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Abstract

The method of quasilinearization, coupled with the method of upper
and lower solutions, is applied to a boundary value problem for an ordinary
differential equation with impulse that has a unique solution. The method
generates sequences of approximate solutions which converge monotoni-
cally and quadratically to the unique solution. In this work, we allow
nonlinear terms with respect to velocity; in particular, Nagumo condi-
tions are employed.

1 Introduction

Let 0 = t0 < t1 < . . . < tm < tm+1 = 1 be given. In this paper, we shall
apply the method of quasilinearization to the two-point conjugate boundary
value problem (BVP) with impulse,

x′′(t) = f(t, x(t), x′(t)), tk < t < tk+1, k = 0, . . . ,m, (1)

x(0) = a, x(1) = b, (2)

and for k = 1, . . . ,m,

∆x(tk) = uk (3)

∆x′(tk) = vk(x(tk), x
′(tk)) ,

where f : [0, 1] × R2 → R is continuous, uk ∈ R, vk : R2 → R is continuous,
k = 1, . . . ,m. Define the impulse, ∆x(tk) = x(t

+
k )−x(t

−
k ), and by convention, let

x(tk) = x(t
−
k ), k = 1, . . . ,m. We shall employ the method of upper and lower

solutions and the method of quasilinearization to obtain a bilateral iteration
scheme in which the iterates converge quadratically to the unique solution of
the BVP with impulse, (1), (2), (3).
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82 Quadratic Convergence of Approximate Solutions

The method of quasilinearization is described by Bellman [4, 5], and has
recently been generalized by Lakshmikantham, Leela and various co-authors to
apply to a wide variety of problems. See, for example, [14, 15], and references
therein. The method generates sequences of approximate solutions which con-
verge monotonically and quadratically to the problem of interest. Recently,
Vatsala, et. al., [16], [17, 18], have applied the method of quasilinearization to
families of two-point BVPs related to (1), in the case that f is independent of
x′, and the boundary conditions are more general than (2).

More recently, Eloe and Zhang [9] extended the work of Vatsala, et. al.
[16, 17, 18] to the BVP, (1), (2), in the case where f depends on x′. As pointed
out in [9], Knobloch [13] and Jackson and Schrader [12] have obtained conditions
such that there exists a sequence of solutions of (1) converging monotonically
and in C1[0, 1] to a solution of the BVP, (1), (2). Neither Knoblach [13] nor
Jackson and Schrader [12] considered the rate of convergence.

Also, recently, Devi, Chandrakala and Vatsala [6] applied the method of
quasilinearization to initial value problems for scalar ordinary differential equa-
tions with impulse. Doddaballapur and Eloe [7] have extended the work of
Vatsala, et. al. [16, 17], [18] to the BVP with impulse, (1), (2), (3), in the case
that f and each vk are independent of x

′. Thus, the primary contribution of
this paper then is that we extend the work in [16], [17], [18], [9] and [7] to the
BVP with impulse, (1), (2), (3), when f and each vk depend on x

′.

The paper is organized in the following manner. We shall obtain a prelimi-
nary result in Theorem 1 concerning the properties of upper and lower solutions
of the BVP with impulse, (1), (2), (3). In Theorem 2, we shall obtain a fun-
damental existence of solutions result for the BVP with impulse, (1), (2), (3).
The proof of this result employs the Schauder fixed point theorem. Due to
the dependence on x′, technical difficulties arise which require the assumption
of Nagumo type conditions and extensions of the Kamke convergence theorem
[10, 11]. In Theorem 3, we shall state a uniqueness of solutions result for the
BVP with impulse, (1), (2), (3). We shall state and prove the main result of this
paper in Theorem 4. The proof of Theorem 4 employs a clever manipulation
of Theorems 1 and 2. The iterative details in the proof of Theorem 4 are com-
pletely analogous to those found in [7, 9, 16, 17, 9] once Theorems 1 and 2 are
obtained. Hence, we consider these details to be standard and only highlight
those details in the proof of Theorem 4 that are particular to the BVP with
impulse, (1), (2), (3).

2 Results

We begin with the definition of an appropriate Banach space, B. Let PC[0, 1]
denote the piecewise continuous functions on [0, 1] and let PC1[0, 1] denote the
functions, x, such that x ∈ PC[0, 1] and x′ ∈ PC[0, 1]. Define

B = {x ∈ PC1[0, 1] : x(i)|[tk, tk+1] ∈ C
i[tk, tk+1], k = 0, . . . ,m, i = 0, 1},
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with ‖x‖B = maxk=0,...,m ‖x‖k and ‖x‖k = maxi=0,1 suptk≤t≤tk+1 |x
(i)(t)|. We

shall say that α ∈ B is a lower solution of the BVP with impulse, (1), (2), (3),
if

α′′(t) ≥ f(t, α(t), α′(t)), tk < t < tk+1, k = 0, . . . ,m,

α(0) ≤ a, α(1) ≤ b,

and for k = 1, . . . ,m,

∆α(tk) = uk

∆α′(tk) ≥ vk(α(tk), α′(tk)) .

We shall say that β ∈ B is an upper solution of the BVP with impulse, (1), (2),
(3), if

β′′(t) ≤ f(t, β(t), β′(t)), tk < t < tk+1, k = 0, . . . ,m,

β(0) ≥ a, β(1) ≥ b ,

and for k = 1, . . . ,m,

∆β(tk) = uk

∆β′(tk) ≤ vk(β(tk), β′(tk)) .

For the remainder of this paper, we shall assume that

f ∈ C([0, 1]× R2), (∂f/∂x) = fx ∈ C([0, 1]× R2), (4)

fx(t, x, y) > 0, (t, x, y) ∈ [0, 1]× R2, (5)

vk ∈ C1(R2), (6)

and for k = 1, . . . ,m,

vkx(x, y) > 0, (x, y) ∈ R
2, vky(x, y) > 0, (x, y) ∈ R

2. (7)

In order to obtain Theorem 2, we shall define an appropriate fixed point
operator, T . For x ∈ B, define an operator T on x by

Tx(t) = p(t) + I(t, x) +

∫ 1
0

G(t, s)f(s, x(s), x′(s)) ds, (8)

where p(t) = a(1− t) + bt, I(t, x) =
∑m
k=1 Ik(t, x). For k = 1, . . . ,m, let

Ik(t, x) =

{
t(−uk − (1 − tk)vk(x(tk), x′(tk))) , 0 ≤ t ≤ tk,
(1− t)(uk − tkvk(x(tk), x′(tk))) , tk ≤ t ≤ 1 .

Let

G(t, s) =

{
t(s− 1) , 0 ≤ t < s ≤ 1,
s(t− 1) , 0 ≤ s < t ≤ 1,
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denote the Green’s function for the BVP, x′′(t) = 0, 0 ≤ t ≤ 1, x(0) = 0,
x(1) = 0. Eloe and Henderson [8] have argued that x is a solution of the BVP
with impulse, (1), (2), (3), if, and only if, x ∈ B and Tx = x. Finally, we shall
define a partial order on B as follows: for α, β ∈ B, we say that α ≤ β if, and
only if,

α|[tk,tk+1](t) ≤ β|[tk,tk+1](t), tk ≤ t ≤ tk+1, k = 0, . . . ,m.

Theorem 1 Assume (4), (5), (6), and (7) hold. Let α, β be lower and upper
solutions of the BVP with impulse, (1), (2), (3), respectively. Then α ≤ β.

Proof. Set w(t) = α(t) − β(t) and note that w is continuous on [0, 1] by
(3). Assume, for the sake of contradiction, that w is positive on [0, 1]. Since
w(0) ≤ 0, w(1) ≤ 0, w has a positive maximum at some τ ∈ (0, 1). Assume
τ ∈ ∪mk=0(tk, tk+1). Then w

′′(τ) ≤ 0 and α′(τ) = β′(τ). However, employing
that α and β are lower and upper solutions of the BVP with impulse, (1), (2),
(3), respectively, and employing (5), it follows that

w′′(τ) = α′′(τ) − β′′(τ) ≥ f(τ, α(τ), α′(τ)) − f(τ, β(τ), β′(τ)) > 0.

This provides a contradiction and so, τ /∈ ∪mk=0(tk, tk+1). Now, assume that τ =
tk for some k ∈ {1, . . . ,m}. By Taylor’s theorem, w′(t

−
k ) ≥ 0 and w

′(t+k ) ≤ 0,
or ∆w′(tk) ≤ 0 and

α′(t−k ) = α
′(tk) ≥ β

′(tk) = β
′(t−k ).

But

∆w′(tk) = ∆α
′(tk)−∆β

′(tk) ≥ vk(α(tk), α
′(tk))− vk(β(tk), β

′(tk)) > 0

by (7). Thus, τ /∈ {t1, . . . tm}, and w(t) ≤ 0, 0 ≤ t ≤ 1.

Theorem 2 Assume g ∈ C([0, 1]×R2), zk ∈ C(R2), k = 1, . . . ,m, and assume
that each zk(x, y) is monotone increasing in y for fixed x. Assume that each
solution of x′′(t) = g(t, x(t), x′(t)) extends to [0, 1], or becomes unbounded on its
maximal interval of convergence. Let α, β be lower and upper solutions of the
BVP,

x′′(t) = g(t, x(t), x′(t)), tk < t < tk+1, (9)

∆x(tk) = uk

∆x′(tk) = zk(x(tk), x
′(tk)) , (10)

with k = 1, . . . ,m and boundary conditions given by (2), respectively, such that

α ≤ β.

Then, there exists a solution, x, of the BVP with impulse, (9), (2), (10), satis-
fying

α ≤ x ≤ β.
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Proof. Define

f̂(t, x, y) =



g(t, β(t), y) + (x− β(t))/[1 + (x− β(t))], x > β(t),
g(t, x, y), α(t) ≤ x ≤ β(t),
g(t, α(t), y) + (x− α(t))/[1 + |x− α(t)|], x < α(t),

and for k = 1, . . . ,m, define

v̂k(x, y) =



zk(β(tk), y) + (x− β(tk))/[1 + (x− β(tk))], x > β(tk),
zk(x, y), α(tk) ≤ x ≤ β(tk),
zk(α(tk), y) + (x− α(tk))/[1 + |x− α(tk)|], x < α(tk).

Let N > 0 be such that |α′(t)| ≤ N , |β′(t)| ≤ N , t ∈ [tk, tk+1], k = 0, . . . ,m.
For each positive integer, l, define

fl(t, x, y) =



f̂(t, x,N + l), y > N + l,

f̂(t, x, y), |y| ≤ N + l,
f̂(t, x,−(N + l)), y < −(N + l),

and

vkl(t, x, y) =



v̂k(x,N + l), y > N + l,
v̂k(x, y), |y| ≤ N + l,
v̂k(x,−(N + l)), y < −(N + l).

Notice that fl and each vkl are bounded and continuous. With a standard
application of the Schauder fixed point theorem to the operator T , defined by
(8), one obtains a solution, xl ∈ B, to the BVP with impulse, (1), (2), (3), with
f = fl and each vk = vkl bounded and continuous.
We now argue that each solution, xl, satisfies α ≤ xl ≤ β. We shall show that

xl ≤ β. As in the proof of Theorem 1, assume for the sake of contradiction that
xl − β has a positive maximum at τ . As in the proof of Theorem 1, τ ∈ (0, 1).
If τ ∈ ∪mk=0(tk, tk+1), then x

′′
l (τ) ≤ β

′′(τ), and |x′l(τ)| = |β
′(τ)| ≤ N < N + l.

Thus,
(xl − β)

′′(τ) ≥ (xl − β)(τ)/[1 + (x− β)(τ)] > 0,

which is a contradiction. If τ = tk, for some k ∈ {1, . . . ,m}, then x′l(tk) ≥
β′(tk). Since each zk(x, y) is monotone increasing in y for fixed x, it follows
that each vkl(x, y) is monotone increasing in y for fixed x. Moreover, note that
vkl(β(tk), β

′(tk)) =zk(β(tk), β
′(tk)). Thus,

∆(xl − β)
′(tk) ≥ vkl(β(tk), x

′
l(tk))− vkl(β(tk), β

′(tk))

+(xl − β)(tk)/[1 + (xl − β(tk))]

≥ (xl − β)(tk)/[1 + (xl − β(tk))] > 0

which is also a contradiction. Therefore, xl ≤ β. To show that α ≤ xl we follow
a similar procedure.
For each l there exists tl ∈ [0, t1] such that

t1|x
′

kl(tl)| = |xkl(t1)− a| ≤ max{|β(0)− α(t1)|, |β(t1)− α(0)|}.
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Thus, each of the sequences {xkl(tl)} and {x
′

kl(tl)} are bounded. One can now
apply the Kamke convergence theorem (see [11]) for solutions of initial value
problems and obtain a subsequence of {xkl} which converges to a solution of
x′′(t) = f̂(t, x(t), x′(t)) on a maximal subinterval of [0, t1]. Clearly, α(t) ≤
x(t) ≤ β(t) and solutions of x′′(t) = g(t, x(t), x′(t)) extend to all of [0, 1] or
become unbounded; thus, x′′(t) = f̂(t, x(t), x′(t)) on [0, t1].
Now, apply the impulse defined by (10) at t1. Apply the Kamke theorem

to the subsequence that was extracted in the preceding paragraph. Because of
(10) one can employ t1 = tl for each l. Thus, one obtains a further subsequence

which converges to a solution, x, of x′′(t) = f̂(t, x(t), x′(t)) on (0, t1) ∪ (t1, t2)
such that x satisfies (10) at t1.
Continue inductively, first applying (10) at each tj and then applying the

Kamke convergence theorem on that subinterval (tj , tj+1). Finally, since α ≤

x ≤ β, f̂(t, x(t), x′(t)) = f(t, x(t), x′(t)) and the proof of Theorem 2 is complete.

Remark. For simplicity, we can assume that g satisfies a Nagumo condition
in x′ ([10], [11]). That is, assume that for each M > 0 there exists a positive
continuous function, hM (s), defined on [0,∞) such that

|g(t, x, x′)| ≤ hM (|x
′|)

for all (t, x, x′) ∈ [0, 1]× [−M,M ]× R and such that

∫ ∞
0

(s/hM (s))ds = +∞.

The assumption that g satisfies a Nagumo condition implies that each solution
of the differential equation, x′′(t) = g(t, x(t), x′(t)), either extends to [0, 1] or
becomes unbounded on its maximal interval of existence ([10], [11]). In our
main result, Theorem 4, g will represent a modification of f . Thus, we shall
assume in Theorem 4 that f satisfies a Nagumo condition in x′.

Theorem 3 Assume that (4), (5), (6), and (7) hold. Then, solutions of the
BVP with impulse, (1), (2), (3), are unique.

Proof. The uniqueness of solutions result follows immediately from Theorem
1 and the observation that solutions are respectively upper and lower solutions.

Theorem 4 Assume that (4), (5), (6), and (7) hold, and assume that

(∂2/∂x2)f ∈ C([0, 1]× R2), v′′k ∈ C(R
2), k = 1, . . . ,m .

Assume that f satisfies a Nagumo condition in x′. Assume that α0 and β0 are
lower and upper solutions of the BVP with impulse, (1), (2), (3), respectively.
Then there exist monotone sequences, {αn(t)} and {βn(t)}, which converge in
B to the unique solution, x(t), of the BVP with impulse, (1), (2), (3), and the
convergence is quadratic.
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Proof. Let F (t, x) : [0, 1]× R→ R be such that F, Fx, Fxx are continuous on
[0, 1]× R and

Fxx(t, x) ≥ 0, (t, x) ∈ [0, 1]× R . (11)

Set φ1(t, x1, x2) = F (t, x1)−f(t, x1, x2) on [0, 1]×R2. From (11) it follows that,
if x1, y1 ∈ R, then F (t, x1) ≥ F (t, y1) + Fx(t, y1)(x1 − y1). In particular, for
x1, y1, x2, y2 ∈ R,

f(t, x1, x2) ≥ f(t, y1, y2)+Fx(t, y1)(x1 − y1)−φ1(t, x1, x2)+φ1(t, y1, y2). (12)

For each k = 1, . . . ,m, let Vk(x) : R → R be such that Vk, V
′
k, V

′′
k are

continuous on R and
V ′′k (x) ≥ 0, x ∈ R . (13)

Set φ2k(x1, x2) = Vk(x1)−vk(x1, x2) on R2. From (13) it follows that, if x1, y1 ∈
R, then Vk(x1) ≥ Vk(y1) + V ′k(y1)(x1 − y1). In particular, for x1, y1, x2, y2 ∈ R,

vk(x1, x2) ≥ vk(y1, y2) + V
′
k(y1)(x1 − y1)− (φ2k(x1, x2)− φ2k(y1, y2)). (14)

Define

g(t, x1, x2;α0, β0, α
′
0) = f(t, α0(t), α

′
0(t)) + Fx(t, β0(t))(x1 − α0(t))

−φ1(t, x1, x2) + φ1(t, α0(t), α
′
0(t)) ,

G(t, x1, x2;β0, β
′
0) = f(t, β0(t), β

′
0(t)) + Fx(t, β0(t))(x1 − β0(t))

−φ1(t, x1, x2) + φ1(t, β0(t), β
′
0(t)) ,

hk(x1, x2;α0, β0, α
′
0) = vk(α0(tk), α

′
0(tk)) + V

′
k(β0(tk))(x1 − α0(tk))

−(φ2k(x1, x2)− φ2k(α0(tk), α
′
0(tk))) ,

Hk(x1, x2;β0, β
′
0) = vk(β0(tk), β

′
0(tk)) + V

′
k(β0(tk))(x1 − β0(tk))

−(φ2k(x1, x2)− φ2k(β0(tk), β
′
0(tk))) .

First consider the BVP with impulse,

x′′(t) = g(t, x(t), x′(t);α0, β0, α
′
0), tk < t < tk+1, k = 0, . . . ,m, (15)

and for k = 1, . . . ,m,

∆x(tk) = uk (16)

∆x′(tk) = hk(x(tk), x
′(tk);α0, β0, α

′
0) ,

with boundary conditions given by (2). Each hk readily satisfies the hypotheses
of Theorem 2. A limit comparison implies that g satisfies a Nagumo condition
in x′.
We now show that α0 and β0 are lower and upper solutions, respectively,

of the BVP with impulse, (15), (2), (16); thus, by Theorem 2, there exists a
solution α1(t) of the BVP with impulse, (15), (2), (16), satisfying

α0 ≤ α1 ≤ β0.
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To this end, note that for tk < t < tk+1, k = 0, . . . ,m,

α′′0(t) ≥ f(t, α0(t), α
′
0(t)) = g(t, α0(t), α

′
0(t);α0, β0, α

′
0),

and, for k = 1, . . . ,m,

∆α′0(tk) ≥ vk(α0(tk), α
′
0(tk)) = hk(α0(tk), α

′
0(tk);α0, β0, α

′
0).

Moreover, from (12) and (14), it follows that for tk < t < tk+1, k = 0, . . . ,m,

β′′0 (t) ≤ f(t, β0(t), β
′
0(t)) ≤ f(t, α0(t), α

′
0(t)) − Fx(t, β0(t))(α0(t)− β0(t))

+φ1(t, α0(t), α
′
0(t))− φ1(t, β0(t), β

′
0(t))

= g(t, β0(t), β
′
0(t);α0, β0, α

′
0),

and for k = 1, . . . ,m,

∆β′0(tk) ≤ vk(β0(tk), β
′
0(tk))

≤ vk(α0(t), α
′
0(t)) − V

′
k(β0(tk))(α0(tk)− β0(tk))

+(φ2k(α0(tk), α
′
0(t)) − φ2k(β0(tk), β

′
0(tk))

= hk(β0(tk), β
′
0(tk);α0, β0, β

′
0).

Since α0 and β0 satisfy (2), α0 and β0 are lower and upper solutions, respectively,
of the BVP with impulse, (15), (2), (16), and thus, by Theorem 2, there exists
a solution α1(t) of the BVP with impulse, (15), (2), (16), such that

α0 ≤ α1 ≤ β0 .

Now, consider the BVP with impulse,

x′′(t) = G(t, x(t), x′(t);β0, β
′
0), tk < t < tk+1, k = 0, . . . ,m,

x(0) = a, x(1) = b, (17)

and for k = 1, . . . ,m,

∆x(tk) = uk (18)

∆x′(tk) = Hk(x(tk), x
′(tk);α0, β0, β

′
0) .

Again, G and each Hk satisfy the hypotheses of Theorem 2, and, again, (12)
and (14) are employed to show that α0 and β0 are lower and upper solutions, re-
spectively, of the BVP with impulse, (17), (2), (18); thus, there exists a solution
β1(t) of the BVP with impulse, (17), (2), (18), such that

α0 ≤ β1 ≤ β0 .

We now show that α1 and β1 are lower and upper solutions, respectively, of
the BVP with impulse, (1), (2), (3). Thus, it will follow by Theorem 1 that

α0 ≤ α1 ≤ β1 ≤ β0 .
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Employ (12) and (11) to see that for t ∈ ∪mk=0(tk, tk+1),

α′′1 (t) = g(t, α1(t), α
′
1(t);α0, β0, α

′
0)

= f(t, α0(t), α
′
0(t)) + Fx(t, β0(t))(α1(t)− α0(t))

−(φ(t, α1(t), α
′
1(t))− φ(t, α0(t), α

′
0(t)))

≥ f(t, α1(t), α
′
1(t)) + Fx(t, α1(t))(α0(t)− α1(t)) + φ(t, α1(t), α

′
1(t))

−φ(t, α0(t), α
′
0(t)) + Fx(t, β0(t))(α1(t)− α0(t))

−(φ(t, α1(t), α
′
1(t))− φ(t, α0(t), α

′
0(t)))

= f(t, α1(t), α
′
1(t)) + (Fx(t, β0(t)) − Fx(t, α1(t)))(α1(t)− α0(t))

≥ f(t, α1(t), α
′
1(t)).

Similarly, for k = 1, . . . ,m, employ (14) and (13) to see that

∆α′1(tk) = hk(α1(tk), α
′
1(tk));α0, β0, α

′
0)

= vk(α0(tk), α
′
0(tk)) + V

′
k(β0(tk))(α1(tk)− α0(tk))

−(φ2k(α1(tk), α
′
1(tk)) − φ2k(α0(tk), α

′
0(tk)))

≥ vk(α1(tk), α
′
1(tk)) + V

′
k(α1(tk))(α0(tk)− α1(tk))

+φ2k(α1(tk), α
′
1(tk))− φ2k(α0(tk), α

′
0(tk))

+V ′k(β0(tk))(α1(tk)− α0(tk))− (φ2k(α1(tk), α
′
1(tk))

−φ2k(α0(tk), α
′
0(tk)))

= vk(α1(tk)) + (V
′
k(β0(tk))− V

′
k(α1(tk)))(α1(tk)− α0(tk))

≥ vk(α1(tk)).

Similarly, it follows by (11)-(14) that for t ∈ ∪mk=0(tk, tk+1),

β′′1 (t) ≤ f(t, β1(t), β
′
1(t)),

and for k ∈ {1, . . . ,m},

∆β′1(tk) ≤ vk(β1(tk), β
′
1(tk)).

In particular, α1 and β1 are lower and upper solutions, respectively, of the BVP
with impulse, (1), (2), (3), and by Theorem 1,

α0 ≤ α1 ≤ β1 ≤ β0.

Inductively, define sequences of functions {gl}, {Gl}, {hkl}, and {Hkl} by

gl(t, x1, x2) = g(t, x1, x2;αl, βl, α
′
l)

= f(t, αl(t), α
′
l(t)) + Fx(t, βl(t))(x1 − αl(t))

−φ1(t, x1, x2) + φ1(t, αl(t), α
′
l(t))

Gl(t, x1, x2) = G(t, x1, x2;βl, β
′
l)

= f(t, βl(t), β
′
l(t)) + Fx(t, βl(t))(x1 − βl(t))
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−φ1(t, x1, x2) + φ1(t, βl(t), β
′
l(t)) ,

hkl = hk(x1, x2;αl, βl, α
′
l)

= vk(αl(tk), α
′
l(tk)) + V

′
k(βl(tk))(x1 − αl(tk))

−(φ2k(x1, x2)− φ2k(αl(tk))) ,

Hkl = Hk(x1, x2;βl, β
′
l)

= vk(βl(tk), β
′
l(tk)) + V

′
k(βl(tk))(x1 − βl(tk))

−(φ2k(x1, x2)− φ2k(βl(tk), β
′
l(tk))) .

Inductively, Theorem 2 implies there exists a solution αl+1(t) of the BVP with
impulse, (15), (2), (16), with g = gl and each hk = hkl satisfying

α0 ≤ . . . ≤ αl ≤ αl+1 ≤ βl ≤ . . . ≤ β0 .

Similarly, there exists a solution βl+1(t) of the BVP with impulse, (17), (2),
(18), with G = Gl and each Hk = Hkl satisfying

α0 ≤ . . . ≤ αl ≤ βl+1 ≤ βl ≤ . . . ≤ β0.

Finally, inductively, αl+1 and βl+1 are lower and upper solutions, respectively,
of the BVP with impulse, (1), (2), (3), and by Theorem 1,

α0 ≤ . . . ≤ αl ≤ αl+1 ≤ βl+1 ≤ βl ≤ . . . ≤ β0.

We now show that each sequence {αl} and {βl} converge in B to x, the
unique solution of the BVP with impulse, (1), (2), (3). Recall

B = {x ∈ PC1[0, 1] : x(i)|[tk,tk+1] ∈ C
i[tk, tk+1], k = 0, . . . ,m, i = 0, 1},

with ‖x‖B = maxk=0,...,m ‖x‖k and ‖x‖k = maxi=0,1 suptk≤t≤tk+1 |x
(i)(t)|. The

Kamke convergence theorem does not apply directly to either sequence, {αl} or
{βl} since neither gl nor Gl converge uniformly on compact sets to f . To see
this, note that

gl(t, x1, x2) = f(t, x1, x2) + Fx(t, βl(t))(x1 − αl(t)) + F (t, αl(t)) − F (t, x1)

and

Gl(t, x1, x2) = f(t, x1, x2) + Fx(t, βl(t))(x1 − βl(t)) + F (t, βl(t)) − F (t, x1).

Define

ĝl(t, x1, x2) = f(t, x1, x2)+Fx(t, βl(t))(αl+1−αl)(t)+F (t, αl(t))−F (t, αl+1(t))

and

Ĝl(t, x1, x2) = f(t, x1, x2)+Fx(t, βl(t))(βl+1−βl)(t)+F (t, βl(t))−F (t, βl+1(t)).

Theorem 3 applies to the BVP with impulse, (1), (2), (3), with f = ĝl and each
vk = hkl and note that αk+1 is the unique solution. The Kamke convergence
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theorem now does apply and, with omitted details that are similar to those
given in the proof of Theorem 2, {αl} converges in B to x, the unique solution
of the BVP with impulse, (1), (2), (3). Similarly, {βl} converges in B to x, the
unique solution of the BVP with impulse, (1), (2), (3).
We now argue that the convergence is quadratic. Let qn(t) = βn(t) − x(t)

and pn(t) = x(t) − αn(t), where x(t) denotes the unique solution of the BVP
with impulse, (1), (2), (3). Set

en = max{‖qn‖B, ‖pn‖B}.

First, consider qn+1(t) and note that qn+1 ≥ 0. For t ∈ ∪mk=0(tk, tk+1),

q′′n+1(t) = F (t, βn(t)) + Fx(t, βn(t))(βn+1 − βn)(t)

−φ1(t, βn+1(t), β
′
n+1(t))− F (t, x(t)) + φ1(t, x(t), x

′(t))

= Fx(t, c1(t))qn(t)− Fx(t, βn(t))qn(t) + Fx(t, βn(t))qn+1(t)

−φ1x(t, c2(t), c3(t))qn+1(t)− φ1x′(t, c2(t), c3(t))q
′
n+1(t) ,

where x(t) ≤ c1(t) ≤ βn(t), x(t) ≤ c2(t) ≤ βn+1(t), and c3(t) is between x′(t)
and β′n+1(t). Thus, there exists c1(t) ≤ c4(t) ≤ βn(t) such that

q′′n+1(t)

= Fxx(t, c4(t))qn(t)(c1(t)− βn(t))

+(Fx(t, βn(t)) − φ1x(t, c2(t), c3(t)))qn+1(t)− φ1x′(t, c2(t), c3(t))q
′
n+1(t)

≥ −Fxx(t, c4(t))q
2
n(t) + fx′(t, c2(t), c3(t))q

′
n+1(t) .

Note that to obtain this inequality, we have employed the monotonicity of Fx
in the second component. In particular, there exists M > 0, such that

q′′n+1(t)− fx′(t, c2(t), c3(t))q
′
n+1(t) ≥ −Me

2
n, (19)

where M > maximax(t,x)∈Di Fxx(t, x), and for i = 0, . . .m,

Di = {(t, x) : ti ≤ t ≤ ti+1, α0(t) ≤ x ≤ β0(t)} .

Similarly, there exist appropriate c4 and c5 such that for k = 1, . . . ,m,

∆q′n+1(tk)− vky(c4, c5)q
′
n+1(tk) ≥ −Me

2
n . (20)

Let m(t) = exp

(
−
∫ t
0
fx′(s, c2(s), c3(s))ds

)
denote the integrating factor asso-

ciated with (19). Then

(q′n+1(t)m(t))
′ ≥ −Mm(t)e2n . (21)

Thus, for tm ≤ t ≤ 1,

q′n+1(1)m(1)− q
′
n+1(t)m(t) ≥ −Me

2
n

∫ 1
t

m(s)ds .
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Since, q′n+1(1) ≤ 0, it follows that

q′n+1(t) ≤Me
2
n

∫ 1
t

m(s)ds/m(t) .

Since qn+1 converges to 0 in B, eventually (s, c2(s), c3(s)) belongs to

D̂ = {(s, x1, x2) : tm ≤ s ≤ 1, α0(s) ≤ x1 ≤ β0(s), x
′(s)− 1 ≤ x2 ≤ x

′(s) + 1}.

Thus, we can bound m(t) away from both 0 and ∞ for n sufficiently large; in
particular, there exists N1 > 0 such that for tm ≤ t ≤ 1 and n sufficiently large,

q′n+1(t) ≤ N1e
2
n . (22)

Apply (20) at tm. Then

q′n+1(t
+
m)− q

′
n+1(tm)− vmy(c4, c5)q

′
n+1(tm) ≥ −Me

2
n .

Employ (7) and also bound vmy away from both 0 and∞ to obtain some M̂ > 0
such that

q′n+1(t
−
m) ≥ −M̂e

2
n . (23)

Now, employ (21) and (23) to obtain (22) for tm−1 ≤ t ≤ tm for some N2 > 0.
Again, apply (20) to obtain a suitable (23) at tm−1. Proceed inductively and
obtain that there exists N > 0 such that for t ∈ ∪mk=0[tk, tk+1] and n sufficiently
large,

q′n+1(t) ≤ Ne
2
n. (24)

Recall that qn+1(t) ≥ 0, and that qn+1 ∈ C[0, 1]. Integrate (24) from 0 to t;
then for n sufficiently large,

0 ≤ qn+1 ≤ Ne
2
n . (25)

Beginning again at (21), integrate from 0 to t ≤ t1 to obtain

q′n+1(t)m(t) − q
′
n+1(0) ≥ −Me

2
n

∫ t
0

m(s) ds .

Since, q′n+1(0) ≥ 0, it follows that for 0 ≤ t ≤ t1, there exists N1 > 0, such that

q′n+1(t) ≥ −Me
2
n

∫ t
0

m(s) ds/m(t) ≥ −N1e
2
n ,

for n sufficiently large. This is analogous to (22). Proceed analogously, then,
and choose N large enough such that for t ∈ ∪mk=0[tk, tk+1] for n sufficiently
large,

q′n+1(t) ≥ −Ne
2
n . (26)

It now follows from (24), (25), and (26) that βn converges to x quadratically in
B.
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The argument that {αn} converges quadratically to x in B is similar and we
provide some details.

p′′n+1(t)

= F (t, x(t)) − φ1(t, x(t), x
′(t))

−(F (t, αn(t)) + Fx(t, βn(t))(αn+1 − αn)(t)− φ1(t, αn+1(t), α
′
n+1(t)))

= Fx(t, c1(t))pn(t)− Fx(t, βn(t))pn(t) + Fx(t, βn(t))pn+1(t)

−φ1x(t, c2(t), c3(t))pn+1(t)− φ1x′(t, c2(t), c3(t))p
′
n+1(t)

= Fxx(t, c4(t))pn(t)(c1(t)− βn(t))

+(Fx(t, βn(t))− φ1x(t, c2(t), c3(t)))pn+1(t)− φ1x′(t, c2(t), c3(t))p
′
n+1(t)

≥ −Fxx(t, c4(t))pn(t)(pn(t) + qn(t)) + fx′(t, c2(t), c3(t))p
′
n+1(t) .

In particular,

p′′n+1(t)− fx′(t, c2(t), c3(t))p
′
n+1(t) ≥ −2Me

2
n

on an appropriate set and for sufficiently large n. A similar inequality is obtained
with respect to the impulse and the details for quadratic convergence follow as
above.

Corollary 5 The sequence {β′′n(t) − f(t, βn(t), β
′
n(t))} converges quadratically

to 0 in B.

Proof: There exist βn ≥ c2 ≥ c1 ≥ βn+1 such that

f(t, βn+1(t), β
′
n+1(t)) ≥ β′′n+1(t)

= f(t, βn(t), β
′
n(t)) + Fx(t, βn(t))(βn+1(t)− βn(t))

−(φ1(t, βn+1(t), β
′
n+1(t))− φ1(t, βn(t), β

′
n(t)))

= f(t, βn+1(t), β
′
n+1(t))

+Fxx(t, c2(t))(βn+1(t)− βn(t))(βn(t)− c1(t)) .

Thus,

0 ≤ f(t, βn+1(t), β
′
n+1(t))− β

′′
n+1(t)

≤ Fxx(t, c2(t))(βn+1(t)− βn(t))
2

≤ Fxx(t, c2(t))e
2
n .

Similar inequalities are obtained for the impulse. Quadratic convergence can
also be obtained for the sequence

{f(t, αn(t), α
′
n(t))− α

′′
n(t)}.
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