USA-Chile Workshop on Nonlinear Analysis,
Electron. J. Diff. Eqns., Conf. 06, 2001, pp. 141-154.

Infinitely many solutions for an elliptic system with nonlinear boundary conditions

Julian Fernandez Bonder, Juan Pablo Pinasco, & Julio D. Rossi

Abstract:
In this paper we prove the existence of infinitely many nontrivial solutions of the system
$\Delta u  =  u$,   $\Delta v  =  v$,
with nonlinear coupling at the smooth boundary of a bounded domain of $\mathbb{R}^N$. The proof, under suitable assumptions on the Hamiltonian, is based on variational arguments and on the Fountain Theorem of the critical

Published January 8, 2001.
Math Subject Classifications: 35J65, 35J50, 35J55.
Key Words: Elliptic systems, nonlinear boundary conditions, variational problems.

Show me the PDF file (165K), TEX file, and other files for this article.


Julian Fernandez Bonder
Departamento de Matem\'atica, FCEyN
UBA (1428) Buenos Aires, Argentina
e-mail: jfbonder@dm.uba.ar

Juan Pablo Pinasco
Universidad de San Andres
Vito Dumas 284 (1684), Prov. Buenos Aires, Argentina
e-mail: jpinasco@udesa.edu.ar

Julio D. Rossi
Departamento de Matem\'atica, FCEyN
UBA (1428) Buenos Aires, Argentina
e-mail: jrossi@dm.uba.ar


Return to the EJDE web page