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Nontrivial solutions of semilinear elliptic

systems in RN ∗

Jianfu Yang

Abstract

We establish an existence result for strongly indefinite semilinear el-
liptic systems in RN .

1 Introduction

The main objective of this paper is to establish existence results for the semi-
linear elliptic system

−∆u+ u = g(x, v), −∆v + v = f(x, u) inRN , (1.1)

u(x)→ 0 and v(x)→ 0 as |x| → ∞. (1.2)

The existence of solutions of (1.1)-(1.2) is usually investigated by finding critical
points of a related functional. Typical features of the problem are that firstly,
the related functional is strongly indefinite; secondly, the growths of f in u and
g in v at infinity may not be ‘symmetric’; and lastly, Sobolev embeddings in
general are not compact, then the Palais - Smale condition may not be satisfied.
Existence results were recently obtained in [12] and [15] in bounded domains.
The arguments lie in the decomposition of Sobolev spaces by eigenfunctions of
Laplacian operator and a use of linking theorems. Using spectral family theory
of non-compact operator, the author and Figueiredo [13] find a suitable linking
structure for the functional associate to (1.1)-(1.2) and prove that problem (1.1)-
(1.2) possesses at least a positive solution if f and g depend on the variable
x radially. Furthermore, it is also shown in [13] that all positive solutions
of problem (1.1)-(1.2) are exponentially decaying. In this paper, we establish
existence results for general cases. Assume that

H1) f, g : RN × R → R are measurable in the first variable, continuous in the

second variable. Both F (x, t) =
∫ t
0
f(x, s)ds and G(x, t) =

∫ t
0
g(x, s)ds are

increasing and strictly convex in t.

H2) limt→0 f(x, t)/t = 0, limt→0 g(x, t)/t = 0 uniformly in x ∈ RN .
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344 Nontrivial solutions of semilinear elliptic systems

H3) There is a constant c > 0 such that |f(x, t)| ≤ c(|t|p + 1) and |g(x, t)| ≤
c(|t|q + 1), where 0 < p, q < (N + 2)/(N − 2), N ≥ 3.

H4) There are constants α, β > 2 such that 0 < αF (x, t) ≤ tf(x, t) and 0 <
βG(x, t) ≤ tg(x, t), for t 6= 0.

H5) f(x, t)→ f̄(t) and g(x, t)→ ḡ(t) uniformly for t bounded as |x| → ∞.
|f(x, t) − f̄(t)| ≤ ε(R)|t| and |g(x, t) − ḡ(t)| ≤ ε(R)|t| whenever |x| ≥ R,
|t| ≤ δ, where ε(R)→∞ as R→∞.

H6) F (x, t) ≥ F̄ (t) and G(x, t) ≥ Ḡ(t),
meas{x ∈ RN : f(x, t) 6≡ f̄(t)} > 0 or meas{x ∈ RN : g(x, t) 6≡ ḡ(t)} > 0.

H7) Both f̄(t)/t and ḡ(t)/t are increasing in t.

Our main result is as follows.

Theorem 1.1 Assume (H1)-(H7). Then problem (1.1)-(1.2) possesses at least
one nontrivial exponentially decaying solution.

The restriction of exponents in (H3) is due to the fact that we only know
the decaying law in the case.
We analyze the convergence of Palais-Smale sequence of associate functional

to (1.1)-(1.2) in Section 3. It is shown that the energy levels of solutions of the
related autonomous system

−∆u+ u = ḡ(v), −∆v + v = f̄(u) in R
N , (1.3)

u(x)→ 0, v(x)→ 0 as |x| → 0 . (1.4)

are obstacle levels preventing strong convergence of Palais-Smale sequences of
(1.1)-(1.2). The possible critical values to be found are between obstacle lev-
els. To retain the compactness, we have to get control of critical values. It is
harder to handle critical values described by linking structure than that by the
Mountain Pass Theorem. We use dual variational method as [3], [4] and [11].
The method is of the advantage avoiding the indefinite character of original
functional. We start with problem (1.1)-(1.2) in bounded domains. Although
existence result in the case is known, it has no control of critical values. We
establish in Section 2 an existence result by the Mountain Pass Theorem and
bound uniformly corresponding critical values by the energy level of ground
state of problem (1.3)-(1.4). Then we construct a Palais - Smale sequence for
the functional associated to problem (1.1)-(1.2). Theorem 1.1 is proved in Sec-
tion 4.

2 Existence results in bounded domains

Let Ω be a bounded domain. We consider the problem

−∆u+ u = g(x, v), −∆v + v = f(x, u) in Ω, (2.1)

u = 0, v = 0 on ∂Ω . (2.2)
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The solutions of (2.1)-(2.2) will be found by looking for critical points of asso-
ciate functional. The main result in this section is as follows.

Theorem 2.1 Assume (H1) − (H4). Then problem (2.1)-(2.2) possesses at
least a nontrivial solution.

To prove Theorem 2.1 we will need the lemmas below. First we define the
dual functional associate to (2.1)-(2.2). It is well known that the inclusions

ir :W
1,r
o (Ω)→ Lp+1(Ω), is :W

1,s
o (Ω)→ Lq+1(Ω)

are compact if 2 < p + 1 < rN
N−r , N > r and 2 < q + 1 < sN

N−s , N > s. The

operator −∆+ id : W 1,r
o (Ω) → W−1,r′

o (Ω) is an isomorphism, where r′ = r
r−1 .

Hence
T = i2(−∆+ id)

−1i∗2 : L
1+1/q(Ω)→ Lp+1(Ω).

is continuous. Denote by X = Lp+1(Ω)×Lq+1(Ω), X∗ = L1+1/p(Ω)×L1+1/q(Ω)
and let

A =

(
0 T
T 0

)
, K = A−1 =

(
0 T −1

T −1 0

)
.

For each x, the Legendre-Fenchel transformations F ∗(x, ·) of F (x, ·), and
G∗(x, ·) of G(x, ·) are defined by

F ∗(x, s) = sup
t∈R
{st− F (x, t)}, G∗(x, s) = sup

t∈R
{st−G(x, t)} (2.3)

respectively. Equivalently, we have

F ∗(x, s) = st− F (x, t) with s = f(x, t), t = F ∗
′

s (x, s) (2.4)

and
G∗(x, s) = st−G(x, t) with s = g(x, t), t = G∗

′

s (x, s). (2.5)

In the same way, we define F̄ ∗, Ḡ∗ for F̄ , Ḡ. By (H6) and properties of Legendre-
Fenchel transformations, we have

F ∗(x, s) ≤ F̄ ∗(s), G∗(x, s) ≤ Ḡ∗(s). (2.6)

We may verify following properties of F ∗, G∗ in Lemmas 2.2 and 2.3 as [3], [10]
and [16].

Lemma 2.2 F ∗, G∗ ∈ C1 and

F ∗(x, s) ≥ (1−
1

α
)sF ∗

′

(x, s), G∗(x, s) ≥ (1−
1

β
)sG∗

′

(x, s), (2.7)

F ∗(s, x) ≥ C|s|1+1/p − C, G∗(x, s) ≥ C|s|1+1/q − C. (2.8)

Lemma 2.3 There exist δ > 0, Cδ and C
′
δ > 0 such that

F ∗(x, s) ≥

{
Cδ|s|2, if |s| ≤ δ

C′δ|s|
1+ 1p , if |s| ≥ δ

, G∗(x, s) ≥

{
Cδ|s|2, if |s| ≤ δ

C′δ|s|
1+ 1q , if |s| ≥ δ

.
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We may verify that the dual functional

Ψ(w) = ΨΩ(w) =

∫
Ω

(F ∗(x,w1) +G
∗(x,w2)) dx−

1

2

∫
Ω

〈w,Kw〉 dx,

is well defined and C1 on X∗. A critical point w of Ψ satisfies

(−∆+ id)−1w2 = F
∗′

s (x,w1) and (−∆+ id)−1w1 = G
∗′

s (x,w2).

Let
u = (−∆+ id)−1w2, v = (−∆+ id)−1w1.

Then (u, v) satisfies (2.1)-(2.2). Furthermore, denoting by

Φ(z) =

∫
Ω

(∇u∇v + uv) dx−

∫
Ω

F (x, u) dx−

∫
Ω

G(x, v) dx

the functional of (2.1) -(2.2) defined on H1o (Ω)×H
1
o (Ω), we deduce by (2.4) and

(2.5) that Φ(z) = Ψ(w). Such a result is also valid for solutions of (1.1)-(1.2).
Now we use the Mountain Pass Theorem to find critical points of Ψ.
Following arguments of [6], we know that (H2) implies F ∗(x, t)/t2 →∞ and

G∗(x, t)/t2 →∞. Thus 0 is a local minmum of Ψ. Precisely,

Lemma 2.4 There exist constants α, ρ > 0, independent of Ω, such that

Ψ(w) ≥ α > 0 if ‖w‖X∗ = ρ.

Lemma 2.5 There exist T > 0 and w ∈ E such that Ψ(tw) ≤ 0 whenever
t ≥ T .

Proof. Taking w ∈ X∗, w 6≡ 0 such that
∫
Ω

〈w,Kw〉 dx > 0,

whence by (H4), for t > 0

Ψ(tw) ≤ t
α
α−1

∫
Ω

|w1|
α
α−1 dx+ t

β
β−1

∫
Ω

|w2|
β
β−1 dx−

1

2
t2
∫
Ω

〈w,Kw〉 dx.

Since α
α−1 ,

β
β−1 < 2, the assertion follows for t > 0 large. �

Let
Γ = {g ∈ C([0, 1], X∗) : g(0) = 0, g(1) = e},

where e = Tw. We define

c = cΩ = infg∈Γ sup
t∈[0,1]

Ψ(g(t)). (2.9)

The Mountain Pass Theorem will imlpy that c is a critical value of Ψ if the
Palais-Smale ((PS) for short) condition holds. It is known from Lemma 2.4 that
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corresponding critical points are nontrivial. Then the proof of Theorem 2.1 is
completed.
Now we verify the (PS) condition. By a (PS) condition for Ψ we mean that

any sequence {wn} ⊂ X∗ such that |Ψ(wn)| is uniformly bounded in n and
Ψ′(wn)→ 0 as n→∞ possesses a convergent subsequence.

Lemma 2.6 The (PS) condition holds for Ψ.

Proof. Let {wn} be a (PS) sequence of Ψ, that is

|Ψ(wn)| ≤ C Ψ′(wn)→ 0 as n→∞

for some constant C > 0. This inequality and lemma 2.2 yield∫
Ω

[F ∗(x,w1n) +G
∗(x,w2n)] dx

≤
1

2

∫
Ω

〈wn,Kwn〉 dx+ C

≤
1

2

∫
Ω

(F ∗
′

s (x,w
1
n)w

1
n +G

∗′

s (x,w
2
n)w

2
n) dx+ o(1)‖wn‖X∗ + C

≤
1

2

α

α− 1

∫
Ω

F ∗(x,w1n) dx+
1

2

β

β − 1

∫
Ω

G∗(x,w2n) dx+ o(1)‖wn‖X∗ .

That is ∫
Ω

[F ∗(x,w1n) +G
∗(x,w2n)] dx ≤ C + o(1)‖wn‖X∗ .

By Lemma 2.3, we obtain

‖w1n‖
1+1/p

L1+1/p
+ ‖w2n‖

1+1/q

L1+1/q
≤ C + o(1)‖wn‖X∗ .

It implies that ‖wn‖X∗ is bounded. We may assume wn → w weakly in X∗ as
n→∞. Since the operator (−∆+ id)−1 is compact, it follows

un := (−∆+ id)
−1w2n → (−∆+ id)

−1w2 in X∗ as n→∞,

vn := (−∆+ id)
−1w1n → (−∆+ id)

−1w1 in X∗ as n→∞.

As a result, wn = (f(x, un), g(x, vn)) → w in X∗ as n → ∞ which com-
pletes the present proof.

3 Palais-Smale sequence

In this section, we prove a global compact result for problem (1.1)-(1.2). Let
E = H1(RN )×H1(RN ). By our assumptions, the functional

Φ(z) =

∫
RN

(∇u∇v + uv) dx−

∫
RN

(F (x, u) +G(x, v)) dx

is C1 on E. The functional Φ∞ is defined with F̄ and Ḡ replacing F and G in
Φ respectively.
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Proposition 3.1 Asumme (H1)-(H6). Let {zn} be a (PS)c sequence of Φ, i.e.

Φ(zn)→ c and Φ′(zn)→ 0 as n→ 0. (3.1)

Then there exists a subsequence (still denoted by {zn}) for which the following
holds: there exist an integer k ≥ 0, sequences {xin} ⊂ R

N , |xin| → ∞ as n→∞
for 1 ≤ i ≤ k, a solution z of (1.1)-(1.2) and solutions zi(1 ≤ i ≤ k) of
(1.3)-(1.4) such that

zn → z weakly in E, (3.2)

Φ(zn)→ Φ(z) +
∑k
i=1Φ

∞(zi), (3.3)

zn − (z +
∑k
i=1 z

i(x− xin))→ 0 in E (3.4)

as n→∞, where we agree that in the case k = 0 the above holds without zi, xin.

Proof. The result can be derived from the arguments for one equation [5].
First we remark that the boundedness of {zn} in E can be deduced as [13] by
(3.1). Therefore we may assume

zn → z weakly in E,

zn → z strongly in Lp+1loc (R
N )× Lq+1loc (R

N ),

zn → z a.e. in R
N

as n→∞. Denote Q(z) =
∫
RN
(∇u∇v + uv) dx, we have

Q(zn) = Q(zn − z) +Q(z) + o(1). (3.5)

It follows from Brezis & Lieb’s lemma [8] that

∫
RN

F (x, un) dx =

∫
RN

F (x, un − u) dx+

∫
RN

F (x, u) dx+ o(1) (3.6)

and ∫
RN

G(x, vn) dx =

∫
RN

G(x, vn − v) dx +

∫
RN

G(x, v) dx + o(1). (3.7)

Hence we obtain

Φ(zn) = Φ(zn − z) +Φ(z) + o(1), Φ′(zn) = Φ
′(zn − z) +Φ

′(z) + o(1) (3.8)

as n→∞. Let z1n = zn − z. We may deduce from (H5) as [17] and [19] that∫
RN

u1n[f(x, u
1
n)− f̄(u

1
n)] dx→ 0 and

∫
RN

v1n[g(x, v
1
n)− ḡ(v

1
n)] dx→ 0

as well as∫
RN

[F (x, u1n)− F̄ (u
1
n)] dx→ 0 and

∫
RN

[G(x, v1n)− Ḡ(v
1
n)] dx→ 0
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as n→∞. Therefore

Φ∞(z1n) = Φ(z
1
n) + o(1) = Φ(zn)−Φ(z) + o(1) (3.9)

Φ∞
′

(z1n) = Φ
′(z1n) + o(1) = Φ

′(zn)−Φ′(z) + o(1). (3.10)

Suppose z1n = zn− z 6→ 0 strongly in E(otherwise we shall have finished). We
want to show that there exists x1n ⊂ R

N such that |x1n| → +∞ and z
1
n(x+x

1
n)→

z1 6≡ 0 weakly in E. We note that

Φ∞(z1n) ≥ α > 0

because ‖z1n‖E 6→ 0. In fact, were it not true, we would have

Φ∞(z1n)→ 0, < Φ∞
′

(z1n), η >= o(1)‖η‖E as n→∞. (3.11)

Taking η = ( βα+βu
1
n,

α
α+β v

1
n) =: ηn in (3.11), it follows

o(1)‖ηn‖E =
β

α+ β

∫
RN

u1nf̄(u
1
n) dx+

α

α+ β

∫
RN

v1nḡ(v
1
n) dx

−

∫
RN

F̄ (u1n) dx−

∫
RN

Ḡ(v1n) dx. (3.12)

Using hypothesis (H4) we obtain∫
RN

(F̄ (u1n) + Ḡ(v
1
n)) dx = o(1)‖η‖E.

This and (3.12) yield∫
RN

u1nf̄(u
1
n) dx = o(1)‖ηn‖E ,

∫
RN

v1nḡ(v
1
n) dx = o(1)‖ηn‖E. (3.13)

It follows from assumptions (H2)-(H4) that

|f̄(t)|2 ≤ Ctf̄(t) if |t| ≤ 1, |f̄(t)|(p+1)
′

≤ Ctf̄(t) if |t| > 1. (3.14)

Taking η = (φ, 0) in (3.11) and using (3.14) and Hölder’s inequality, we obtain

|

∫
RN

(∇φ∇v1n + φv
1
n) dx|

≤ |

∫
{|u1n|≤1}

+

∫
{|u1n|>1}

φf̄ (u1n) dx| (3.15)

≤ C(

∫
RN

|f(u1n)|
2 dx)

1
2 ‖φ‖L2 + C(

∫
RN

|f̄(u1n)|
(p+1)′ dx)1/(p+1)

′

‖φ‖Lp+1

≤ C‖φ‖Hs [(

∫
RN

u1nf̄(u
1
n) dx)

1
2 + C(

∫
RN

u1nf̄(u
1
n) dx)

1/(p+1)′ ].

which with (3.13) imply that

‖v1n‖H1 = o(1). (3.16)
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Similarly, we show that
‖u1n‖H1 = o(1). (3.17)

(3.16) and (3.17) yield ‖z1n‖E → 0 , we get a contradiction.
We decompose RN into N-dimensional unit hypercubes Qj with vertices

having integer coordinates and put

dn = maxj(‖u
1
n‖Lp+1(Qj) + ‖v

1
n‖Lq+1(Qj)).

We claim that there is a β > 0 such that

dn ≥ β > 0 ∀n ∈ N. (3.18)

Suppose, by contradiction, that dn → 0 as n→∞. Since

Φ∞
′

(z1n)→ 0 as n→∞, (3.19)

noting that ‖z1n‖E is bounded, we have by (H2) and (H3) that

0 ≤ Φ∞(z1n) ≤

∫
RN

u1nf̄(u
1
n) dx+

∫
RN

v1nḡ(v
1
n) dx+ o(1)

≤ Cε(‖u
1
n‖
p+1
Lp+1(RN )

+ ‖v1n‖
q+1
Lq+1(RN )

) + ε(‖u1n‖
2
L2(RN ) + ‖v

1
n‖
2
L2(RN ))

≤ Cε
∑
j

(‖u1n‖
p+1
Lp+1(Qj)

+ ‖v1n‖
q+1
Lq+1(Qj)

) + ε(‖u1n‖
2
L2(RN ) + ‖v

1
n‖
2
L2(RN ))

≤ Cεd
p−1
n

∑
j

‖u1n‖
2
Lp+1(Qj)

+ Cεd
q−1
n

∑
j

‖v1n‖
2
Lq+1(Qj)

+ εC

≤ Cεd
p−1
n

∑
j

‖u1n‖
2
H1(Qj)

+ Cεd
q−1
n

∑
j

‖v1n‖
2
H1(Qj)

+ εC

≤ Cεd
p−1
n ‖u1n‖

2
H1 + Cεd

q−1
n ‖v1n‖

2
H1 + εC.

Let n → ∞ and then ε → 0, we obtain Φ∞(z1n) → 0 as n → ∞. This and
(3.19) imply as above that ‖z1n‖E → 0 as n → ∞, a contradiction, hence we
have (3.18).
Let {x1n} be the center of a hypercube Qj in which

dn = ‖u
1
n‖Lp+1(Qj) + ‖v

1
n‖Lq+1(Qj).

Now we show that
|x1n| → ∞ as n→∞. (3.20)

If {x1n} were bounded, by passing to a subsequence if necessary we should
find that x1n would be in the same Qj and so they should coincide. Therefore
in that Qj, for every n > no, no fixed and large enough, we should have

Φ∞|E(Qj)(z̄
1
n) =

∫
Qj

(∇ū1n∇v̄
1
n + ū

1
nv̄
1
n) dx−

∫
Qj

(F̄ (ū1n) + Ḡ(v̄
1
n)) dx + o(1)

≥ (α− 1)

∫
RN

F̄ (ū1n) dx+ (β − 1)

∫
RN

Ḡ(v̄1n) dx+ o(1)

≥ C(‖ū1n‖
α
Lα(Qj)

+ ‖v̄1n‖
β
Lβ(Qj)

) + o(1)

≥ C(‖ū1n‖
α
Lp+1(Qj)

+ ‖v̄1n‖
β
Lq+1(Qj)

) + o(1),
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and
Φ∞

′

(z̄1n)→ 0 as n→ 0,

where

z̄1n(x) =

{
z1n(x) z ∈ Qj
0 x ∈ RN\Qj.

Hence z̄1n should converge strongly in E(Qj) to a nonzero function, contradicting
to z1n → 0 weakly in E, so we have (3.20). Let

z1n(·+ x
1
n)→ z1 weakly in E.

Denote by Q̄ the unit hypercube centered at the origin, we have ‖z1n‖E(Q̄) ≥

β > 0, thus z1 6≡ 0 and

〈Φ∞
′

(z1), η〉 = 0, ∀η ∈ E. (3.21)

Iterating the procedure, we obtain sequences xln, |x
l
n| → ∞ and

zln(x) = z
l−1
n (x+ xm)− z

l−1(x), j ≥ 2

zln(x+ x
l
n)→ zl(x) weakly in E

as n→ 0, where each zl satisfying (3.21) and by induction

‖zln‖E = ‖z
l−1
n ‖

2
E − ‖z

l−1‖2E = ‖zn‖
2
E − ‖z‖

2
E −

l−1∑
i=1

‖zi‖2E + o(1).

Φ∞(zln) = Φ
∞(zl−1n )−Φ

∞(zl−1) + o(1) = Φ(zn)−Φ(z)−
l−1∑
i=1

Φ(zi) + o(1).

Since zl is a solution of (1.3)-(1.4) and zl 6≡ 0, we may prove as Lemma 4.1
below that ‖zl‖E ≥ C > 0. Thus the iteration will terminate at some index
k ≥ 0. The assertion follows.

4 Uniform bounds and proof of Theorem 1.1

We shall bound critical values defined in (2.9) by the energy of the ground state
of problem (1.3)-(1.4). By a ground state of problem (1.3)-(1.4) we mean a
minimizer of the variational problem

Φ∞ = inf{Φ∞(u, v) : (u, v) ∈ E is a solution of (1.3)-(1.4), (u, v) 6≡ (0, 0)}.
(4.1)

It is shown in [13] that problem (1.3)-(1.4) has a positive radially decaying
solution, so the variational problem (4.1) is well defined.

Lemma 4.1 Variational problem (4.1) is assumed by a nontrivial solution of
(1.3)-(1.4).
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Proof. Let zn = (un, vn) be a minimizing sequence of Φ
∞. It is obvious that

{zn} is a (PS) sequence of Φ∞. We deduce by Proposition 3.1 that

Φ∞ = Φ(zn) + o(1) =

k∑
j=1

Φ∞(zj) + o(1),

where zj is a solution of (1.3)-(1.4). By the definition of Φ
∞, k = 1. The

proof will be completed if we show z1 6= 0. To this end, we bound solutions of
(1.3)-(1.4) in H1 norm below by a positive constant.
Suppose z = (u, v) is a solution of (1.3)-(1.4), we have

‖u‖2H1 =

∫
RN

uḡ(v) dx, ‖v‖2H1 =

∫
RN

vf̄(u) dx, (4.2)

and ∫
RN

(∇u∇v + uv) dx =

∫
RN

vḡ(v) dx =

∫
RN

uf̄(u) dx. (4.3)

By assumptions (H2), (H3) and (H5), we obtain

f̄(u) ≤ Cε|u|
N+2
N−2 + εu, ḡ(v) ≤ Cε|v|

N+2
N−2 + εv. (4.4)

We deduce by (4.2)-(4.4) and Hölder’s inequality that

‖u‖2H1 ≤ Cε‖v‖
2∗−1
L2
∗ ‖u‖L2∗ + ε‖u‖L2‖v‖L2 ,

where 2∗ = 2N
N−2 . Using Young’s inequality and Sobolev embedding, we obtain

‖u‖2H1 ≤ Cε(‖u‖
2∗

H1 + ‖v‖
2∗

H1) + ε‖v‖
2
H1 .

Similarly,
‖v‖2H1 ≤ Cε(‖u‖

2∗

H1 + ‖v‖
2∗

H1) + ε‖u‖
2
H1 .

So for ε small, we have

‖u‖2H1 + ‖v‖
2
H1 ≤ C(‖u‖

2∗

H1 + ‖v‖
2∗

H1).

It yields that ‖u‖H1 or ‖v‖H1 ≥ C > 0, uniformly for solutions of (1.3)-(1.4),
and where C > 0 is independent of z = (u, v). Consequently, z1 = (u1, v1) 6≡ 0.
�
Let Rn →∞, Bn = BRn(0). Taking Ω = Bn in problem (2.1)-(2.2), we infer

from Theorem 2.1 that there exists a solution zn of problem (2.1)- (2.2) defined
on Bn for each n. Moreover,

Φ(zn) = Ψ(wn) = cn ≥ α > 0, (4.5)

where zn = Kwn , Φ = ΦRN and Ψ = ΨRN . We have extended zn to R
N by

letting zn = 0 outside Bn.

Proposition 4.1 cn < Φ
∞ for n large.
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Proof. Since each element w in X∗n = L1+1/p(Bn) × L1+1/q(Bn) can be ex-
tended to an element of X∗ by letting w = 0 outside Bn, we shall denote ΨBn
as Ψ in brief. By Lemma 4.1, Φ∞ is assumed. Let zo = (uo, vo) be a minimizer
of Φ∞. Choosing

wo1 = f̄(uo), wo2 = ḡ(vo)

and using (H4)-(H5) and equations (1.3)-(1.4), one has
∫
RN

< wo,Kwo > dx >
0, where wo = (w

o
1, w

o
2). Moreover, we know as Lemma 2.5 that there are

t1, t2 > 0 such that

maxt≥0Ψ(two) = maxt1≤t≤t2Ψ(two).

Suppose that to ∈ (t1, t2) and

Ψ(towo) = maxt1≤t≤t2Ψ(two).

Because F (x, t) ≥ F̄ (t) and G(x, t) ≥ Ḡ(t), one has F ∗(x, s) ≤ F̄ ∗(s) and
G∗(x, s) ≤ Ḡ(s). By the assumption (H6),

Ψ(towo) < Ψ
∞(towo),

it follows
sup
t≥0
Ψ(two) < sup

t≥0
Ψ∞(two). (4.6)

The density of real number field implies that there exists ε > 0 such that

sup
t≥0
Ψ(two) + 2ε < sup

t≥0
Ψ∞(two). (4.7)

Let φ ∈ C∞o (R
N ), 0 ≤ φ ≤ 1 and φ ≡ 1 if |x| ≤ 1

2 ; φ ≡ 0 if |x| > 1; φn(x) =
φ( x
Rn
). Then zn := (φnuo, φnvo) converges to (uo, vo) in E. Let

wn1 = f̄(φnuo), wn2 = ḡ(φnvo).

We also have wn → wo in X
∗. Suppose

Ψ(tnwn) = sup
t≥0
Ψ(twn),

then {tn} is bounded. Indeed, if tn →∞, arguments in Lemma 2.5 would yield
supt≥0Ψ(twn) → −∞. It is not possible because the value is not negative.
Suppose tn → t̄o, the continuity of the functional Ψ gives

Ψ(tnwn)→ Ψ(t̄owo).

We claim that Ψ(t̄owo) = supt≥0Ψ(two). In fact, for every ε > 0 there exists
δ > 0 such that

Ψ(towo)− ε ≤ Ψ(two)

whenever |t− to| < δ. By the continuity of Ψ, we may find no > 0 such that if
n ≥ no

Ψ(two) ≤ Ψ(twn) + ε, Ψ(tnwn) ≤ Ψ(t̄owo) + ε.
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Therefore if n ≥ no we have

Ψ(towo)− ε ≤ Ψ(tnwn) + ε ≤ Ψ(t̄owo) + 2ε ≤ Ψ(towo) + 2ε.

Since ε is arbitrary, the conclusion holds. By the same arguments, we find that
there exists sn such that sn → s̄o and

Ψ∞(snwn) = sup
t≥0
Ψ∞(twn)→ Ψ

∞(s̄owo) = sup
t≥0
Ψ∞(two)

as n → ∞. By (4.7), we obtain Ψ(tnwn) + ε < Ψ∞(snwn) for n large enough.
We may assume sn > 0, and then

dΨ∞(twn)

dt
|t=sn= 0,

that is∫
RN

[F̄ ∗
′

s (snw
n
1 )w

n
1 + Ḡ

∗′

s (snw
n
2 )w

n
2 ] dx− sn

∫
RN

< wn,Kwn > dx = 0. (4.8)

By the definition of Legendre - Fenchel transformation, we obtain

∫
RN

[F̄ ∗(snw
n
1 ) + Ḡ

∗(snw
n
2 )] dx

=

∫
RN

[F̄ ∗
′

s (snw
n
1 )snw

n
1 + Ḡ

∗′

s (snw
n
2 )snw

n
2 ] dx

−

∫
RN

[F̄ (f̄−1(snw
n
1 )) + Ḡ(ḡ

−1(snw
n
2 ))] dx (4.9)

= s2n

∫
RN

< wn,Kwn > dx−

∫
RN

[F̄ (f̄−1(snw
n
1 )) + Ḡ(ḡ

−1(snw
n
2 ))] dx.

Consider

(−∆+ id)−1wn2 = uo + σn, (−∆+ id)−1wn1 = vo + µn in R
N ,

we obtain

(−∆+ id)σn = ḡ(φnvo)− ḡ(vo), (−∆+ id)µn = f̄(φnuo)− f̄(uo).

In terms of Lp−estimates, σn → 0 and µn → 0 in H2,2 as n→∞. Furthermore,
we infer from (4.8) that

∫
RN

sn(w
n
1 )
2[
f̄−1(snw

n
1 )

snw
n
1

−
f̄−1(wn1 )

wn1
] dx

+

∫
RN

sn(w
n
2 )
2[
ḡ−1(snw

n
2 )

snw
n
2

−
ḡ−1(wn2 )

wn2
] dx

=

∫
RN

[wn1 σn + w
n
2µn + (1− φn)(w

n
1 + w

n
2 )] dx = o(1)
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as n→ ∞. The equality and assumption (H7) imply sn → 1 as n→ ∞. hence
we deduce by (4.8) and (4.9) that

sup
t≥0
Ψ∞(twn)

≤
1

2

∫
RN

(uof̄(uo) + voḡ(vo)) dx −

∫
RN

(F̄ (uo) + Ḡ(vo)) dx + εn

= Ψ∞ + εn,

where

εn =
1

2
(s2n − 1)

∫
RN

(uof̄(uo) + voḡ(vo)) dx

−

∫
RN

[(F̄ (φnuo)− F̄ (uo)) + (Ḡ(φnvo)− Ḡ(vo))] dx

+

∫
RN

[(F̄ (φnuo)− F̄ (f̄
−1(snw

n
1 )) + (Ḡ(φnvo)− Ḡ(ḡ

−1(snw
n
2 ))] dx.

The above estimates imply εn = o(1) as n→∞. Therefore

sup
t≥0
Ψ(twn) < sup

t≥0
Ψ(twn)

∞ − ε ≤ Ψ∞ − ε+ o(1),

the assertion follows for n large. �

Lemma 4.2 zn is a (PS) sequence of Φ in E.

Proof. It is readily to verify that cn = Φ(zn) ≤ cn−1 = Φ(zn−1), thus by
Proposition 4.2

α ≤ cn ≤ c1 < Φ
∞, (4.10)

we obtain

cn = Φ(zn)→ c, α ≤ c ≤ c1 < Φ
∞. (4.11)

Now we show that

Φ′(zn)→ 0, as n→∞. (4.12)

In fact, ∀(φ, ψ) ∈ C∞o (R
N )×C∞o (R

N ), there is no > 0 such that suppφ, suppψ ⊂
Bn whenever n ≥ no and

Φ′(zn)(φ, ψ) = 0, if n ≥ no.

This implies that Φ′(zn)z → 0 as n→∞ for all z ∈ C∞o (R
N )×C∞o (R

N ). Hence
(4.12) follows because C∞o (R

N )× C∞o (R
N ) is dense in H1(RN )×H1(RN ). �
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Completion of the proof of Theorem 1.1 We may prove that the (PS)
sequence zn of Φ is bounded in E as [13], and assume zn → zo weakly in E.
Obviously, zo solves (1.1)-(1.2). We claim that zo is nontrivial. In fact, Lemma
2.4, Proposition 3.1 and Proposition 4.2 give that

α ≤ Φ(zn) = Φ(zo) +
∑
j

Φ∞(zj) + o(1) < Φ
∞.

If j = 0,Φ(zo) ≥ α > 0, zo is a nontrivial solution; if j ≥ 1, then Φ(zo) < 0, also
implying zo 6≡ 0. The decaying law of zo at infinity was proved in [13]. �
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