.1) in the space $W=W_{0}^{1, N}(\Omega) \times W_{0}^{1, N}(\Omega)$ endowed with the norm

$$
\|U\|_{W}^{N}=\int_{\Omega}|\nabla U|^{N} d x=\int_{\Omega}\left(|\nabla u|^{N}+|\nabla v|^{N}\right) d x
$$

where $U=(u, v) \in W$. Motivated by the following result due to Trudinger and Moser (cf. [7].[11]), we remark that the space W is embeded in the class of Orlicz-Lebesgue space

$$
L_{\phi}=\left\{U: \Omega \rightarrow \mathbb{R}^{2}, \text { measurable }: \int_{\Omega} \phi(U)<\infty\right\}
$$

where $\phi(s, t)=\exp \left(s^{\frac{N}{N-1}}+t^{\frac{N}{N-1}}\right)$. Moreover,

$$
\sup _{\|(u, v)\|_{W} \leq 1} \int_{\Omega} \exp \left(\gamma\left(|u|^{\frac{N}{N-1}}+|v|^{\frac{N}{N-1}}\right) d x \leq C \quad \text { if } \gamma \leq \omega_{N-1},\right.
$$

where C is a real number and ω_{N-1} is the dimensional surface of the unit sphere.
On this paper, we make the following assumptions on the function a.
(a1) $a: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is continuous
(a2) There exist positive constants $p \in] 1, N], b_{1}, b_{2}, c_{1}, c_{2}$ such that

$$
c_{1}+b_{1} u^{N-p} \leq u^{N-p} a\left(u^{N}\right) \leq c_{2}+b_{2} u^{N-p} \quad \forall u \in \mathbb{R}^{+} ;
$$

(a3) The function $k: \mathbb{R} \rightarrow \mathbb{R}, \quad k(u)=a\left(|u|^{N}\right)|u|^{N-2} u$ is strictly increasing and $k(u) \rightarrow 0$ as $u \rightarrow 0^{+}$.

Remark Note that operator considered here has been studied by Hirano [5] and by Ubilla [11] with nonlinearities having polynomial growth.

We shall denote by λ_{1} the smallest eigenvalue [9] for the problem

$$
\begin{array}{cl}
-\Delta_{N} u=\lambda|u|^{\alpha-1} u|v|^{\beta+1} & \text { in } \Omega \subset \mathbb{R}^{N} \\
-\Delta_{N} v=\lambda|u|^{\alpha+1}|v|^{\beta-1} v & \text { in } \Omega \subset \mathbb{R}^{N} \\
u(x)=v(x)=0 & \text { on } \partial \Omega
\end{array}
$$

i.e.,

$$
\begin{gathered}
\lambda_{1}=\inf \left\{\frac{\alpha+1}{N} \int_{\Omega}|\nabla u|^{N} d x+\frac{\beta+1}{N} \int_{\Omega}|\nabla v|^{N} d x:\right. \\
\left.(u, v) \in W, \int_{\Omega}|u|^{\alpha+1}|v|^{\beta+1} d x=1\right\}
\end{gathered}
$$

where $\alpha+\beta=N-2$ and $\alpha, \beta>-1$.

Definition We say that a pair $(u, v) \in W$ is a weak solution of (1.1) if for all $(\varphi, \psi) \in W$,

$$
\begin{align*}
\int_{\Omega} a\left(|\nabla u|^{N}\right)|\nabla u|^{N-2} \nabla u \nabla \varphi d x & =\int_{\Omega} f(x, u, v) \varphi d x \\
\int_{\Omega} a\left(|\nabla v|^{N}\right)|\nabla v|^{N-2} \nabla v \nabla \psi d x & =\int_{\Omega} g(x, u, v) \psi d x \tag{1.2}
\end{align*}
$$

Now state our main results.
Theorem 1.1 Suppose that f and g are continuous functions satisfying (H1), (H2) and that a satisfies (a1), (a2) and (a3), with $N b_{2}<\mu b_{1}$. Furthermore, assume that

$$
\begin{equation*}
\lim _{|U| \rightarrow 0} \sup \frac{p F(x, U)}{|u|^{\alpha+1}|v|^{\beta+1}}<\left(c_{1}+b_{1} \delta_{p}(N)\right) \lambda_{1} \tag{1.3}
\end{equation*}
$$

uniformly on $x \in \Omega$, where $\delta_{p}(N)=1$ if $N=p$ and $\delta_{p}(N)=0$ if $N \neq p$. Then problem (1.1) has a nontrivial weak solution in W.

Remarks

1) Here we note that in case that ($a 2$) holds for $p=N$, the condition (a2) can be rewritten as follows:
($a 2^{\prime}$) There exist c_{1}, c_{2} such that

$$
c_{1} \leq a\left(u^{N}\right) \leq c_{2} \quad \text { for all } \quad u \in \mathbb{R}^{+}
$$

If $a(t)=1,\left(a 2^{\prime}\right)$ holds with $c_{1}=c_{2}=1$ and therefore, we obtain the result given in [3].
2) If $a(u)=1+u^{\frac{p-N}{N}}$, conditions ($a 2$) and (a3) hold, then the problem (1.1) can be formulated as follows

$$
\begin{aligned}
& -\Delta_{N} u-\Delta_{p} u=f(x, u, v) \\
& -\Delta_{N} v-\Delta_{p} v=g(x, u, v)
\end{aligned}
$$

where $\Delta_{p} \equiv \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is p-Laplacian operator.

2 Preliminaries

The maximal growth of $f(x, u, v)$ and $g(x, u, v)$ will allow us to treat variationally system (1.1) in the product Sobolev space W. This exponential growth is relatively motivated by Trudinger-Moser inequality ([4], [11]).

Note that if the functions f and g are continuous and have an exponential growth, then there exist positive constants C and γ such that

$$
\begin{equation*}
|f(x, u, v)|+|g(x, u, v)| \leq C \exp \left(\gamma\left(|u|^{\frac{N}{N-1}}+|v|^{\frac{N}{N-1}}\right)\right), \quad \forall(x, u, v) \in \Omega \times \mathbb{R}^{2} \tag{2.1}
\end{equation*}
$$

Consequently the functional $\Psi: W \rightarrow \mathbb{R}$ defined as

$$
\Psi(u, v)=\int_{\Omega} F(x, u, v) d x
$$

is well defined, belongs to $C^{1}(W, \mathbb{R})$, and has

$$
\Psi^{\prime}(u, v)(\varphi, \psi)=\int_{\Omega} f(x, u, v) \varphi+g(x, u, v) \psi d x
$$

To prove this statements, we deduce from (2.1) that there exists $C_{1}>0$ such that

$$
|F(x, u, v)| \leq C_{1} \exp \left(\gamma\left(|u|^{\frac{N}{N-1}}+|v|^{\frac{N}{N-1}}\right)\right), \quad \forall(x, u, v) \in \Omega \times \mathbb{R}^{2}
$$

Thus, since

$$
\exp \left(\gamma\left(|u|^{\frac{N}{N-1}}+|v|^{\frac{N}{N-1}}\right)\right) \in L^{1}(\Omega), \quad \forall(u, v) \in W
$$

we have the result.
It follows from the assumptions on the function a that for all $t \in \mathbb{R}$,

$$
\begin{aligned}
\frac{1}{N} A\left(|t|^{N}\right) & \geq \frac{b_{1}}{N}|t|^{N}+\frac{c_{1}}{p}|t|^{p} \\
\frac{1}{N} A\left(|t|^{N}\right) & \leq \frac{b_{2}}{N}|t|^{N}+\frac{c_{2}}{p}|t|^{p}
\end{aligned}
$$

where $A(t)=\int_{0}^{t} a(s) d s$. Furthermore the function $g(t)=A\left(|t|^{N}\right)$ is strictly convex. Consequently, the functional $\Phi: W \rightarrow \mathbb{R}$ defined as

$$
\Phi(u, v)=\frac{1}{N} \int_{\Omega} A\left(|\nabla u|^{N}\right)+A\left(|\nabla v|^{N}\right) d x
$$

is well defined, weakly lower semicontinuous, Frechet differentiable and belongs to $C^{1}(W, \mathbb{R})$.

Therefore, if the function a satisfies conditions (a1), (a2) and (a3) and the nonlinearities f and g are continuous and satisfy (2.1), we conclude that the functional $J: W \rightarrow \mathbb{R}$, given by

$$
J(u, v)=\frac{1}{N} \int_{\Omega} A\left(|\nabla u|^{N}\right)+A\left(|\nabla v|^{N}\right) d x-\int_{\Omega} F(x, u, v) d x
$$

is well defined and belongs to $C^{1}(W, \mathbb{R})$. Also for all $(u, v) \in W$,

$$
\begin{aligned}
J^{\prime}(u, v)(\varphi, \psi)= & \int_{\Omega} a\left(|\nabla u|^{N}\right)|\nabla u|^{N-2} \nabla u \nabla \varphi+a\left(|\nabla v|^{N}\right)|\nabla v|^{N-2} \nabla u \nabla \psi d x \\
& -\int_{\Omega} f(x, u, v) \varphi+g(x, u, v) \psi d x
\end{aligned}
$$

Consequently, we are interested in using Critical Point theory to obtain weak solutions of (1.1).

Lemma 2.1 Assume that f and g are continuous and have an exponential growth. Let $\left(u_{n}, v_{n}\right)$ be a sequence in W such that $\left(u_{n}, v_{n}\right)$ converge weakly on $(u, v) \in X$, then

$$
\begin{aligned}
& \int_{\Omega} f\left(x, u_{n}, v_{n}\right)\left(u_{n}-u\right) d x \rightarrow 0, \\
& \int_{\Omega} g\left(x, u_{n}, v_{n}\right)\left(v_{n}-v\right) d x \rightarrow 0,
\end{aligned}
$$

as $n \rightarrow \infty$.

Proof. Let $\left(u_{n}, v_{n}\right)$ be a sequence converging weakly to some (u, v) in W. Thus, there exist a subsequence, denoted again by $\left(u_{n}, v_{n}\right)$ such that

$$
\begin{array}{ll}
u_{n} \rightarrow u & \text { in } L^{p}(\Omega) \\
v_{n} \rightarrow v & \text { in } L^{q}(\Omega),
\end{array}
$$

as $n \rightarrow \infty$ and for all $p, q>1$. On the other hand, we have

$$
\begin{aligned}
\int_{\Omega}\left|f\left(x, u_{n}, v_{n}\right)\right|^{p} d x \leq & C \int_{\Omega} \exp \left(p \gamma\left(\left|u_{n}\right|^{\frac{N}{N-1}}+\left|v_{n}\right|^{\frac{N}{N-1}}\right)\right) d x \\
\leq & C\left(\int_{\Omega} \exp \left(s p \gamma\left|u_{n}\right|^{\frac{N}{N-1}}\right)\right)^{\frac{1}{s}}\left(\int_{\Omega} \exp \left(s^{\prime} p \gamma\left|v_{n}\right|^{\frac{N}{N-1}}\right)\right)^{\frac{1}{s^{\prime}}} \\
\leq & C\left(\int_{\Omega} \exp \left(s p \gamma\left\|u_{n}\right\|_{W_{0}^{\frac{N}{N-1}}(\Omega)}\left(\frac{\left|u_{n}\right|^{\frac{N}{N-1}}}{\left\|u_{n}\right\|_{W_{0}^{1, N}(\Omega)}}\right)\right)\right)^{1 / s} \\
& \times\left(\int _ { \Omega } \operatorname { e x p } \left(s ^ { \prime } p \gamma \| v _ { n } \| _ { W _ { 0 } ^ { \frac { N } { N - 1 } } (\Omega) } \left(\frac{\left|v_{n}\right|^{\frac{N}{N-1}}}{\left.\left.\left.\left\|v_{n}\right\|_{W_{0}^{1, N}(\Omega)}\right)\right)\right)^{1 / s^{\prime}}} .\right.\right.\right.
\end{aligned}
$$

Since $\left(u_{n}, v_{n}\right)$ is a bounded sequence, we may choose γ sufficiently small such that

$$
s p \gamma\left\|u_{n}\right\|_{W_{0}^{1, N}(\Omega)} \frac{N^{N}}{N-1}<\alpha_{N} \quad \text { and } \quad s^{\prime} p \gamma\left\|v_{n}\right\|_{W_{0}^{1, N}(\Omega)}{ }^{\frac{N}{N-1}}<\alpha_{N} .
$$

Then

$$
\int_{\Omega}\left|f\left(x, u_{n}, v_{n}\right)\right|^{p} d x \leq C_{1}
$$

for n large and some constant $C_{1}>0$. By the same argument, we have also

$$
\int_{\Omega}\left|g\left(x, u_{n}, v_{n}\right)\right|^{q} d x \leq C_{2}
$$

for n large and some constant $C_{2}>0$. Using Hölder inequality, we obtain

$$
\begin{aligned}
\int_{\Omega} f\left(x, u_{n}, v_{n}\right)\left(u_{n}-u\right) d x & \leq\left[\int_{\Omega}\left|f\left(x, u_{n}, v_{n}\right)\right|^{p^{\prime}}\right]^{1 / p^{\prime}}\left[\left|u_{n}-u\right|^{p}\right]^{1 / p} \\
& \leq C\left[\left|u_{n}-u\right|^{p}\right]^{1 / p}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Omega} g\left(x, u_{n}, v_{n}\right)\left(v_{n}-v\right) d x & \leq\left[\int_{\Omega}\left|g\left(x, u_{n}, v_{n}\right)\right|^{q^{\prime}}\right]^{1 / q^{\prime}}\left[\left|v_{n}-v\right|^{q}\right]^{1 / q} \\
& \leq C^{\prime}\left[\left|v_{n}-v\right|^{q}\right]^{1 / q}
\end{aligned}
$$

Thus the proof is completed since $u_{n} \rightarrow u$ in $L^{p}(\Omega)$ and $v_{n} \rightarrow v$ in $L^{q}(\Omega)$.
Lemma 2.2 Assume that f and g are continuous satisfying (H1). Then the functional J satisfies Palais-Smale condition (PS) provided that every sequence $\left(u_{n}, v_{n}\right)$ in W is bounded.

Proof. Note that

$$
\begin{align*}
J^{\prime}\left(u_{n}, v_{n}\right)(\varphi, \psi) & =\Phi^{\prime}\left(u_{n}, v_{n}\right)(\varphi, \psi)-\int_{\Omega} f\left(x, u_{n}, v_{n}\right) \varphi+g\left(x, u_{n}, v_{n}\right) \psi d x \tag{2.2}\\
& \leq \varepsilon_{n}\|(\varphi, \psi)\|_{W}
\end{align*}
$$

for all $(\varphi, \psi) \in W$, where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\|\left(u_{n}, v_{n}\right)\right\|_{W}$ is bounded, we can take a subsequence, denoted again by $\left(u_{n}, v_{n}\right)$ such that

$$
\begin{array}{ll}
u_{n} \rightarrow u & \text { in } L^{p}(\Omega), \\
v_{n} \rightarrow u \quad & \text { in } L^{q}(\Omega),
\end{array}
$$

as n approaches ∞ and $\forall p, q>1$. Then considering in one hand $\varphi=u_{n}-u$ and $\psi=0$ in (2.2) and with the help of Lemma 2.1, we obtain

$$
\Phi^{\prime}\left(u_{n}, v_{n}\right)\left(u_{n}-u, 0\right) \rightarrow 0
$$

as n approaches ∞. Since $u_{n} \rightharpoonup u$ weakly, as $n \rightarrow \infty$ and $\Phi^{\prime} \in\left(S_{+}\right)$, the result is proved. We have the same result for v_{n} by considering $\psi=v_{n}-v$ and $\varphi=0$ in (2.2). Finally, we conclude that $\left(u_{n}, v_{n}\right) \rightarrow(u, v)$ as $n \rightarrow \infty$.

Lemma 2.3 Assume that the function a satisfies (a1), (a2) and (a3) with $N b_{2}<\mu b_{1}$, and that the nonlinearities f and g are continuous and satisfy (H1). Then the functional J satisfies the Palais-Smale condition (PS).

Proof. Using (a1), (a2) and (a3) with $N b_{2}<\mu b_{1}$, we obtain positive constants c, d such that

$$
\begin{equation*}
\frac{\mu}{N} A(t)-a(t) t \geq c t-d \quad \forall t \in \mathbb{R}^{+} \tag{2.3}
\end{equation*}
$$

Now, let $\left(u_{n}, v_{n}\right)$ be a sequence in W satisfying condition (PS). Thus

$$
\begin{equation*}
\frac{1}{N} \int_{\Omega} A\left(\left|\nabla u_{n}\right|^{N}\right)+\frac{1}{N} \int_{\Omega} A\left(\left|\nabla v_{n}\right|^{N}\right) d x-\int_{\Omega} F\left(x, u_{n}, v_{n}\right) d x \rightarrow c \tag{2.4}
\end{equation*}
$$

as n goes to ∞.

$$
\begin{align*}
& \left.\left|\int_{\Omega} a\left(\left|\nabla u_{n}\right|^{N}\right)\right| \nabla u_{n}\right|^{N}+a\left(\left|\nabla v_{n}\right|^{N}\right)\left|\nabla v_{n}\right|^{N} \tag{2.5}\\
& \quad-\left(\int_{\Omega} f\left(x, u_{n}, v_{n}\right) u_{n}+g\left(x, u_{n}, v_{n}\right) v_{n}\right) d x \mid \leq \varepsilon_{n}\left\|\left(u_{n}, v_{n}\right)\right\|_{W}
\end{align*}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Multiplying (2.4) by μ, subtracting (2.5) from the expression obtained and using (2.3), we have

$$
\begin{array}{r}
\left.\left|\int_{\Omega}\right| \nabla u_{n}\right|^{N}+\left|\nabla v_{n}\right|^{N}-\int_{\Omega}\left(\mu F\left(x, u_{n}, v_{n}\right)-\left(f\left(x, u_{n}, v_{n}\right) u_{n}+g\left(x, u_{n}, v_{n}\right) v_{n}\right) d x \mid\right. \\
\leq c+\varepsilon_{n}\left\|\left(u_{n}, v_{n}\right)\right\|_{W}
\end{array}
$$

From this inequality and using hypothesis (H1), we deduce that $\left(u_{n}, v_{n}\right)$ is bounded sequence in W. Now, with the help of Lemma 2.2, we conclude the proof.

3 Proofs of the existence results

Lemma 3.1 Assume that the hypotheses of Theorem 1.1 hold. Then, there exist $\eta, \rho>0$ such that $J(u, v) \geq \eta$ if $\|(u, v)\|_{X}=\rho$. Moreover, $J(t(u, v)) \rightarrow-\infty$ as $t \rightarrow+\infty$ for all $(u, v) \in W$.

Proof. By (1.3) and (2.1), we can choose $\eta_{1}<c_{1}+b_{1} \delta_{p}(N)$ such that for $r>N$,

$$
F(x, u, v) \leq \frac{1}{p} \eta_{1} \lambda_{1}|u|^{\alpha+1}|v|^{\beta+1}+C|u|^{r} e^{\gamma|u|^{\frac{N}{N-1}}} e^{\gamma|v|^{\frac{N}{N-1}}}
$$

for all $(x, u, v) \in \Omega \times W$. For $\|u\|_{W_{0}^{1, N}}$ and $\|v\|_{W_{0}^{1, N}}$ small, from Hölder's and Trudinger-Moser's inequalities, we obtain

$$
\begin{aligned}
J(u, v) \geq & \frac{b_{1}}{N}\|u\|_{W_{0}^{1, N}}^{N}+\frac{c_{1}}{p}\|u\|_{W_{0}^{1, N}}^{p}-\frac{\eta_{1}}{p}\|u\|_{W_{0}^{1, N}}^{p}-C_{1}\|u\|_{W_{0}^{1, N}}^{r} \\
& +\frac{b_{1}}{N}\|v\|_{W_{0}^{1, N}}^{N}+\frac{c_{1}}{p}\|v\|_{W_{0}^{1, N}}^{p}-\frac{\eta_{1}}{p}\|v\|_{W_{0}^{1, N}}^{p}-C_{1}\|v\|_{W_{0}^{1, N}}^{r} .
\end{aligned}
$$

Since $\eta_{1}<c_{1}+b_{1} \delta_{p}(N)$ and $p \leq N<r$, we can choose $\rho>0$ such that $J(u, v) \geq \eta$ if $\|(u, v)\|_{W}=\rho$ for some $\eta>0$. On the other hand, we can prove easily that

$$
J(t(u, v)) \rightarrow-\infty \quad \text { as } \quad t \rightarrow+\infty
$$

So, by the Mountain-Pass Lemma [2], problem (1.1) has nontrivial solution $(u, v) \in W$ which is a critical point of J. This completes the proof of Theorem 1.1.

At the end, we give an example which illustrates conditions given on the nonlinearities f and g.

Example Let
$F(x, u, v)=\left(1+\delta_{p}(N)\right) \frac{\lambda}{p}|u|^{\alpha+1}|v|^{\beta+1}+(1-\chi(u, v)) \exp \left(\frac{\sigma\left(|u|^{N}+|v|^{N}\right)^{\frac{1}{N-1}}}{\log (|u|+|v|+2)}\right)$
where $\chi \in C^{1}\left(\mathbb{R}^{2},[0,1]\right), \chi \equiv 1$ on some ball $B(0, r) \subset \mathbb{R}^{2}$ with $r>0$, and $\chi \equiv 0$ on $\mathbb{R}^{2} \backslash B(0, r+1)$.
Thus, it follows immediately that $\left(H_{1}\right),\left(H_{2}\right)$ and (1.3) are satisfied. Then problem (1.1) has a nontrivial weak solution provided that $\lambda<\lambda_{1}$.

References

[1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Sc. Norm. Sup. Pisa 17 (1990), 393-413.
[2] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, Funct. Anal. 14 (1973), 349-381.
[3] S. El Manouni and A. Touzani, Existence of nontrivial solutions for some elliptic systems in \mathbb{R}^{2}, Lecture Note in Pure and Applied Mathematics, Marcel Dekker, Vol 229, pp 239-248 (2002).
[4] D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in \mathbb{R}^{2} with nonlinearities in the critical growth range, Calculus of Variations and PDE.
[5] N. Hirano, Multiple solutions for quasilinear elliptic equations. Nonl. Anal. Th. Meth. Appl. 15 (1990). pp.625-638.
[6] Joao Marcos B. do O, Semilinear elliptic equations with exponential nonlinearities, Appl. Nonlinear Anal. 2 (1995).
[7] J. Moser, A sharp form of an equality by N. Trudinger, Ind. Univ. Math. J. 20 (1971), 1077-1092.
[8] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, No. 65 AMS, 1986.
[9] F. De.Thelin, Première valeur propre d'un système elliptique non lineaire, C. R. Acad. Sci. Paris, t.311, Série 1 (1990), 603-606.
[10] J. Velin and F. De.Thelin , Existence and Nonexistence on Nontrivial Solutions for Some Nonlinear Elliptic Systems, Revista Matematica de la Universidad Complutense de Madrid 6, numero 1 (1993).
[11] N. S. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484.
[12] P. Ubilla, Alguns resultados de multiplicidade de solucoes pam equacoes eliticas quasi-lineares. Doctoral dissertation (Unicamp). 1992.

Said El Manouni (e-mail: manouni@hotmail.com)
Abdelfattah Touzani (e-mail: atouzani@iam.net.ma)
Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz,
B. P. 1796 Atlas, Fès, Maroc.

[^0]: * Mathematics Subject Classifications: 35J70, 35B45, 35B65.

 Key words: Nonlinear elliptic system, exponential growth, Palais-Smale condition.
 © 2002 Southwest Texas State University.
 Published December 28, 2002.

