USA-Chile Workshop on Nonlinear Analysis,
Electron. J. Diff. Eqns., Conf. 06, 2001, pp. 55-64.

Asymptotic behaviour of the solvability set for pendulum-type equations with linear damping and homogeneous Dirichlet conditions

A. Cañada & A. J. Ureña

Abstract:
We show some results on the asymptotic behavior of the solvability set for a nonlinear resonance boundary-value problem, with linear damping, periodic nonlinearity and homogeneous Dirichlet boundary conditions. Our treatment of the problem depends on a multi-dimensional generalization of the Riemann-Lebesgue lemma.

Published January 8, 2001
Math Subject Classifications: 34B15, 70K30.
Key Words: Pendulum-type equations, linear damping, Dirichlet boundary conditions, solvability set, asymptotic results, Riemann-Lebesgue lemma, Baire category.

Show me the PDF file (131K), TEX file, and other files for this article.

A. Cañada
Dep. Analisis Matematico
Universidad de Granada
18071-Granada, Spain
e-mail: acanada@ugr.es
A. J. Ureña
Dep. Analisis Matematico
Universidad de Granada
18071-Granada, Spain
e-mail: ajurena@ugr.es

Return to the EJDE web page