Nonlinear Differential Equations,
Electron. J. Diff. Eqns., Conf. 05, 2000, pp. 1-12.

Explicit construction, uniqueness, and bifurcation curves of solutions for a nonlinear Dirichlet problem in a ball

Horacio Arango & Jorge Cossio

Abstract:
This paper presents a method for the explicit construction of radially symmetric solutions to the semilinear elliptic problem
$$\displaylines{
 \Delta v + f(v) = 0 \quad \hbox{in }B\cr
 v = 0 \quad \hbox{on }\partial B\,,
 }$$
where $B$ is a ball in ${\mathbb R}^N$ and $f$ is a continuous piecewise linear function. Our construction method is inspired on a result by E. Deumens and H. Warchall [8], and uses spline of Bessel's functions. We prove uniqueness of solutions for this problem, with a given number of nodal regions and different sign at the origin. In addition, we give a bifurcation diagram when $f$ is multiplied by a parameter.

Published Ocotber 24, 2000.
Math Subject Classifications: 35B32, 35J60, 65D07, 65N99.
Key Words: Nonlinear Dirichlet problem, radially symmetric solutions, bifurcation, explicit solutions, spline.

Show me the PDF file (142K), TEX file, and other files for this article.

Horacio Arango
Departamento de Matematicas
Universidad Nacional de Colombia
Apartado Aereo 3840
Medellin, Colombia
Jorge Cossio
Departamento de Matematicas
Universidad Nacional de Colombia
Apartado Aereo 3840
Medellin, Colombia
e-mail: jcossio@perseus.unalmed.edu.co

Return to the EJDE web page