Claudia Lederman, Juan Luis Vazquez, & Noemi Wolanski
Abstract:
We prove existence, uniqueness, and regularity
of the solution to a mixed initial boundary-value problem. The
equation is semilinear uniformly parabolic with principal part in
divergence form, in a non-cylindrical space-time domain.
Here we extend our results in [12] to a more general domain.
As in [12], we assume only mild regularity on the coefficients,
on the non-cylindrical part of the lateral boundary (where the Dirichlet
data are given), and on the Dirichlet data.
This problem is of interest in combustion theory, where
the non-cylindrical part of the lateral boundary may be considered
as an approximation of a flame front.
In particular, the results in this paper are used in [11] to
prove the uniqueness of a ``limit'' solution to the combustion problem
in a two-phase situation.
Published January 8, 2001.
Math Subject Classifications: 35K20, 35K60, 80A25.
Key Words: mixed parabolic problem, semilinear parabolic problem,
non-cylindrical space-time domain, combustion.
Show me the PDF file (166K), TEX file, and other files for this article.
Claudia Lederman Departamento de Matematica Facultad de Ciencias Exactas Universidad de Buenos Aires (1428) Buenos Aires - Argentina e-mail: clederma@dm.uba.ar | |
Juan Luis Vazquez Departamento de Matematicas Universidad Autonoma de Madrid 28049 Madrid - Spain e-mail: juanluis.vazquez@uam.es | |
Noemi Wolanski Departamento de Matematica Facultad de Ciencias Exactas Universidad de Buenos Aires (1428) Buenos Aires - Argentina e-mail: wolanski@dm.uba.ar |
Return to the EJDE web page