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On the Opial-Olech-Beesack inequalities ∗

William C. Troy

Abstract

We investigate two integral inequalities. The first of these generalizes
a result proved by Beesack [1] in 1962. We then use our inequality to
generalize earlier results of Olech [3] and Opial [4] on a related problem.

1 Introduction.

In 1962 Beesack [1] proved the integral inequality

Theorem 1.1 Let b > 0. If y(x) is real, continuously differentiable on [0, b],
and y(0) = 0,then

∫ b
0

|y(x)y′(x)|dx ≤
b

2

∫ b
0

|y′(x)|2 dx . (1)

Equality holds only for y = mx where m is a constant.

Beesack used this result to obtain a simplification of proofs given earlier by
Olech [3] and Opial[4] of the inequality

Theorem 1.2 Let c > 0, and let y(x) be real, continuously differentiable on
[0, c], with y(0) = y(c) = 0. Then

∫ c
0

|y(x)y′(x)|dx ≤
c

4

∫ c
0

|y′(x)|2dx. (2)

Equality holds for the function satisfying y = x on [0, c2 ], and y = c−x on [
c
2 , c].

In 1964 Levinson [2] gave a simpler proof of Theorem 1.1 His proof generalizes
to the class of functions which are complex valued.
In this paper we have two goals. The first of these is to extend Levinson’s ar-

guments and generalize Beesack’s inequality. This is done below in Theorem1.3.
Our second goal is to use the results of Theorem1.3 and obtain a generalization
of Theorem1.2. This is done in Theorem1.4.
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Theorem 1.3 Let p > −1. (i) Let a and b be real with 0 ≤ a < b. If y(x) is
continuously differentiable on [a, b], and y(a) = 0, then

∫ b
a

tp|y(t)y′(t)|dt ≤
1

2
√
p+ 1

∫ b
a

(bp+1 − atp)|y′(t)|2dt. (3)

(ii) Let b and c be real with 0 ≤ b < c. If y(x) is continuously differentiable on
[b, c], and y(c) = 0, then

∫ c
b

tp|y(t)y′(t)|dt ≤
1

2
√
p+ 1

∫ c
b

(ctp − bp+1)|y′(t)|2dt. (4)

Remarks:

(R1) If a = 0 then (3) reduces to

∫ b
0

tp|y(t)y′(t)|dt ≤
bp+1

2
√
p+ 1

∫ b
0

|y′(t)|2dt. (5)

(R2) It remains an open problem to determine the sharpness of (3), (4) and (5).

We now state our second result which is a generalization of the inequality of
Olech [3] and Opial [4] stated above in Theorem1.2.

Theorem 1.4 Let p > −1 and c > 0. If y(x) is continuously differentiable on
[0, c], and y(0) = y(c) = 0, then

∫ c
0

tp|y(t)y′(t)|dt ≤
cp+1

4
√
p+ 1

∫ c
0

|y′(t)|2dt+
c

2
√
p+ 1

∫ c
cp

(tp− cp)|y′(t)|2dt, (6)

where cp =
c

21/(p+1)
.

Remarks:

(R3) If p = 0 then (6) reduces to (2).

(R4) It remains an open problem to determine the sharpness of (6).

2 Proof of Theorem1.3

(i) We begin by defining the integral

I1 =

∫ b
a

tp|y(t)y′(t)|dt.

Then I1 can be written in the form

I1 =

∫ b
a

(t
p
2 (t− a)

1
2 |y′(t)|)(t

p
2 (t− a)

−1
2 |y(t)|)dt,
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and an application of the Schwarz inequality leads to

I1 ≤ I
1/2
2 I

1/2
3 , (7)

where

I2 =

∫ b
a

tp(t− a)|y′(t)|2dt (8)

and

I3 =

∫ b
a

tp(t− a)−1|y(t)|2dt . (9)

Because y(a) = 0 and y(x) is continuously differentiable on [a, b], y(x) satisfies

|y(t)|2 =

∣∣∣∣
∫ t
a

y′(η)dη

∣∣∣∣
2

, a ≤ t ≤ b. (10)

A further application of Schwarz’s inequality to (10) gives

|y(t)|2 ≤ (t− a)

∫ t
a

|y′(η)|2dη, a ≤ t ≤ b. (11)

Combining (9)and (11), we obtain

I3 ≤

∫ b
a

tp
∫ t
a

|y′(η)|2dηdt. (12)

Reversing the order of integration in (12) gives

I3 ≤
bp+1

p+ 1

∫ b
a

|y′(t)|2dt−
1

p+ 1

∫ b
a

tp+1|y′(t)|2dt. (13)

Next, we recall a well known result: if A ≥ 0, B ≥ 0 and λ > 0, then

(AB)1/2 ≤
λ

2
A+

1

2λ
B. (14)

We now combine (7), (8), (13) and (14), to obtain

I1 ≤
1

2

(
λ−

1

λ(p+ 1)

)∫ b
a

tp+1|y′(t)|2dt+

∫ b
a

(
bp+1

2λ(p+ 1)
−
aλtp

2

)
|y′(t)|2dt,

(15)
where λ is any positive number. Setting λ = 1√

p+1
in (15), we obtain (3). This

completes the proof of part (i).

(ii) The proof of part (ii) follows the method used above. We give the details
for the sake of completeness. Thus, we define

I4 =

∫ c
b

tp|y(t)y′(t)|dt.
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Then I4 can be written in the form

I4 =

∫ c
b

(t
p
2 (c− t)

1
2 |y′(t)|)(t

p
2 (c− t)

−1
2 |y(t)|)dt,

and once again an application of the Schwarz inequality leads to

I4 ≤ I
1/2
5 I

1/2
6 , (16)

where

I5 =

∫ c
b

tp(c− t)|y′(t)|2dt and I6 =

∫ c
b

tp(c− t)−1|y(t)|2dt. (17)

Because y(c) = 0 and y(x) is continuously differentiable on [b, c], y(x) satisfies

|y(t)|2 =

∣∣∣∣
∫ c
t

y′(η)dη

∣∣∣∣
2

, b ≤ t ≤ c. (18)

An application of Schwarz’s inequality to (18) gives

|y(t)|2 ≤ (c− t)

∫ c
t

|y′(η)|2dη, b ≤ t ≤ c. (19)

Combining (17) and (19), we obtain

I6 ≤

∫ c
b

tp
∫ c
t

|y′(η)|2dηdt. (20)

Reversing the order of integration in (20) leads to

I6 ≤
1

p+ 1

∫ c
b

(tp+1 − bp+1)|y′(t)|2dt. (21)

Next, we combine (16), (17) and (21), and apply (14) to arrive at

I4 ≤
1

2

(
1

λ(p+ 1)
− λ

)∫ c
b

tp+1|y′(t)|2dt+

∫ c
b

(
cλtp

2
−

bp+1

2λ(p+ 1)

)
|y′(t)|2dt,

(22)
where λ is any positive number. Setting λ = 1√

p+1
in (22), we obtain (4). This

completes the proof of part (ii).

3 Proof of Theorem1.4

Let b be any positive number satisfying 0 < b < c. Then, from (3) and (4) we
obtain∫ c
0

tp|y(t)y′(t)|dt =

∫ b
0

tp|y(t)y′(t)|dt +

∫ c
b

tp|y(t)y′(t)|dt

≤
bp+1

2
√
p+ 1

∫ b
0

|y′(t)|2dt+
1

2
√
p+ 1

∫ c
b

(ctp − bp+1)|y′(t)|2dt
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This inequality can now be written in the form

∫ c
0

tp|y(t)y′(t)|dt =
bp+1

2
√
p+ 1

∫ c
0

|y′(t)|2dt+
1

2
√
p+ 1

∫ c
b

(ctp − 2bp+1)|y′(t)|2dt

(23)
Setting b = cp = c/2

1/(p+1) in (23), we obtain (6) and Theorem1.4 is proved.
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