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Fredholm alternative for the p-Laplacian in

higher dimensions ∗

Pavel Drábek

Abstract

In this paper we study Dirichlet boundary-value problems, for the p-
Laplacian, of the form

−∆pu− λ1|u|p−2u = f in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, N ≥
1, p > 1, f ∈ C(Ω̄) and λ1 > 0 is the first eigenvalue of ∆p. We study the
geometry of the energy functional

Ep(u) =
1

p

∫
Ω

|∇u|p − λ1

p

∫
Ω

|u|p −
∫

Ω

fu

and show the difference between the case 1 < p < 2 and the case p > 2.
We also give the characterization of the right hand sides f for which the
Dirichlet problem above is solvable and has multiple solutions.

1 Introduction and statement of the results

Our aim is to study the solvability of the Dirichlet boundary-value problem

−∆pu− λ1|u|p−2u = f in Ω,
u = 0 on ∂Ω.

(1.1)

Here p > 1 is a real number, Ω is a bounded domain in RN with sufficiently
smooth boundary ∂Ω, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian and f ∈ C(Ω̄).
We assume that if N ≥ 2 then ∂Ω is a compact connected manifold of class C2.
By λ1 we denote the first eigenvalue of the related homogeneous eigenvalue
problem

−∆pu− λ|u|p−2u = 0 in Ω,
u = 0 on ∂Ω.

(1.2)
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104 Geometry of the energy functional and the Fredholm alternative

In this paper, the function u is said to be a (weak) solution of (1.1) if u ∈W 1,2
0 (Ω)

and the integral identity∫
Ω

|∇u|p−2∇u · ∇v − λ1

∫
Ω

|u|p−2uv =
∫

Ω

fv (1.3)

holds for all v ∈W 1,p
0 (Ω).

As for the properties of λ1 (see e.g. [2, 17]), let us mention that λ1 is positive,
simple and isolated and the corresponding eigenfunction ϕ1 (associated with λ1)
satisfies ϕ1 > 0 in Ω, ∂ϕ1

∂n < 0 on ∂Ω, where n denotes the exterior unit normal
to ∂Ω. One also has ϕ1 ∈ C1,ν(Ω̄) with some ν ∈ (0, 1) (see e.g. [9, Lemma 2.2,
p. 115]). Moreover, λ1 can be characterized as the best (the greatest) constant
C > 0 in the Poincaré inequality∫

Ω

|∇u|p ≥ C
∫

Ω

|u|p (1.4)

for all u ∈W 1,p
0 (Ω), where identity∫

Ω

|∇u|p − λ1

∫
Ω

|u|p = 0

holds exactly for the multiples of the first eigenfunction ϕ1.
Let us recall (see e.g. [9, pp. 114, 115]) that, for every h ∈ L∞(Ω), the

problem
∆pu = h in Ω,
u = 0 on ∂Ω,

(1.5)

has a unique solution u ∈ W 1,p
0 (Ω) ∩ C1,ν(Ω̄). Moreover, since C1,ν(Ω̄) is com-

pactly imbedded into C1(Ω̄), we can introduce the compact operator

∆−1
p : L∞(Ω)→ C1(Ω̄)

such that u = ∆−1
p h is the unique solution of (1.5). In particular, every solution

of (1.1) belongs to C1
0 (Ω̄).

In our further considerations we will use the standard spaces W 1,p
0 (Ω),

Lp(Ω), C(Ω̄) and C1(Ω̄) (or C1
0 (Ω̄), respectively), with corresponding norms

‖u‖ =
(∫

Ω

|∇u|p
)1/p

, ‖u‖Lp =
(∫

Ω

|u|p
)1/p

,

‖u‖C = max
x∈Ω
|u(x)|, ‖u‖C1 = ‖u‖C + max

x∈Ω
|∇u(x)|,

respectively, (here | · | denotes the Euclidean norm in R or RN ). The subscript 0
indicates that the traces (or values) of functions are equal zero on ∂Ω. Moreover,
for the element h of any of the above mentioned space we use the following (L2–
orthogonal) decomposition

h(x) = h̃(x) + h̄ϕ1(x),
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and also L2–nonorthogonal decomposition

h(x) = h̃(x) + ĥ,

where h̄, ĥ ∈ R and ∫
Ω

h̃(x)ϕ1(x)dx = 0.

The particular subspaces formed by h̃(x) will be denoted by W̃ 1,p
0 (Ω), C̃(Ω̄), and

C̃1
0 (Ω̄), respectively.

By BX(v, ρ) we denote the open ball in the space X with the center v and
radius ρ, where X = C(Ω̄) or X = C1

0 (Ω̄). We introduce the energy functional
associated with (1.1):

Ef (u) : =
1
p

∫
Ω

|∇u|p − λ1

p

∫
Ω

|u|p −
∫

Ω

fu, u ∈W 1,p
0 (Ω).

This functional is continuously Fréchet differentiable on W 1,p
0 (Ω) and its critical

points correspond one–to–one to solutions of (1.1).
Our main results concern the geometry of Ef and the structure of the set

of its critical points on one hand and the solvability properties of (1.1) on the
other hand. They are formulated in theorems below.

Theorem 1.1 Let 1 < p < 2 and 0 6= f̃ ∈ C̃(Ω̄). Then there exists ρ = ρ(f̃) >
0 such that for any f ∈ BC(f̃ , ρ) the functional Ef is unbounded from below and
has at least one critical point. Moreover, for f ∈ BC(f̃ , ρ) \ C̃(Ω̄) the functional
Ef has at least two distinct critical points.

Theorem 1.2 Let p > 2 and 0 6= f̃ ∈ C̃(Ω̄). Then the functional Ef̃ is bounded
from below and has at least one critical point (which is the global minimizer).
Moreover, there exists ρ = ρ(f̃) > 0 such that for f ∈ BC(f̃ , ρ) \ C̃(Ω̄) the
functional Ef has at least two distinct critical points.

Theorem 1.3 Let p > 1, p 6= 2, f̃ ∈ C̃(Ω̄). Then the problem (1.1) has at least
one solution if f = f̃ . For 0 6= f̃ ∈ C̃(Ω̄) there exists ρ = ρ(f̃) > 0 such that
(1.1) has at least one solution for any f ∈ BC(f̃ , ρ). Moreover, there exist real
numbers F− < 0 < F+ (see Fig. 1) such that the problem (1.1) with f = f̃ + f̂
has

(i) No solution for f̂ /∈ [F−, F+]

(ii) At least two distinct solutions for f̂ ∈ (F−, 0) ∪ (0, F+)

(iii) At least one solution for f̂ ∈ {F−, 0, F+}.

Remark 1.4 Note that standard bootstrap regularity argument implies that
any solution from Theorems 1.1–1.3 belongs to L∞(Ω) (cf. Drábek, Kufner,
Nicolosi [10]). It follows then from the regularity results of Tolksdorf [23] (see
also Di Benedetto [6] and Liebermann [16]) that it belongs to C1,ν(Ω̄) with some
ν ∈ (0, 1). In particular, our solution is an element of C1

0 (Ω̄).
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Figure 1: “Slice” of C(Ω̄) containing all constants and one fixed f̃ ∈ C̃(Ω̄).

Remark 1.5 In particular, it follows from our results that the set of f ∈ C(Ω̄)
for which (1.1) has at least one solution has a nonempty interior in C(Ω̄).

Remark 1.6 Note that Theorem 1.3 provides necessary and sufficient condition
for solvability of the problem (1.1). This condition is in fact of Landesman–Lazer
type (see [15], cf. also [11]). Indeed, given f̃ ∈ C̃(Ω̄), f̃ 6= 0, the problem (1.1)
with the right hand side f(x) = f̃(x) + f̂ has a solution if and only if

F−(f̃) ≤ 1
‖ϕ1‖L1

∫
Ω

f(x)ϕ1(x)dx ≤ F+(f̃).

However, it should be pointed out that this condition differs from the original
condition of Landesman and Lazer due to the fact that F− and F+ depend on
the component f̃ of the right hand side f and not on the perturbation term
(which is actually not present in our problem (1.1)). By homogeneity we have
that for any t > 0,

F±(tf̃) = tF±(f̃).

Our proofs rely on the combination of the variational approach and the
method of lower and upper solutions. We also use essentially the results obtained
by Drábek and Holubová [8], Takáč [21] and Fleckinger–Pellé and Takáč [14].
In fact, Theorem 1.1 was proved already in [8], however, here different approach
is used. During the preparation of this manuscript the author received preprint
of Takáč [22], where similar result to our Theorem 1.3 is proved. However, the
approach used in [22] is very different from ours.

Our objective in this paper is to avoid complicated technical assumptions.
For this reason we restrict to rather special domains Ω and right hand sides f .
On the other hand, we belive that in our approach the main ideas appear more
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clearly and that possible generalization of Ω or f will not bring any new insight
neither into the geometry of Ef nor to the solvability of (1.1).

It should be mentioned that our approach covers also the case N = 1, and
completes thus previous results in this direction proved by Del Pino, Drábek
and Manásevich [5], Drábek, Girg and Manásevich [7], Manásevich and Takáč
[18], Binding, Drábek and Huang [3], Drábek and Takáč [12]. In fact, the first
relevant result which led to better understanding of the problem appeared in
[5].

Note also that our Theorems 1.1, 1.2 and 1.3 express not only the difference
between the linear case p = 2 and the nonlinear case p 6= 2 but also the striking
difference between the case 1 < p < 2 and the case p > 2. The main goal of this
paper is actually to emphasize this fact.

2 Auxiliary assertions, survey of known facts

It should be pointed out that Ef is continuously differentiable and weakly lower
semicontinuous functional on W 1,p

0 (Ω). The following notions are crutial in the
study of the geometry of the functional Ef .

Definition 2.1 We say that the functional

Ef : W 1,p
0 (Ω)→ R

has a local saddle point geometry if we can find u, v ∈W 1,p
0 (Ω) which are sepa-

rated by W̃ 1,p
0 (Ω) in the sense that

Ef (u) < inf
w∈W̃ 1,p

0 (Ω)
Ef (w), Ef (v) < inf

w∈W̃ 1,p
0 (Ω)

Ef (w)

and any continuous path from u to v in W 1,p
0 (Ω) has a nonempty intersection

with W̃ 1,p
0 (Ω).

We say that Ef has a local minimizer geometry if we can find open bounded
set D ⊂W 1,p

0 (Ω) such that

inf
u∈D

Ef (u) < inf
u∈∂D

Ef (u).

The following lemma is crutial for application of variational methods. Its proof
can be found in [8, Lemma 2.2] (or in [7, Proposition 2.1] in one dimensional
case).

Lemma 2.2 Let p > 1, f = f̃ + f̄ϕ1 with f̄ 6= 0. Then Ef satisfies Palais–
Smale (PS) condition, i.e. if Ef (un)→ c ∈ R, E′f (un)→ 0 then {un} contains
strongly convergent subsequence in W 1,p

0 (Ω).

Note that the assertion of Lemma 2.2 is not true if f̄ = 0 (see [5]). The
following assertion deals with the case 1 < p < 2 and provides the information
about the geometry of the energy functional Ef .
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Lemma 2.3 (see [8, Lemma 2.1]) Let 1 < p < 2 and f̃ ∈ C̃(Ω̄), f̃ 6= 0.
Then Ef̃ has a local saddle point geometry. Moreover, there are two sequences
{un}, {vn} ⊂ W 1,p

0 (Ω) such that for any n ∈ N, un and vn are separated by
W̃ 1,p

0 (Ω) and
E(un)→ −∞, E(vn)→ −∞.

Later, in Section 4, we show that the situation is different if p > 2 and prove
that Ef has a local minimizer geometry in this case.

The following notions are crutial in the application of the method of lower
and upper solutions.

Definition 2.4 A function us ∈ C1(Ω̄) is an upper solution of (1.1) if∫
Ω

|∇us|p−2∇us · ∇v − λ1

∫
Ω

|us|p−2usv ≥
∫

Ω

fv ∀v ∈W 1,p
0 (Ω), v ≥ 0,

us ≥ 0 on ∂Ω.

In an analogous way we define a lower solution ul of (1.1).

Definition 2.5 Let u, v ∈ C1(Ω̄). We say that u ≺ v if u(x) < v(x) on Ω, and
for x ∈ ∂Ω either u(x) < v(x), or u(x) = v(x) and (∂u/∂n)(x) > (∂v/∂n)(x).

Definition 2.6 A lower solution ul of (1.1) is said to be strict if every solution
u of (1.1) such that ul ≤ u on Ω satisfies ul ≺ u. In an analogous way we define
a strict upper solution of (1.1).

For h ∈ C(Ω̄) we define an operator Tf : C1
0 (Ω̄)→ C1

0 (Ω̄) as Tf (v) = u where
u satisfies

∆pu = f(x)− λ1|v|p−2v in Ω,
u = 0 on ∂Ω.

The operator Tf is compact and its fixed points, i.e. u = Tf (u) u ∈ C1
0 (Ω),

correspond to solutions of the original problem (1.1). The following assertions
are proved in [8], the idea comes from [4].

Lemma 2.7 (Well–Ordered Lower and Upper Solutions) Let ul and us
be lower and upper solutions, respectively, of (1.1) such that ul ≤ us. Then the
problem (1.1) has at least one solution u satisfying

ul ≤ u ≤ us in Ω.

If, moreover, ul and us are strict and satisfy ul ≺ us, then there exists R0 > 0
such that for all R ≥ R0

deg[I − Tf ;M1, 0] = 1,

where M1 = {u ∈ C1
0 (Ω̄);ul ≺ u ≺ us} ∩BC1

0
(0, R).
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Lemma 2.8 (Non–Ordered Lower and Upper Solutions) Let ul and us
be lower and upper solutions, respectively, of (1.1) and ul(x0) > us(x0) for
some x0 ∈ Ω. Then (1.1) has at least one solution in the closure (with respect
to C1-norm) of the set

S = {u ∈ C1
0 (Ω̄);x1, x2 ∈ Ω: u(x1) < ul(x1), u(x2) > us(x2)}.

Set M2 = S ∩BC1
0
(0, R) and assume that there is no solution of (1.1) on ∂M2.

Then there exists R0 > 0 such that for all R ≥ R0

deg[I − Tf ;M2, 0] = −1.

As an immediate consequence of Lemmas 2.7 and 2.8 we have the following
proposition.

Proposition 2.9 Let (1.1) be solvable for f1 ∈ C(Ω̄) and f2 ∈ C(Ω̄) such that
f1(x) ≤ f2(x), x ∈ Ω̄. Then it is also solvable for any f ∈ C(Ω̄) such that
f1(x) ≤ f(x) ≤ f2(x), x ∈ Ω̄.

Proof. Let ui be a solution of (1.1) with fi, i = 1, 2. Then ul = u1 and us = u2

are lower and upper solutions, respectively, of (1.1) with f . Then either Lemma
2.7 or 2.8 applies to get a solution. �

The following assertion deals with the case p > 2 and helps to get the
information about the geometry of the energy functional Ef .

Proposition 2.10 ([14, Theorem 1.1]) There exists a positive constant C =
C(p,Ω) such that for all u ∈W 1,p

0 (Ω), u(x) = ũ(x) + ūϕ1(x),∫
Ω

|∇u|p − λ1

∫
Ω

|u|p ≥ C
(
|ū|p−2

∫
Ω

|∇ϕ1|p−2|∇ũ|2 +
∫

Ω

|∇ũ|p
)
.

We will need also the following imbedding type inequality (see [21, Lemma
4.2], [14, Lemma 4.2]): Let p > 2, then there exists C̃ > 0 such that for all
u ∈W 1,p

0 (Ω), (∫
Ω

|u|2
)1/2

≤ C̃
(∫

Ω

|∇ϕ1|p−2|∇u|2
)1/2

. (2.1)

The last assertion of this section is related to the application of the degree
argument in the proof of Theorem 1.3.

Proposition 2.11 (see [21, Theorems 2.3 and 2.8]) Let p > 1 and K be
a compact set in C(Ω̄) and

∫
Ω
fϕ1 6= 0 for any f ∈ K. Then there exists a

constant C̃1 = C̃1(K) > 0 such that

‖u‖C1
0
≤ C̃1

for any possible solution u of (1.1) with f ∈ K.
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3 Proof of Theorem 1.1

For the case 1 < p < 2, consider the energy functional

Ef̃ (u) : =
1
p

∫
Ω

|∇u|p − λ1

p

∫
Ω

|u|p −
∫

Ω

f̃u, u ∈W 1,p
0 (Ω),

where f̃ ∈ C̃(Ω̄), f̃ 6= 0. It was proved in Drábek and Holubová [8] that this
functional has a local saddle point geometry and, in particular, it is unbounded
from below (see also Lemma 2.3). It is also known (see DelPino, Drábek and
Manásevich [5]) that Ef̃ does not satisfy (PS) condition in general. So we cannot
deduce the existence of critical point of Ef̃ directly.

It follows from [8, proof of Lemma 2.1] that

lim
|ū|→∞

inf
ũ∈W̃ 1,p

0 (Ω)
{1
p

∫
Ω

|ū∇ϕ1 +∇ũ|p− λ1

p

∫
Ω

|ūϕ1 + ũ|p−
∫

Ω

f̃ ũ} = −∞. (3.1)

Moreover, the infimum is achieved for any fixed ū ∈ R at some ũū ∈ W̃ 1,p
0 (Ω).

Indeed, for fixed ū ∈ R the functional

ũ 7→ 1
p

∫
Ω

|ū∇ϕ1 +∇ũ|p − λ1

p

∫
Ω

|ūϕ1 + ũ|p −
∫

Ω

f̃ ũ

is weakly lower semicontinuous and coercive on W̃ 1,p
0 (Ω). Weak lower semiconti-

nuity follows from the same property of the norm on W̃ 1,p
0 (Ω) and compactness

of the imbedding W 1,p
0 (Ω) ↪→↪→ Lp(Ω). Coercivity is proved via contradiction.

Assume that there is a sequence {ũn} ⊂ W̃ 1,p
0 (Ω) such that ‖ũn‖ → ∞, and

1
p

∫
Ω

|ū∇ϕ1 +∇ũn|p −
λ1

p

∫
Ω

|ūϕ1 + ũn|p −
∫

Ω

f̃ ũn ≤ C

for some constant C > 0 independent of n. Dividing the last inequality by
‖ũn‖p and passing to the limit for n→∞, we obtain

lim
n→∞

{1
p

∫
Ω

| ū∇ϕ1

‖ũn‖
+∇ˆ̃un|p −

λ1

p

∫
Ω

| ūϕ1

‖ũn‖
+ ˆ̃un|p −

∫
Ω

f̃
ũn
‖ũn‖p

} ≤ 0,

where ˆ̃un = ũn
‖ũn‖ . The closedness of W̃ 1,p

0 (Ω) and the compactness of the

imbeddingW 1,p
0 (Ω) ↪→↪→ Lp(Ω) imply that there exists ũ0 ∈ W̃ 1,p

0 (Ω), ‖ũ0‖ = 1,
such that

1
p

∫
Ω

|∇ũ0|p −
λ1

p

∫
Ω

|ũ0|p = 0.

However, this contradicts the variational characterization and the simplicity of
λ1.

Lemma 3.1 Let ũū ∈ W̃ 1,p
0 (Ω) be as above. Then ‖ũū‖Lp = o(ū) as |ū| → ∞.
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Proof. (i) Assume that there exists {ūn} ⊂ R such that ūn →∞ and

ūn
‖ũūn‖

→ 0. (3.2)

Set ˆ̃uūn = ũūn/‖ũūn‖. It follows from (3.1) that

lim inf
ūn→∞

{1
p

∫
Ω

| ūn
‖ũūn‖

∇ϕ1 +∇ˆ̃uūn |p −
λ1

p

∫
Ω

| ūn
‖ũūn‖

ϕ1 + ˆ̃uūn |p

− 1
‖ũūn‖p−1

∫
Ω

f̃ ˆ̃uūn
}
≤ 0. (3.3)

Passing to a subsequence if necessary we conclude ˆ̃uūn ⇀ u0 in W 1,p
0 (Ω), ˆ̃uūn →

u0 in Lp(Ω) and ∫
Ω

u0ϕ1 = 0. (3.4)

At the same time, for large u ∈ N, we have

1
p

∫
Ω

| ūn
‖ũūn‖

∇ϕ1 +∇ˆ̃uūn |p ≥ ε

with some ε > 0. It follows then from (3.3) that

λ1

p

∫
Ω

|u0|p ≥ ε

which means that u0 6= 0. At the same time we get from (3.3) that

1
p

∫
Ω

|∇u0|p −
λ1

p

∫
Ω

|u0|p ≤ 0

and so the variational characterization and simplicity of λ1 imply that u0 =
kϕ1, k 6= 0. But this contradicts (3.4).

(ii) Assume that ūn →∞ and there exist constant C > 0 independent of n
such that

‖ũūn‖
ūn

≤ C. (3.5)

It follows from (3.1) that

lim
ūn→∞

inf{1
p

∫
Ω

|∇ϕ1 +∇(
ũūn
ūn

)|p − λ1

p

∫
Ω

|ϕ1 +
ũūn
ūn
|p −

∫
Ω

f̃
ũūn
ūpn
} ≤ 0. (3.6)

Passing to a subsequence if necessary, we conclude that there is u0 ∈ W 1,p
0 (Ω)

such that ũūn
ūn

⇀ u0 in W 1,p
0 (Ω), ũūnūn → u0 in Lp(Ω) and∫

Ω

u0ϕ1 = 0.
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Let u0 6= 0. Then we get from (3.6) that

1
p

∫
Ω

|∇ϕ1 +∇u0|p −
λ1

p

∫
Ω

|ϕ1 + u0|p ≤ 0,

which contradicts the variational characterization and simplicity of λ1. Hence
u0 = 0, i.e.

ũūn
ūn
→ 0 in Lp(Ω). (3.7)

Assume now that the assertion of lemma is not true. Then there is a sequence
{ūn} ⊂ R, ūn →∞, such that for some C̃2 > 0 we have

‖ũūn‖Lp
ūn

≥ C̃2.

For such a sequence we have that either (3.2) or (3.5) holds. The former case is
impossible by (i) the latter case contradicts (3.7). �

As a consequence of Lemma 3.1 we have

min
ũ∈W̃ 1,p

0 (Ω)
{1
p

∫
Ω

|ū∇ϕ1 +∇ũ|p − λ1

p

∫
Ω

|ūϕ1 + ũ|p −
∫

Ω

f̃ ũ} = o(ū), |ū| → ∞.

(3.8)

Lemma 3.2 For a given T > 0 there exists R > 0 such that for any ū ∈ [0, T ]
and ũ ∈ W̃ 1,p

0 (Ω), ‖ũ‖ = R, we have

1
p

∫
Ω

|ū∇ϕ1 +∇ũ|p − λ1

p

∫
Ω

|ūϕ1 + ũ|p −
∫

Ω

f̃ ũ ≥ 0. (3.9)

Proof. Assume that there is T > 0, ūn ∈ [0, T ], ‖ũn‖ → ∞ such that

1
p

∫
Ω

|ūn∇ϕ1 +∇ũn|p −
λ1

p

∫
Ω

|ūnϕ1 + ũn|p −
∫

Ω

f̃ ũn < 0. (3.10)

Set ˆ̃un = ũn/‖ũn‖. Passing to subsequences if necessary we can assume that
ˆ̃u ⇀ u0 in W 1,p

0 (Ω),
∫

Ω
u0ϕ1 = 0, ūn → ū0 ∈ [0, T ]. At the same time, dividing

(3.10) by ‖ũn‖p, passing to the limit for n→∞ we derive that u0 6= 0 and

1
p

∫
Ω

|∇u0|p −
λ1

p

∫
Ω

|u0|p ≤ 0

which contradicts the variational characterization and simplicity of λ1. �
Let ρ > 0 be small enough (to be specified later) and consider f ∈ BC(f̃ , ρ)\

C̃(Ω̄). Then f splits as follows:

f(x) = f̃(x) + f̄ϕ1(x)
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↑

→

‖ũ‖ ≤ R
ϕ1 Tϕ1

D

W̃ 1,p
0 (Ω)

W 1,p
0 (Ω)

Figure 2: The set D constructed in the proof of Theorem 1.1

with |f̄ | small, f̄ 6= 0. Then

Ef (u) =
1
p

∫
Ω

|∇u|p − λ1

p

∫
Ω

|u|p −
∫

Ω

f̃ ũ− ū
∫

Ω

f̄ϕ1

=Ef̃ (u)− ū
∫

Ω

f̄ϕ1, u ∈W 1,p
0 (Ω),

where u = ūϕ1 + ũ. Let f̄ < 0, so f̄ ∈ (−ρ̄, 0) with small ρ̄ > 0. We shall
construct the set

D = {u ∈W 1,p
0 (Ω): u = ūϕ1 + ũ, ū ∈ (0, T ), ‖ũ‖ < R}

with T > 0 and R > 0 to be specified later. We choose T1 > 0 so that

Ef̃ (ũT1) ≤ 2Ef̃ (ũ0) (3.11)

(this is possible due to (3.1), remind that ũT1 and ũ0 are the points where
inf ũ∈W̃ 1,p

0 (Ω)Ef̃ (ūϕ1 + ũ) is achieved for ū = T1 and ū = 0, respectively). Then
take ρ > 0 (and hence ρ̄ > 0) so small that

Ef (T1ϕ1 + ũT1) ≤ 3
2
Ef̃ (ũ0) (3.12)

if f ∈ BC(f̃ , ρ) \ C̃(Ω̄). Now we choose T > 0 so that

Ef (Tϕ1 + ũT ) ≥ 0 (3.13)

(this is possible due to (3.8) and f̄ < 0). Finally, we choose R = R(T ) > 0
according to Lemma 3.2 (see Fig. 2). Then it follows from Lemma 3.2, (3.12)
and (3.13) that

inf
u∈D

Ef (u) < inf
u∈∂D

Ef (u). (3.14)

Since Ef is weakly lower semicontinuous functional on D there exists a global
minimizer of Ef in D. Let uD ∈ D be the point of global minimum, i.e.

Ef (uD) = min
u∈D

Ef (u).
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Note that Ef is unbounded from below. This is easy to see, choosing e.g.
un = ūnϕ1, ūn → −∞, we obtain Ef (un) → −∞. So, Ef has a Mountain
Pass Theorem Geometry. Because Ef satisfies also (PS) condition according to
Lemma 2.2, we can apply the results of Rabinowitz [20] to derive the existence of
u0 ∈ W 1,p

0 (Ω), u0 6= uD, which is also a critical point of Ef . To summarize, we
proved that for f ∈ BC(f̃ , ρ) \ C̃(Ω̄) the functional Ef has at least two distinct
critical points. The case f̄ > 0 is similar.

It remains to prove that Ef̃ has at least one critical point. This follows from
the argument based on the method of upper and lower solutions. It follows from
the previous considerations that there is f̄ > 0 small enough such that Ef̃±f̄ϕ1

has critical points u± ∈W 1,p
0 (Ω), i.e.∫

Ω

|∇u±|p−2∇u± · ∇v − λ1

∫
Ω

|u±|p−2u±v =
∫

Ω

f̃v ±
∫

Ω

f̄ϕ1v

holds for any v ∈ W 1,p
0 (Ω). It follows from Proposition 2.9 that there is a

solution u ∈W 1,p
0 (Ω) satisfying∫

Ω

|∇u|p−2∇u · ∇v − λ1

∫
Ω

|u|p−2uv =
∫

Ω

f̃v

for any v ∈ W 1,p
0 (Ω). This is equivalent to the fact that u is a critical point of

Ef̃ . This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

We consider the case p > 2 and the energy functional Ef̃ with f̃ ∈ C̃(Ω̄), f̃ 6= 0.
Let us choose a function ϕ ∈W 1,p

0 (Ω), ϕ ≥ 0 in Ω and such that

{x ∈ Ω: ϕ(x) > 0} ⊂ {x ∈ Ω: f̃(x) > 0}

(note that this is possible because the latter set is an open subset of Ω). Then
there exists t > 0 (small enough) such that for v = tϕ we have

Ef̃ (v) < 0. (4.1)

Making use of Proposition 2.10 the Hölder and Young inequalities we have the
following estimate

Ef̃ (u) ≥C
p

[
|ū|p−2

∫
Ω

|∇ϕ1|p−2|∇ũ|2 +
∫

Ω

|∇ũ|p
]
−
(∫

Ω

|f̃ |p
′
)1/p′(∫

Ω

|ũ|p
)1/p

≥C
p

[
|ū|p−2

∫
Ω

|∇ϕ1|p−2|∇ũ|2 +
∫

Ω

|∇ũ|p
]
− Cp1ε

p

p
‖ũ‖p − 1

εpp′
‖f̃‖p

′

Lp′
,

where C1 > 0 is the constant of the imbedding W 1,p
0 (Ω) ↪→ Lp(Ω). Choosing

Cp1ε
p = C

2 we arrive at

Ef̃ (u) ≥ C

2p
‖ũ‖p +

C

p
|ū|p−2

∫
Ω

|∇ϕ1|p−2|∇ũ|2 −
( 2
C )

1
p−1C

1− 1
p

1

p′
‖f̃‖p

′

Lp′
. (4.2)



Pavel Drábek 115

It follows from here that there exists R = R(f̃) > 0 such that for any u =
ūϕ1 + ũ ∈W 1,p

0 (Ω) with ‖ũ‖ = R we have

Ef̃ (u) > 0. (4.3)

Let us consider now u = ūϕ1 + ũ ∈W 1,p
0 (Ω) for which

C

p
|ū|p−2

∫
Ω

|∇ϕ1|p−2|∇ũ|2 ≤ C2‖f̃‖p
′

Lp′
(4.4)

where we denoted C2 = 1
p′ (

2
C )

1
p−1C

1− 1
p

1 . It follows then from the Hölder in-
equality that Ef̃ (u) ≥ −‖f̃‖L2‖ũ‖L2 . If we combine this with (2.1) and (4.4)
we get

Ef̃ (u) ≥ −
C̃p1/2C

1/2
2 ‖f̃‖L2‖f‖

p′
2

Lp′

C1/2|ū| p−2
2

. (4.5)

Let us define the set

D = {u ∈W 1,p
0 (Ω): u = ūϕ1 + ũ, ū ∈ (−T, T ), ‖ũ‖ < R}

with R mentioned above and T > 0 to be fixed later (see Fig. 3). It follows
from (4.1) that

i : = inf
u∈D

Ef̃ (u) < 0

independently of T � 1. It follows from (4.5) that for u = ±Tϕ1 + ũ satisfying
(4.4) we have

Ef̃ (u) > i (4.6)

if T is large enough. On the other hand we have directly from (4.2) that

Ef̃ (u) ≥ 0 > i (4.7)

for u = ±Tϕ1 + ũ which do not satisfy (4.4). Now, if we combine (4.3), (4.6)
and (4.7), we get

i < inf
u∈∂D

Ef̃ (u). (4.8)

Thus Ef̃ has a local minimizer geometry. In particular, it follows also from
above considerations that Ef̃ is bounded from below on W 1,p

0 (Ω). Since Ef̃ is
weakly lower semicontinuous functional on the bounded, convex and closed set
D̄, it has to achieve its minimum there. Due to (4.8) the minimizer is an interior
point of D and due to the differentiability of Ef̃ it is a critical point at the same
time.

Let ρ > 0 and consider f ∈ BC(f̃ , ρ) \ C̃(Ω̄). Then, as in Section 3, split f
as follows:

f(x) = f̃(x) + f̄ϕ1(x)

with f̄ 6= 0. Then

Ef (u) = Ef̃ (u)− ū
∫

Ω

f̄ϕ1
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↑

→

‖ũ‖ ≤ R
ϕ1 Tϕ1−Tϕ1

D

W̃ 1,p
0 (Ω)

W 1,p
0 (Ω)

Figure 3: The set D constructed in the proof of Theorem 1.2

and thus Ef is unbounded from below (we can use the same reasoning as in the
previous section). If ρ is small enough (and so is |f̄ |) then inequality (4.8) still
holds. This means that Ef has a Mountain Pass Theorem Geometry and we
proceed exactly as in the previous section to conclude the existence of at least
two distinct critical points of Ef̃ . This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Let f̃ ∈ C̃(Ω̄). Then it follows from Theorems 1.1 and 1.3 that the problem
(1.1) has at least one weak solution. It follows from these theorems that for
f̃ 6= 0 there exists ρ = ρ(f̃) > 0 such that (1.1) has at least one solution for
any f ∈ BC(f̃ , ρ). So we shall concentrate to the proof of the second part of
Theorem 1.3. To this end we shall split f ∈ C(Ω̄) as follows

f(x) = f̃(x) + f̂ . (5.1)

Define
F− = F−(f̃) := inf f̂ , F+ = F+(f̃) := sup f̂ ,

where the infimum and the supremum are taken over all f̂ for which (1.1)
(with f(x) given above) has a solution. It follows directly from the first part
of Theorem 1.3 that F− < 0 < F+. To prove that F± are finite we argue by
contradiction. Let us suppose that there exist sequences {f̂n} ⊂ R, {un} ⊂
C1

0 (Ω̄), such that f̂n →∞ and un is a solution to (1.1) with the right hand side

fn(x) = f̃(x)+f̂n. Dividing the equation in (1.1) by f̂n, setting vn : = f̂
− 1
p−1

n un,
and using the compactness of ∆−1

p , we find that vn → v0 in C1
0 (Ω̄) (at least for

a subsequence). Moreover, v0 satisfies

−∆pv0 − λ1|v0|p−2v0 = 1 in Ω,
v0 = 0 on ∂Ω.

But this is a contradiction with the nonexistence result proved e.g. in [1, 13].
Hence (1.1) has no solution provided f̂ /∈ [F−, F+] which proves (i).
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It follows directly from Proposition 2.9 that (1.1) is solvable for any f̂ ∈
(F−, F+). Let now f̂ = F−. Consider f̂n > F−, f̂n → F− and denote by
un ∈ C1

0 (Ω̄) corresponding solutions of (1.1) with f(x) = f̃(x) + f̂n. According
to Proposition 2.11 the sequence {un} is bounded in C1

0 (Ω̄). Compactness of
∆−1
p implies the existence of a subsequence (denoted again by {un}) for which

un → u− in C1
0 (Ω̄) for some u− ∈ C1

0 (Ω̄). Moreover, similarly as above, u−
satisfies

−∆pu− − λ1|u−|p−2u− = f̃(x) + F− in Ω
u− = 0 on ∂Ω

Similarly, we prove that (1.1) is solvable for f(x) = f̃(x)+F+. This proves (iii).
It remains to prove the multiplicity result stated in (ii). We proceed via

contradiction. To this end we apply the degree theory combined with Lemmas
2.7, 2.8 and Propositions 2.9 and 2.11. Let us assume that f̂ ∈ (0, F+) (the proof
in case f̂ ∈ (F−, 0) is similar). Then the problem (1.1) with f(x) = f̃(x) + f̂

has a solution u and there exist 0 < f̂1 < f̂ < f̂2 < F+ such that (1.1) has also
solutions ui for fi(x) = f̃(x)+ f̂i, i = 1, 2. It is straightforward to verify that u1

and u2 are lower and upper solutions, respectively, of (1.1) with the right hand
side f . We assume that u is unique solution of (1.1) obtained by Proposition
2.9, i.e. it is either u1 ≤ u ≤ u2 in Ω or u ∈ S̄ (with S defined in Lemma
2.8). Assume that the former case occurs, u1, u2 are strict, and u1 ≺ u2, i.e.
u /∈ ∂M1 with R = R0 large enough (with M1 defined in Lemma 2.7). Then
according to Lemma 2.7, we have that

deg[I − Tf ;M1, 0] = 1. (5.2)

Let us choose f̂3 > F+. It follows from above considerations that (1.1) with
f3(x) = f̃(x) + f̂3 has no solution. Hence

deg[I − Tf3 ;BC1
0
(0, R), 0] = 0 (5.3)

for arbitrary R > 0. Consider now the family of functions

ft(x) = f̃(x) + tf̂ + (1− t)f̂3, t ∈ [0, 1].

Then K = {ft ∈ C(Ω̄) : t ∈ [0, 1]} is a compact subset of C(Ω̄) and

H(t, ·) = I − Tft , t ∈ [0, 1],

is a homotopy of compact perturbations of the identity. It follows from Propo-
sition 2.11 that for R = R1 > R0 large enough we have that

deg[I − Tft ;BC1
0
(0, R1), 0]

is constant for t ∈ [0, 1]. Due to (5.3) we have also

deg[I − Tf ;BC1
0
(0, R1), 0] = 0. (5.4)
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Additivity property of the degree and (5.2), (5.4) imply that there is ǔ in
BC1

0
(0, R1) \ M1 which is a solution of (1.1) and evidently ǔ 6= u which is a

contradiction with uniqueness of u.
The proof follows the same lines if u ∈ S̄ and u /∈ ∂M2 (with M2 defined

in Lemma 2.8). The only difference consists in substituting (5.2) by

deg[I − Tf ;M2, 0] = −1.

Assume, now, that unique solution u is obtained by means of Lemma 2.7
but u ∈ ∂M1. Since R0 can be chosen large enough this means that u1 6≺ u
or u 6≺ u2. Let us assume u1 6≺ u (the other case is similar). This means that
either there exists x0 ∈ Ω such that u1(x0) = u(x0) or there exists x̌0 ∈ ∂Ω such
that ∂u1

∂n (x̌0) = ∂u
∂n (x̌0). We choose δ > 0 small enough (to be specified later)

and define uδ1(x) = u1(x) − δ, x ∈ Ω. Then uδ1 ∈ C1(Ω̄) and uδ1 ≺ u. We prove
that for δ small this new function uδ1 is lower solution of (1.1). Indeed, since
u1 ∈ C(Ω̄), there exists a constant C = C(‖u1‖C) > 0 such that for any x ∈ Ω̄,∣∣|u1(x)− δ|p−2(u1(x)− δ)− |u1(x)|p−2u1(x)

∣∣ ≤ |δ|p−1,

for 1 < p < 2, and∣∣|u1(x)− δ|p−2(u1(x)− δ)− |u1(x)|p−2u1(x)
∣∣ ≤ C|δ|,

for p > 2. In either case, there exists δ0 > 0 such that for all 0 < δ < δ0 we have∫
Ω

∣∣|uδ1(x)|p−2uδ1(x)− |u1(x)|p−2u1(x)
∣∣ψ(x)dx ≤ f̂ − f̂1

2λ1

∫
Ω

ψ(x)dx (5.5)

for all ψ ≥ 0, ψ ∈W 1,p
0 (Ω).

Since ∇uδ1(x) = ∇u1(x), x ∈ Ω, it follows from (5.5) that∫
Ω

|∇uδ1|p−2∇uδ1 · ∇ψ − λ1

∫
Ω

|uδ1|p−2uδ1ψ ≤
∫

Ω

f̃ψ + f̄

∫
Ω

ψ,

for any ψ ≥ 0, ψ ∈W 1,p
0 (Ω), i.e. uδ1 is a lower solution of (1.1).

Similarly we can define an upper solution uδ2 = u2 + δ such that u ≺ uδ2. We
define then a new setMδ

1 by means of uδ1, u
δ
2, with uδ1 ≺ uδ2, and since u /∈ ∂Mδ

1,
we proceed as above to get a contradiction with the uniqueness of u.

Assume, now, that unique solution u is obtained by means of Lemma 2.8
but u ∈ ∂M2. Since R0 can be chosen large enough this means that we have
two similar possibilities (which can occur simultaneously):
(i) either u(x) ≥ u1(x), x ∈ Ω, and there exists xl0 ∈ Ω such that u(xl0) = u1(xl0)
or there exists x̌l0 ∈ ∂Ω such that ∂u1

∂n (x̌l0) = ∂u
∂n (x̌l0),

(ii) either u(x) ≤ u2(x), x ∈ Ω, and there exists xs0 ∈ Ω such that u(xs0) = u2(xs0)
or there exists x̌s0 ∈ ∂Ω such that ∂u2

∂n (x̌s0) = ∂u
∂n (x̌s0).

Let us assume that the first possibility (i) occurs. Then for δ small we
define a function uδ1 = u1 − δ. If the second possibility (ii) occurs then we
define uδ2 = u2 + δ. By the same reason as above, uδ1 and uδ2 are lower and
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upper solutions of (1.1), respectively, and they are still non-ordered if δ is small
enough. Moreover, for Mδ

2 defined by means of uδ1, u
δ
2, we have that u /∈ Mδ

2.
By Lemma 2.8 there must be ǔ ∈ Mδ

2 which is a solution of (1.1) and ǔ 6= u.
This contradicts again the uniqueness of u.

The proof of multiplicity result stated in Theorem 1.3 (ii) is thus proved and
so the whole proof is finished. �
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[8] P. Drábek, G. Holubová, Fredholm alternative for the p-Laplacian in higher
dimensions, J. Math. Anal. Applications, 263 (2001), 182 - 194.
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