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Behaviour near zero and near infinity of solutions

to elliptic equalities and inequalities ∗

Marie-Françoise Bidaut-Véron

Abstract

Here we consider elliptic equations and inequalities involving quasilin-
ear operators in divergence form and nonlinear lower order terms:

−div (A(x, u,∇u)) ≥ |x|σuQ (Q > 0, σ ∈ R),

in dimension N ≥ 3. We study the asymptotic behaviour of the solutions
and give a priori estimate and non-existence results.

1 Introduction

Here we study the existence and the asymptotic behaviour near zero and near
infinity of nonnegative solutions to elliptic problems involving quasilinear oper-
ators in divergence form. We study equalities of the form

− div [A(x, u,∇u)] = |x|σuQ, (1.1)

and more generally inequalities of the form

− div [A(x, u,∇u)] ≥ |x|σuQ, (1.2)

where Q, σ ∈ R, Q > 0, in an open set Ω of RN (N ≥ 3). A great part of the
results extends to systems of the form

− div [A(x, u,∇u)] = |x|auSvR,

− div [B(x, v,∇v)] = |x|buQvT ,
(1.3)

where Q,R, S, T ≥ 0, and to systems of inequalities; see for example [6, 9].
Let Br = {|x| < r} with r > 0. Let Ω be either RN or RN\ {0}, or an

exterior or interior domain

Ωe =
{
x ∈ RN | |x| > 1

}
, Ωi =

{
x ∈ RN | 0 < |x| < 1

}
= B1\ {0}
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30 Behaviour of solutions to inequalities

or the half-space RN + =
{
x ∈ RN | xN > 0

}
, or

Ω+e = Ωe ∩R
N +, Ω+i = Ωi ∩ R

N +.

Our aim is to point out many results on this subject and to show some short
proofs to some results. We cannot present a complete survey, because it would
be too long, we rather give references that seem to be significant.

2 The Laplacian case

We begin by the model case of the Laplace operator, with the equation

−∆u = |x|σuQ, (2.1)

or the inequality

−∆u ≥ |x|σuQ, (2.2)

where σ ∈ R, Q > 0, Q 6= 1. By solution of (2.1) or (2.2), we mean any
nonnegative function u ∈ C0(Ω) ∩W 1,1loc (Ω) with ∆u ∈ L

1
loc(Ω), solution in the

sense of D′( Ω). We set

Qσ = (N + σ)/(N − 2).

Recall that the equation admits a particular solution of the form

u∗ = C∗|x|−(2+σ)/(Q−1), (2.3)

for some C∗ > 0 if and only if Q > Qσ > 1, or Q < Qσ < 1. First remark that
the problem in Ωi or Ωe are equivalent to solve, and in the same way in Ω

+
i or

Ω+e , from the Kelvin transform: setting

u0(x) = |x|
2−Nu(y), y = x/|x|2

then (2.2) is equivalent to

−∆u0 ≥ |y|
σ0uQ0 , σ0 = (N − 2)Q− (N + 2 + σ) (2.4)

Now let us recall the Brézis-Lions theorem in Ωi in its simplest form:

Theorem 2.1 ([13]) Let w ∈ L1loc(Ωi) be any nonnegative superharmonic func-

tion, such that ∆w ∈ L1loc(Ωi). Then f = ∆w/Ωi ∈ L
1
loc(B1), w ∈M

N/(N−2)
loc (B1),

|∇w| ∈MN/(N−1)loc (B1) and there exists λ ≥ 0 such that

−∆w = −∆w/Ωi + λδ0 in D′(B1).
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Then one gets a first nonexistence result concerning inequality (2.2), given
in [4]. Up to some changes of variable, in the radial case of the equation, it
comes from the study of Fowler [16, 17], of the equation

−y” = rθyQ,

θ ∈ R. He made a complete description of the solutions, with the restriction
Q, θ ∈ N because the phase plane techniques for ODE’s were not known; see
also [2]. This result was extended to the inequality in the radial case with more
general operators by Ni and Serrin [25]. The result was also found again in the
case σ = −2 by [12].

Theorem 2.2 Assume Q > 1.
i) There exists a nontrivial solution of (2.2) in Ωi if and only if σ > −2.
ii) There exists a nontrivial solution of (2.2) in Ωe if and only if Q > Qσ.
iii) There exists a nontrivial solution of (2.2) in RN or RN\ {0} if and only if
Q > Qσ and σ > −2.

Proof. i) and ii) For the part ”if”, the particular solution (2.3) is a solution
in RN\ {0}, hence in Ωi and Ωe. For the part ”only if”, the problem reduces to
the radial one. By Kelvin transform we reduce to the case of Ωi. Suppose there
exists a nontrivial solution u of (2.2). Let

u(r) =
1

|SN−1|

∫
SN−1

u(r, θ) dθ (2.5)

be the mean value of u on the sphere of center 0 and radius r. Then u also
satisfies (2.2), from the Jensen inequality, that is

−(rN−1ur)r ≥ r
N−1+σuQ,

and u > 0 . Then either limr→0 r
N−1ur ∈ (0,+∞] ; then limr→0 u = C > 0 and

we reach a contradiction. Or ur ≤ 0 near 0. By integration we get

rN−1ur + u
Q

∫ r
0

tN−1+σdt ≤ 0

hence σ +N > 0 and

u−Qur + r
σ+1/(N + σ) ≤ 0 .

Integrating again it implies that σ > −2, and we have the estimate near 0:

u ≤ Cr−(2+σ)/(Q−1). (2.6)

iii) The part ”only if” is obvious. For the part ”if”, when Q > Qσ and σ > −2,
the function u(x) = c(1 + |x|2+σ)−1/(Q−1) is a solution of (2.2) in RN , hence in
R
N\ {0} if c is small enough. This example can be found in [22] when σ = 0. ♦

Now we consider the case Q < 1. The following was proved by [28] for the
equation, and extended in [10] and [6].
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Theorem 2.3 Assume Q < 1.
i)There exists a nontrivial solution of (2.2) in Ωi if and only if Q < Qσ.
ii) There exists a nontrivial solution of (2.2) in Ωe if and only if σ < −2.

Proof. Assume there is a nontrivial solution in Ωi. Then u > 0, and we can
define w = 1/u. It is subharmonic and satisfies

−∆w + |x|σwm ≤ 0

with m = 2−Q > 1. Then from Osserman’s estimate (see [6]),

w ≤ C

{
|x|−(2+σ)/(m−1) if σ 6= −2
| ln |x||−1/(m−1) if σ = −2

in 12Ωi. That means

u ≥ C

{
|x|(2+σ)/(1−Q) if σ 6= −2,
| ln |x||1/(1−Q) if σ = −2.

(2.7)

But |x|σuQ ∈ L1loc(B(0, 1)), hence in any case Q < Qσ. For the part ”if”, see
[28]. ♦

Remark 2.4 Here also the problem could be reduced to the radial one. Indeed
we have the following property, which proves that u satisfies an inequality of
the same form as (2.2).

Lemma 2.5 ([7]) Let w ∈ C2(Ωi) be any nonnegative superharmonic function.
Then there exists a constant C(N) > 0 such that for any x ∈ 12Ωi,

w(x) ≥ C(N)w(|x|). (2.8)

Remark 2.6 In particular, the exterior problem

−∆u ≥ uQ

in Ωe has no solution except 0 for any 0 < Q < N/(N − 2), Q 6= 1.

Remark 2.7 The non existence results are very linked to the estimates of u.
In case of Ωi we have for any solution of (2.2), from (2.6) (2.7) and the super-
harmonicity,

u ≤ Cmin(r−(2+σ)/(Q−1), r2−N ) in
1

2
Ωi if Q > 1,

C1r
(2+σ)/(1−Q) ≤ u ≤ C2r

2−N in
1

2
Ωi if Q < 1.

In the case of Ωe, it follows that

u ≤ Cmin(r−(2+σ)/(Q−1), 1) in 2Ωe if Q > 1,

C1r
(2+σ)/(1−Q) ≤ u ≤ C2 in 2Ωe if Q < 1.
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Now let us come to the case of the equation. In the radial case, we have a
well-known nonexistence result in whole RN .

Lemma 2.8 There exists a nontrivial radial solution of (2.1) in RN (that means
a radial ground state) if and only if

Q ≥ Q∗σ =
N + 2 + 2σ

N − 2
> 1 (2.9)

Proof. Assume (2.9). First one constructs a local solution near 0 such that
u(0) = 1 and ur(0) = 0. By concavity it extends to a solution of the equation

−∆u = |x|σ |u|Q−1 u

in [0,+∞). Now suppose that u(r0) = 0 for some r0 > 0. The change of variable
(first used by Fowler)

u(r) = r−γU(t) γ =
2 + σ

Q− 1
, t = − ln r,

reduces the equation to an autonomous one:

Utt −AUt −BU + |U |
Q−1
U = 0

with A = N −2−2γ > 0 and B = γ((N −2−γ) > 0. Then the energy function

E =
U2t
2
−B
U2

2
+
|U |Q+1

Q+ 1

is nondecreasing, since Et = AU
2
t , with limt→+∞E(t) = 0, and E(− ln r0) ≥ 0.

Then E(t) = Et(t) = 0 for t ≥ − ln r0, hence U is constant, and we reach
a contradiction. Reciprocally suppose there exists a ground state. Then first
σ > −2. Suppose Q < Q∗σ. Then E is nonincreasing, hence nonnegative, and
bounded. Then limt→−∞ E(t) = L > 0 and limt→−∞ Ut(t) = 0, since Utt is

bounded and
∫ 0
−∞ U

2
t < +∞. Then limt→−∞ U(t) = ` = (B(Q+ 1)/2)

1/(Q−1).
By linearisation U(t) ≡ `, hence a contradiction holds. ♦

Remark 2.9 The existence in RN\ {0} is obviously different: there exists a
nontrivial radial positive solution of (2.1) in RN\ {0} if and only if Q > Qσ > 1.
Indeed the particular solution (2.3) exists in that range.

Now let us come to the nonradial case. Here the results are not complete:
they require that

Q ≤ Q∗0 =
N + 2

N − 2
,

where the well-known Q∗0 is the limit value of Q for the compacity of the Sobolev
injection from LQ+1 into W 1,2. Or they require additional assumptions on the
behaviour at infinity, see [32]. They require difficult techniques, either linked

to the Bernstein method of a priori estimates of |∇u|2, or to the moving plane
method of Alexandroff. The pionneer works are due to Gidas, Spruck and
Caffarelli [18], [14].
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Theorem 2.10 ([18]) i) Assume that 1 < Q < Q∗0. Then any solution in Ωi
(resp. Ωe) satisfies

u(x) ≤ C |x|−(2+σ)/(Q−1) in
1

2
Ωi (resp.in 2Ωe) (2.10)

where C does not depend on u.
ii) Assume that 1 < Qσ < Q < Q

∗
0. If Q < Q

∗
σ, then any solution u in R

N\ {0}
is singular at 0. In particular there is no nontrivial nonnegative solution in RN .
If Q > Q∗σ, then either u = u

∗ or u is a solution in RN (ground state).

Remark 2.11 The result was extended to the case Q = Q∗0 in [14]. When
Q > Q∗0 the result is not known. In the case Q = (N + 1)/(N − 3), σ = 0, it is
shown in [8] that(2.10) cannot hold with a constant independant on u.

Now let us give a few results concerning the case of the half-space. Concern-
ing the inequality (2.2), the usual proofs of nonexistence lie on the use of the
first eigenvalue λ1 = N−1 of the Beltrami operator on the half sphere (SN−1)+

with Dirichlet conditions on ∂(SN−1)+, and the corresponding positive normal-
ized eigenfunction φ1, and extend to cones and systems. We refer for example
to [2] and [11] . In case of the half space, we have the following theorem.

Theorem 2.12 Assume that N ≥ 2, and Q > 1.

i)If Q ≤ (N + 1 + σ)/(N − 1), the problem (2.2) in Ω+e , with u ∈ C
1(Ω+e ), has

only the solution u ≡ 0.

ii) If Q + σ + 1 ≤ 0, the problem in Ω+i , with u ∈ C
1(Ω+i \ {0}) has only the

solution u ≡ 0.

Proof. We follow the method of [15] given in the case u ∈ C1(RN\ {0}). They
still show that the problem can be reduced to a radial one, by considering the
mean value function

u](r) =
1

|(SN−1)+|

∫
(SN−1)+

u(r, θ)φ1 dθ. (2.11)

Namely function u] satisfies the inequality

−r−N ((rN+1(r−1u])r)r) = −∆u] + (N − 1)
u]

r2
≥ rσuQ] .

By Kelvin transform we are reduced to the case of Ω+i . Let v = r
−1u]. Then

−(rN+1vr)r ≥ r
N+Q+σvQ,

and u > 0 . Then either limr→0 r
N+1vr ∈ (0,+∞] ; then limr→0 v = C > 0 and

we reach a contradiction. Or vr ≤ 0 near 0. By integration we get

rN+1vr + v
Q

∫ r
0

tN+Q+σdt ≤ 0
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hence N +Q+ σ > 0 and

v−Qvr + r
σ+Q/(N +Q+ σ) ≤ 0.

Integrating again it implies that σ +Q+ 1 > 0, and we have the estimate near
0 :

u] ≤ Cr
−(2+σ)/(Q−1).

♦

In the case of the equation (2.1), Gidas and Spruck have obtained a better
result:

Theorem 2.13 ([19]) Assume that Q < (N+2)/(N−2). Then equation (2.1)
with σ =0 has no nontrivial solution in RN+.

3 The p-Laplacian case

Now we consider the case of the p-Laplace operator (p > 1):

−∆pu = − div(|∇u|
p−2∇u) = |x|σuQ (3.1)

and the inequality

−∆pu ≥ |x|
σuQ. (3.2)

In the radial case, the first estimates concerning (3.2) are due to Guedda and
Véron [20], where they give the behaviour in Ωi and some global properties; and
the first nonexistence results are given in [24], [25]. Then the non-radial case
was studied in [4], where one can also find a complete description of the radial
case.
Here one cannot use any Kelvin transform, so that the behaviour at infinity

cannot reduced to the behaviour near 0. Also one cannot use the mean value
of u since the problem is not linear. But many of the results can be extended.
The equation has a particular solution

u∗(x) = C∗|x|−Γ, Γ =
p+ σ

Q− p+ 1
, C∗ > 0, (3.3)

if and only if Q > Qσ,p > p− 1, or Q < Qσ,p < p− 1, where

Qσ,p = (N + σ)(p− 1)/(N − p). (3.4)

First theorem 2.2 extends to the p-Laplacian. This was proved in [4] for equation
( 3.1) in Ωe without mentioning the critical caseQ = Qσ,p, but the proof extends
to the general case and we reproduce it here. The idea is the following: if (3.2)
has a solution u in Ωi or Ωe, then we can construct a radial solution of (3.1)
which is less than u. So that we still are reduced to the radial case, and with an
equation.

Theorem 3.1 Assume Q > p− 1.
i) There exists a nontrivial solution of (3.2) in Ωi if and only if σ > −p.
ii) There exists a nontrivial solution of (3.2) in Ωe if and only if Q > Qσ,p.
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Proof. Let us prove for example ii). Suppose that Q ≤ Qσ,p and that (3.2)
has a nontrivial solution u. Then u > 0 from the strong maximum principle.
Let m = min|x|=2 u(x). Let n ∈ N

∗ be fixed, such that n > 2. By minimization
we construct a sequence (un,k)k∈N of radial nonnegative functions with un,0 ≡ 0
and

−∆pun,k = |x|
σun,k−1 for 2 < |x| < n,

un,k = m for |x| = 2,

un,k = 0 for |x| = n .

Then 0 < un,k ≤ un,k+1 ≤ u for 2 < |x| < n. And (rN−1 |(un,k)r|
p−2
(un,k)r)k∈N

is equi-continuous on [2, n]. Thus it converges in C1([2, n]) to a radial fuction
un such that un,k ≤ un ≤ u and

−∆pun = |x|
σun for 2 < |x| < n ,

un = m for |x| = 2,

un = 0 for |x| = n.

By extraction of a diagonal sequence, there is a subsequence of (un)n∈N converg-
ing in C1loc([2,+∞]) to a radial solution w of equation (3.1) in 2Ωe, nontrivial,
since w = m for |x| = 2. But the radial equation has no solution when Q ≤ Qσ,p,
by an argument analogous to the one of theorem 2.2 . ♦

The theorem 2.3 extends immediately to the case of the p-Laplacian, by the
same proof, since Osserman’s estimate extends.

Theorem 3.2 Assume Q < p− 1.
i) There exists a nontrivial solution of (3.2) in Ωi if and only if Q < Qσ,p.
ii) There exists a nontrivial solution of (3.2) in Ωe if and only if σ < −p.

Now let us come to upper estimates. First the Brézis-Lions lemma extends
in the following form, where for simplicity we supposed p < N .

Theorem 3.3 ([4]) Let 1 < p < N . Let w ∈ C(Ωi) be any nonnegative
super-p-harmonic function, such that ∆pw ∈ L1loc(Ωi). Then f = −∆pw/Ωi ∈

L1loc(B1), w
p−1 ∈ MN/(N−p)loc (B1), |∇w|

p−1 ∈ MN/(N−1)loc (B1) and there exists
λ ≥ 0 such that

−∆pw = −∆pw/Ωi + λδ0 in D′(B1). (3.5)

Proof. It is divided in four steps.

i) Function f is in L1(B1). In order to obtain estimates on f, the idea is to
multiply the inequality by a function P (u)ϕ, with ϕ with compact support in
B1, and P is decreasing in u, in order to obtain some coercivity. One takes
P (u) = (n+ 1− u)+, with n ∈ N.
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ii) Function w is in Lkloc(B1) for any 1 ≤ k < N/(N − p) and it satisfies the
integral estimate for ρ ≤ 1/2 :

∫
Bρ

wk ≤ CρN−(N−p)k/(p−1) (3.6)

Here we use a test function introduced by Serrin [29] and capacity methods in
order to estimate min|x|=ρ w(x), and then the weak Harnack inequality.

iii) Function |∇w|p−1 is Lkloc(B1) for any 1 ≤ k < N/(N − 1) and also satisfies
an integral inequality.

iv) The Marcinkiewicz estimates and (3.5) hold. Here we use ideas of P. Bénilan.
♦

This showed that we can obtain some integral estimates on w, even for a
nonlinear problem, replacing the estimates of the mean value for the Laplacian.
Indeed defining for any nonnegative g on Ω and any ω ⊂ Ω

∮
ω

g =
1

|ω|

∫
ω

g

then (3.6) can be written

(∮
B(0,ρ)

wk
)1/k

≤ Cρ−(N−p)/(p−1),

which extends the classical estimate u(r) ≤ Cr2−N in case of the Laplacian.
This was a motivation to extend also the estimate u(r) ≤ Cr−(2+σ)/(Q−1) of the
problem (2.2) to the problem (3.2) and more general operators. One gets the
following, where Cρ1,ρ2 = {ρ1 < |x| < ρ2}.

Theorem 3.4 ([9]) Assume that N ≥ p > 1. Let u be a nonnegative solution
of (3.2) in Ωi (resp. Ωe).
i) If Q > p− 1, then for small ρ (resp. for large ρ)

(∮
Cρ/2,ρ

uQ
)1/Q

≤ Cρ−Γ. (3.7)

ii) If Q < p− 1, either u ≡ 0, or

u(x) ≥ C |x|−Γ in
1

2
Ωi (resp. in 2Ωe). (3.8)

Proof. We just give the proof of i). Let u be a nontrivial solution of (3.2) ,
hence u > 0. Let 1−p < α < 0 . By computation the function uα = u1+α/(p−1)

is also superharmonic and satisfies

−∆puα ≥ C(α)
(
|x|σ uQ+α + uα−1 |∇u|p

)
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for some C(α) > 0. Then we multiply by a test function ϕ = ξλ with λ large
enough, and ξ ∈ D(Ω) with values in [0, 1], such that ξ = 1 for ρ/2 ≤ |x| ≤ ρ
and |∇ξ| ≤ C/ρ. We get (with other constants C = C(α, λ))∫

Ωi

|x|σ uQ+αξλ +

∫
Ωi

uα−1 |∇u|p ξλ ≤ C

∫
Ωi

|∇uα|
p−1
ξλ−1 |∇ξ|

≤ C

∫
Ωi

uα |∇u|p−1 ξλ−1 |∇ξ|

and setting θ = Q/(p− 1 + α) > 1 we get from the Hölder inequality∫
Ωi

|x|σ uQ+αξλ +

∫
Ωi

uα−1 |∇u|p ξλ

≤ C

(∫
Ωi

uQξλ
)1/θ (∫

Ωi

ξλ−pθ
′

|∇ξ|pθ
′
)1/θ′

(3.9)

Now we take ξλ as test function directly in (3.2) and get by using the same α∫
Ωi

|x|σ uQξλ ≤ λ

∫
Ωi

|∇u|p−1 ξλ−1 |∇ξ|

≤ λ

∫
Ωi

u(α−1)/p
′

|∇u|p−1 u(1−α)/p
′

ξλ−1 |∇ξ|

≤ C

(∫
Ωi

uα−1 |∇u|p ξλ
)1/p′ (∫

Ωi

u(1−α)(p−1)ξλ−p |∇ξ|p
)1/p

And from (3.9), choosing α small enough such that τ = Q/(1− α)(p − 1) > 1 ,

∫
Ωi

uQξλ ≤ Cρ−σ
(∫
Ωi

uQξλ
)1/θp′+1/τp

×

(∫
Ω

ξλ−θ
′p |∇ξ|θ

′p

)1/θ′p′ (∫
Ω

ξλ−τ
′p |∇ξ|τ

′p

)1/τ ′p
. (3.10)

And 1/θp′ + 1/τp = (p− 1)/Q = 1− (1/θ′p′ + 1/τ ′p), hence (3.7) follows. ♦

Remark 3.5 In the case Q > p − 1, Theorem 3.1 can be found again in a
longer way by using these upper estimates. Indeed following the technique of
comparison of theorem 3.1, one can prove lower estimates. Consider the radial
elementary p-harmonic functions in RN \ {0}, that means functions

Φ1,p(r) ≡ 1, Φ2,p(r) =

{
r(p−N)/(p−1) if N > p,
ln r if N = p .

Then any super-p-harmonic function u in Ωi (resp. Ωe) satisfies

u ≥ CΦ1,p in
1

2
Ωi (resp. u ≥ CΦ2,p in 2Ωe) ;

see [9].
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Above all, the integral estimates can give punctual estimates in the case of
the equation (3.1), in the subcritical case. The following is proved in [4] when
σ = 0, and in [9] in the general case.

Theorem 3.6 Assume that N ≥ p > 1. Let u be a nonnegative solution of
(3.1) in Ωi. Assume that

0 < Q < Q0,p = N(p− 1)/(N − p).

Then u satisfies the Harnack inequality. Consequently, if Q > p− 1,

u(x) ≤ Cmin(|x|−Γ , |x|(p−N)/(p−1)) in
1

2
Ωi; (3.11)

if Q < p− 1, then

u(x) ≤ C |x|(p−N)/(p−1)) in
1

2
Ωi.

Proof. First suppose Q > p− 1. We write the equation under the form

−∆pu = h u
p−1, h = |x|σ uQ−p+1.

If σ = 0, we remark that uQ ∈ L1(B1/2) from the Brézis-Lions theorem. Hence
hs ∈ L1(B1/2) for s = Q/(Q− p+ 1) > N/p, since Q < Q0. Then we can apply
Serrin’s results of [29], and conclude. In the general case σ ∈ R, we use the
estimate (3.7)

∫
Cρ/2,ρ

hs =

∫
Cρ/2,ρ

|x|σs uQ ≤ ρσs
∫
Cρ/2,ρ

uQ ≤ CρN+σs−ΓQ = CρN−ps. (3.12)

This implies the Harnack inequality, and (3.11) follows. Now suppose Q ≤ p−1.

We observe that h(x) ≤ C |x|−p near 0, from (3.8) if Q < p−1. Then h satisfies
(3.12) for any s > 1, and the Harnack inequality still holds. ♦

As in the case p = 2, the question of the estimates is harder in the case Q >
Q0,p. Serrin and Zou have announced in January 2000 the following beautiful
result, which extends the one of [18] and of [4]:

Theorem 3.7 ([31]) Assume that 1 < Q < Q∗0,p = (N(p − 1) + p)/(N − p).
Then any solution of (3.1) with σ = 0 in Ωi satisfies

u(x) ≤ C |x|−p/(Q+1−p) in
1

2
Ωi; (3.13)

where C does not depend on u, and u satisfies the Harnack inequality. Moreover
there is no nontrivial nonnegative solution in RN .

At last we consider the case of an halfspace. First following the ideas of the
proof of theorem 3.4, we get upper estimates when Q > p− 1:
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Theorem 3.8 Assume that N ≥ p > 1, Q > p − 1. Let u be a nonnegative
solution of (3.2) in Ω+i (resp. Ω

+
e ) . Let Ka =

{
x ∈ RN +

∣∣ xN ≥ a |x|} for any
a > 0. Then for small ρ (resp. for large ρ)

(∮
Ka∩Cρ/2,ρ

uQ
)1/Q

≤ Cρ−Γ. (3.14)

Here also we can find lower estimates by comparison to the p-harmonic
functions which vanish on the set xN = 0. In the case p = 2, they are given by
x 7−→ xN and x 7−→ xN/ |x|

N
. In the general case, they are given by

Ψ1,p(x) = xN , Ψ2,p(x) =
$(x/ |x|)

|x|βp,N
, (3.15)

for some unique βp,N > 0 and $ ∈ C1(SN−1), $ > 0, with maximum value
1, from [21]. The exact value of βp,N is unknown if p 6= 2, except in the case

N = 2. We prove that any super-p-harmonic function u in C1(Ω+i \ {0}) (resp.

C1(Ω+e )) satisfies

u ≥ CΨ1,p in
1

2
Ωi (resp. u ≥ CΨ2,p in 2Ωe).

So that we deduce a new nonexistence result:

Theorem 3.9 ([9]) Assume that N ≥ p > 1, and Q > p− 1.
i) If Q < qσ,p, where

qσ,p = p− 1 + (p+ σ)/βp,N ,

the problem (3.2) in Ω+e , with u ∈ C
1(Ω+e ), has only the solution u ≡ 0.

ii) If Q + σ + 1 < 0, the problem in Ω+i , with u ∈ C
1(Ω+i \ {0}) has only the

solution u ≡ 0.

4 More general operators

Some of the above results are still valid for problems of the form

− div [A(x, u,∇u)] = |x|σuQ, (4.1)

or

− div [A(x, u,∇u)] ≥ |x|σuQ, (4.2)

where A : Ω × R+ × RN → RN is a Caratheodory function, satisfying suitable
assumptions. The radial case has been studied by many authors, among them
we refer to [27, 15].
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We shall say that A is strongly p-coercive if

|A(x, u, η)| ≤ K1 |η|
p−1
,

A(x, u, η)η ≥ K2 |η|
p
.

(4.3)

for some K1,K2 > 0, and for all (x, u, η) ∈ Ω×R+×RN . Up to some variants,
the condition (4.3) is a classical frame for the study of quasilinear operators, see
[29]. It implies the weak Harnack inequality, and hence the strong maximum
principle.
We shall say that A is weakly p-coercive if

A(x, u, η).η ≥ K |A(x, u, η)|p
′

(4.4)

for some K > 0, and for all (x, u, η) ∈ Ω × R+ × RN . This condition (4.4) is
clearly weaker than (4.3), and does not imply the Harnack inequality. It is sat-

isfied in particular by the mean curvature operator u 7→ − div(∇u/
√
1 + |∇u|2)

with p = 2.

Operators with a weak coercivity

For a general weakly p-coercive operator, first we can extend Theorem 3.4.

Theorem 4.1 ([9]) Assume that N ≥ p > 1, and A is weakly p-coercive. Let
u be a nonnegative solution of (4.2) in Ωi (resp. Ωe). If Q > p− 1, then (3.7)
holds for small ρ (resp. for large ρ). If Q < p− 1, for any ` > p− 1−Q, then

( ∮
Cρ/2,ρ

u`
)1/`

≥ Cρ−Γ. (4.5)

Proof. It is an extension of the one of theorem 3.4: we multiply the inequality
by uαϕ, where 1−p < α < 0 , and ϕ is a test function, in order to get coercivity,
then directly by ϕ. ♦

Then one can give nonexistence results in whole RN :

Theorem 4.2 ([9]) Assume that N ≥ p > 1, Q > p − 1, and A is weakly
p-coercive. If Q ≤ Qσ,p, there exists no nontrivial solution of (4.2) in RN .

Proof. From the a priori estimate of theorem 4.1, one deduces∫
Bρ

|x|σ uQ ≤ Cρθ

with θ = (N − p)(Q − Qσ)/(Q − p + 1) ≤ 0. If θ < 0, then as ρ → +∞, we
deduce that

∫
RN
|x|σuQ = 0, hence u ≡ 0. If θ = 0, then |x|σuQ ∈ L1(RN ),

hence lim
∫
C2n,2n+1

|x|σuQ = 0. And we show that

∫
B2n

|x|σuQ ≤ C
(∫
C2n,2n+1

|x|σuQ
)(p−1)/Q



42 Behaviour of solutions to inequalities

hence again u ≡ 0. ♦

For some weakly p-coercive operators which only depend on the gradient of
u, we can also extend the nonexistence results in Ωi and Ωe.

Theorem 4.3 ([9]) Assume that A(x, u, η) = A(|η|)η, with t 7→ A(t)t non-
decreasing and

A(t) ≤Mtp−2, for t > 0,

A(t) ≥M−1tp−2 for small t > 0,
(4.6)

for some M > 0. If σ ≤ −p , there exists no nontrivial solution of (4.2) in Ωi.
If Q ≤ Qσ,p, there exists no nontrivial solution of (4.2) in Ωe.

The result applies in particular to the mean curvature operator with p = 2.

Operators with a strong coercivity

For a general strongly p-coercive operator, one can give nonexistence results in
R
N\ {0}. The method is a combination of the two techniques of multiplication,
either by uα(α < 0) or by (k − u)+(k > 0).

Theorem 4.4 ([9]) Assume that N ≥ p > 1, Q > p − 1, andA is weakly
p-coercive. If Q < Qσ,p, there exists no nontrivial solution of (4.2) in R

N\ {0}.

Moreover Theorems 3.3 and 3.6 extend completely, see [5] (with more general
assumptions on A) and [9]. This problem with Q ≥ Q0,p for such operators is
open.
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