USA-Chile Workshop on Nonlinear Analysis,
Electron. J. Diff. Eqns., Conf. 06, 2001, pp. 203-214.

A mixed semilinear parabolic problem from combustion theory

Claudia Lederman, Juan Luis Vazquez, & Noemi Wolanski

Abstract:
We prove existence, uniqueness, and regularity of the solution to a mixed initial boundary-value problem. The equation is semilinear uniformly parabolic with principal part in divergence form, in a non-cylindrical space-time domain. Here we extend our results in [12] to a more general domain. As in [12], we assume only mild regularity on the coefficients, on the non-cylindrical part of the lateral boundary (where the Dirichlet data are given), and on the Dirichlet data.
This problem is of interest in combustion theory, where the non-cylindrical part of the lateral boundary may be considered as an approximation of a flame front. In particular, the results in this paper are used in [11] to prove the uniqueness of a ``limit'' solution to the combustion problem in a two-phase situation.

Published January 8, 2001.
Math Subject Classifications: 35K20, 35K60, 80A25.
Key Words: mixed parabolic problem, semilinear parabolic problem, non-cylindrical space-time domain, combustion.

Show me the PDF file (166K), TEX file, and other files for this article.

Claudia Lederman
Departamento de Matematica
Facultad de Ciencias Exactas
Universidad de Buenos Aires
(1428) Buenos Aires - Argentina
e-mail: clederma@dm.uba.ar
Juan Luis Vazquez
Departamento de Matematicas
Universidad Autonoma de Madrid
28049 Madrid - Spain
e-mail: juanluis.vazquez@uam.es
Noemi Wolanski
Departamento de Matematica
Facultad de Ciencias Exactas
Universidad de Buenos Aires
(1428) Buenos Aires - Argentina
e-mail: wolanski@dm.uba.ar

Return to the EJDE web page