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Rotationally Symmetric Deformations of a

Spherical Cap ∗

John V. Baxley & Stephen B. Robinson

Abstract

We prove the existence and uniqueness of rotationally symmetric so-
lutions to a nonlinear boundary value problem representing the elastic
deformation of a spherical cap.

1 Introduction

Suppose that a rotationally symmetric membrane is subjected to a vertical
pressure as well as a prescribed displacement at its boundary. In [6], Wayne
Dickey derived a model to describe the deformation of this membrane. Under
the assumption of small strains, i.e. Hooke’s laws, Dickey derived the following
problem.

(
r
m
(rT )′

)′
= mT√

G2+T 2
− 1 +mT + ν(r2G2)′

2r
√
G2+T 2

in (0, 1),

|T (0)| <∞, and (1)(
(rT )′

m − ν
√
G2 + T 2

)
r=1
= µ ,

where (r, z(r)) represents the profile of the undeformed membrane in cylindrical
coordinates, m =

√
1 + (z′)2, G = 1

Ehr

∫ r
0
ρmP dρ, E is Young’s modulus,

h is the thickness, P (r) is the pressure, ν is the Poisson ratio, and µ is the
displacement at the boundary. T is an auxiliary function that can be used to
derive the exact shape of the deformed membrane, as well as the internal stresses
and strains. For the case of small pressure and shallow caps T can be thought
of as a rescaled radial stress, and the substitution T = σr is often used in the
literature. (See [6].)
This problem is usually studied with additional simplifying assumptions.

Specifically, assuming a shallow membrane with undeformed shape z(r) = c(1−
rγ), where γ > 1 and 0 ≤ c� 1, and assuming that the membrane is subjected
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12 Rotationally Symmetric Deformations of a Spherical Cap

to a small constant pressure with the property that limG→0
G
T
= −z′, then

Dickey derived an approximate theory where T must satisfy

r2T ′′ + 3rT ′ = λ2r2γ−2

2 + βνr
2

T
− r2

8T 2 in (0, 1),

|T (0)| <∞, and (2)

T ′(1) + (1− ν)T (1) = µ ,

where λ and β are positive constants depending on P, h, and E. In the case
that γ = 2 the model serves as a good approximation of the spherical cap. The
assumption on GT is motivated by a search for deformations that are small when
pressure is small. This problem has been studied extensively in recent literature.
A relatively complete treatment of the problem is contained in [12, 11, 2, 3],
although there are still some open questions, such as the existence of multiple
solutions under certain conditions, and the stability of radial solutions. Earlier
fundamental work is contained in papers such as [13, 10, 5, 7, 8, 1].
In this paper we examine a special case of the more general model (1), with

the assumptions that ν = 0 and that z(r) ∈ C2[0, 1] is a positive decreasing
concave function with z′(0) = 0 and z′′(0) < 0. Observe that this includes
spherical caps as a special case. The model reduces to(

r
m
(rT )′

)′
= mT√

G2+T 2
− 1 +mT in (0, 1),

|T (0)| <∞, and (3)

T ′(1) + T (1) = m(1)µ .

It should be noted that the derivation of this model assumes small strains and
stresses. As a consequence the physical relevance of the model is lost for large
values of |µ|. Also, the assumption that ν = 0 indicates that we are modeling a
material that is easily compressed.
We will show that problem (3) has a unique solution for all µ ∈ R. This

conclusion agrees well with recent investigations of the approximate problem
(2). Our primary tool is the technique of upper and lower solutions, and in
some ways our methods simplify the shooting arguments used in the references
mentioned above.
We would like to thank the referee for several helpful suggestions and cor-

rections.

2 Preliminaries

In this section we rewrite (3) in a convenient form, and we establish the necessary
framework for an upper and lower solutions argument. Specifically, we must
understand some of the geometry associated with the nonlinear term, and then
we must establish some regularity estimates and a comparison theorem for the
differential operator.
Problem (3) can be rewritten as(

r3

mT
′
)′
= r
[

mT√
G2+T 2

− 1 + kT
]
in (0, 1),
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|T (0)| <∞, and (4)

T ′(1) + T (1) = m(1)µ ,

where k =
(
m− ( r

m
)′
)
. For notational convenience in what follows we let

LT :=

(
r3

m
T ′
)′
, and f(r, T ) :=

mT
√
G2 + T 2

− 1 + kT.

We begin our analysis of (4) by a careful examination of f(r, T ). It is partic-
ularly important to describe the level set f−1(0), and to determine how f(r, T )
behaves near r = 0.
First, observe that

m′ =
z′z′′

m
.

Thus m is strictly increasing with limr→0
m′

r
= (z′′(0))2 and limr→0m(r) = 1.

Next we see that

k =
(z′)2 + (z′)4 + rz′z′′

m3
.

Therefore k(r) > 0 for r > 0 and limr→0
k
r2
= 2(z′′(0))2. Since P is assumed to

be constant, G can be simplified as follows.

G =
P

Ehr

∫ r
0

mρdρ .

And so G ∈ C1[0, 1] with

Pr
2Eh ≤ G ≤

Prm(r)
2Eh , and

G′(0) = P
2Eh .

It is certainly possible to obtain more detailed information about the properties
of m, k, and G, but the given information will suffice.
The following lemmas describe the level set f−1(0).

Lemma 1 f−1(0)
⋂
((0, 1]× R) is the graph of a strictly positive smooth func-

tion τ(r).

Proof: A straight forward computation gives

fT =
mG2

(G2 + T 2)3/2
+ k .

Since fT ≥ k(r) > 0 for all r > 0, it follows that there is a function τ ∈ C1(0, 1]
such that τ(r) is the unique solution of f(r, τ(r)) = 0 and τ ′ = −fr/fT . It is
clear that f(r, T ) ≤ −1 for T ≤ 0, so τ(r) > 0. ♦

It should be clear that f(r, T ) < 0 for T < τ(r) and f(r, T ) > 0 for T > τ(r).

Lemma 2 limr→0 τ(r) exists and is strictly positive.
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Proof: We begin by claiming that limr→0 k(r)τ(r) = 0. If not, there must
be a sequence {rn} such that rn → 0 and lim infn→∞ k(rn)τ(rn) > 0. Since
k(rn) → 0, we know that τ(rn) → ∞. Since m(rn) → 1 and G(rn) → 0, it
follows that

m(rn)τ(rn)√
G(rn)2 + τ(rn)2

→ 1

, and, since f(rn, τ(rn)) = 0, we get k(rn)τ(rn)→ 0, a contradiction.
Now rewrite the equation f(τ, r) = 0 as

m2τ2 = (1 − kτ)2(G2 + τ2).

After a rearrangement of terms we get

((z′)2 + 2kτ − k2τ2)τ2 = G2(1 − kτ)2 .

If we divide through by r2z′′(0)2 we get a polynomial in τ whose coefficients
converge as r → 0 yielding the limiting polynomial

4τ3 + τ2 =

(
P

2Ehz′′(0)

)2
.

It is not hard to see that τ(r) must converge to the unique positive root, τ0, of
the limiting polynomial as r → 0. ♦

The next lemmas describe f(r, T ) near r = 0.

Lemma 3 Let Dε := {(r, T ) : T ≥
√
ε2 − r2 for r < ε}. There is a continu-

ous function h : Dε → R, which is continuously differentiable in T , such that
f(r, T ) = r2h(r, T ) in Dε.

Proof: This assertion is clear for r 6= 0. For points where r = 0 and T ≥ ε the
result is a consequence of the following limits.

lim
r→0

f(r, T )

r2
= lim

r→0

1

r2

(
mT

√
G2 + T 2

− 1 + kT

)

= lim
r→0

1

r2


m−

√
1 + G

2

T 2√
1 + G

2

T 2


+ 2(z′′(0))2T

= lim
r→0

1

r2


1 + 12 (z′)2 + o((z′)2)− 1− 12 G

2

T 2
− o(G

2

T 2
)√

1 + G
2

T 2




+2(z′′(0))2T

=
1

2
(z′′(0))2 −

1

2

(
P

2Eh

)2
T−2 + 2(z′′(0))2T,

and similarly

lim
r→0

fT (r, T )

r2
= lim
r→0

1

r2

(
mG2

(G2 + T 2)
3
2

+ k

)
=

(
P

2Eh

)2
T−3 + 2(z′′(0))2.
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♦

The properties established so far are elementary but have important con-
sequences. Knowledge of f−1(0) allows us to choose constant upper and lower
solutions when µ > 0. The monotonicity of f(r, ·) will imply the uniqueness of
solutions. The previous lemma allows us to think of the differential equation
as LT = r3h(r, T ), which has useful consequences in terms of regularity, as we
shall see below. Moreover, it will allow us to show that, on any compact subset
of Dε, there is a δ > 0 such that rf(r, T )−δr3T = r3(h(r, T )−δT ) is decreasing
as a function of T . This last detail will be crucial to the success of our iteration
scheme.
This is a good point for a remark on the derivation of the approximate

problem (2), and its relation to problem (4). In the previous proof we wrote

f(r, T ) =
1
2 (z

′)2 − 12
G2

T 2
+ o((z′)2) + o(G

2

T 2
)√

1 + G
2

T 2

+ kT.

Under the assumptions of small pressure and shallow caps, as in (2), it is

quite reasonable to drop the o((z′)2) and o(G
2

T 2
) terms, and to substitute 1

for
√
1 + G

2

T 2
. Also, if we are looking for solutions such that T → 0 as P → 0,

then it is reasonable to drop the kT term. What remains is in agreement with
Dickey’s derivation for the case ν = 0.
Next we study the differential operator L. Consider the problem

Lv − r3g(r) = 0 in (0, 1),

|v(0)| <∞, and (5)

T ′(1) + T (1) = m(1)µ ,

where g ∈ C[0, 1]. We will show that this problem is uniquely solvable and
establish estimates for the solutions.

Lemma 4 If v is a solution of (5), then limr→0 r
3v′(r) = 0.

Proof: Observe that for a, r ∈ (0, 1) v must satisfy

a3

m(a)
v′(a)−

r3

m(r)
v′(r) =

∫ a
r

t3g(t) dt .

Since the limit of the integral clearly exists as r → 0, and m(r) → 1, then
limr→0 r

3v′(r) must also exist. However, if this limit is not zero, then in some
neighborhood of 0 there will be an ε > 0 such that v′ ≥ ε

r3
, or v′ ≤ − ε

r3
. This

implies that limr→0 |v| =∞, contradicting the given boundary condition. ♦

By integrating the differential equation and using Lemma 4 we derive the
equivalent problem

v′(r) =
m

r3

∫ r
0

t3g(t)dt, and v′(1) + v(1) = m(1)µ .
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This implies

|v′(r)| ≤ m
r

4
|g|0,

where | · |0 represents the usual sup-norm on C[0, 1]. Notice that this estimate
provides a more precise description of the behavior of v′ near 0 than the given
boundary condition indicates. It also helps determine the smoothness of the

solution. In particular, this indicates that |v′|0 ≤
m(1)
4 |g|0. Observe that this

bound is independent of the boundary data.
Differentiating the formula for v′(r) leads to

v′′(r) =
(m
r3

)′ ∫ r
0

t3g(t) dt+m(r)g(r) .

It follows that v ∈ C2[0, 1] with |v′′|0 ≤ (max[0,1] |z
′z′′|+ 74m(1))|g|0, and v

′′(0) =
g(0)/4. Now integrate v′(r) to get

v(r) = v(0) +

∫ r
0

m

t3

∫ t
0

s3g(s) ds dt.

We can solve for v(0) as follows.

v(0) = v(1)−

∫ 1
0

m

t3

∫ t
0

s3g(s) ds dt

= m(1)µ− v′(1)−

∫ 1
0

m

t3

∫ t
0

s3g(s) ds dt

= m(1)µ−m(1)

∫ 1
0

t3g(t)dt−

∫ 1
0

m

t3

∫ t
0

s3g(s) ds dt.

Thus we have an explicit formula for v(r) and it is clear that |v|0 ≤ c1 + c2|g|0
for some constants c1, c2.
For convenience we use the notation v = L−1g. Our estimates indicate that

L−1 : C[0, 1]→ C2[0, 1],

is a continuous affine map sending bounded sets to bounded sets. Moreover, an
application of the Arzela-Ascoli theorem implies that

L−1 : C[0, 1]→ C1[0, 1]

is compact.
In order to apply an upper/lower solution technique we need a comparison

result.

Lemma 5 Suppose δ ≥ 0 and let v1, v2 ∈ C2[0, 1] such that Lv1 − δr3v1 ≤
Lv2 − δr3v2 in (0, 1),and v′1(1) + v1(1) ≥ v

′
2(1) + v2(1). Then v1 ≥ v2 on all of

[0, 1].
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Proof: Suppose v1 < v2 at some point in [0, 1], and let [a, b] ⊂ [0, 1] be the
maximal subinterval, containing this point, where the inequality v1 ≤ v2 is
satisfied. Observe that L(v1 − v2) ≤ δr3(v1 − v2) ≤ 0. It follows that v1 −
v2 cannot achieve its negative minimum in (a, b). Suppose that minimum is
achieved at r = b. It must be that b = 1. Further, v1(1) < v2(1) and v

′
1(1) ≤

v′2(1). Thus v
′
2(1)+ v2(1)) > v

′
1(1)+ v1(1), a contradiction. The only remaining

possibility is that the negative minimum is achieved at a with a = 0. If this
is the case then L(v1 − v2) < 0 in a neighborhood of r = 0. Integrating gives
r3

m
(v′1− v

′
2) < 0 and so (v1− v2) must be decreasing in a neighborhood of r = 0,

which contradicts the fact that a minimum is achieved at 0. ♦

An immediate consequence of Lemma 5 is that I − δL−1 is injective for any
δ ≥ 0. Since L−1 is compact it follows from the Fredholm Alternative that
I − δL−1 is invertible. Hence the problem

Lv − r3δv = r3g in (0, 1),

|v(0)| <∞, and (6)

v′(1) + v(1) = m(1)µ

has a solution operator (L− r3δ)−1 such that

(L− r3δ)−1 : C[0, 1]→ C2[0, 1]

is continuous, and is thus compact as a map from C[0, 1] into C1[0, 1]. (We are
indebted to the referee for the preceding application of the Fredholm Alternative,
which simplified and clarified this portion of the argument.)
We finish this section with a lemma that provides qualitative information

about the desired solutions.

Lemma 6 Suppose that T is a solution of (4). Then T (0) > 0 and T ′(0) = 0.

Proof: Suppose that T (0) ≤ 0. Choose a maximal ε ∈ (0, 1] such that T (r) ≤
τ(r) for r ∈ [0, ε], where τ(r) is the curve describing f−1(0) . Since f(r, T ) ≤ 0
on this interval, integrating the DE yields

r3

m
T ′(r) ≤ 0 .

Thus T is nonincreasing and T ≤ 0 < τ(r) in [0, ε], and thus in [0, ε]. It must
be the case that ε = 1. Since T ≤ 0 we know that f(r, T ) ≤ −1 and integrating
the DE yields

r3

m
T ′(r) < −

r2

2
.

Hence,

T ′(r) < −
m

2r
,

which implies limr→0 T (r) = −∞, a contradiction.
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Since T (0) > 0 we know that the graph of T lies in Dε for some ε. Thus
T = L−1(rf(r, T )) = L−1(r3h(r, T )), where h(r, T (r)) ∈ C[0, 1] so our estimates
imply that T ′(0) = 0. ♦

Similar arguments show that if T (0) ≤ min{T : f(r, T ) = 0}, then T is
decreasing on [0, 1], and if T (0) ≥ max{T : f(r, T ) = 0}, then T is increasing
on [0, 1].
Finally, we remark that the previous arguments are valid for much more

general boundary data. Given any smooth boundary operator B(α, β) such that
Bα ≥ 0 and Bβ ≥ c > 0 for some constant c, then the results above can all be
proved with analogous arguments using the boundary condition B(v′(1), v(1)) =
0. In our case we are using B = α+ β −m(1)µ.

3 Existence and Uniqueness

In this section we prove the main theorems using the method of upper and
lower solutions. Recall that an upper solution of (4) is defined as a function u
satisfying

(
r3

m
u′
)′
≤ r
[

mu√
G2+u2

− 1 + ku
]
in (0, 1),

|u(0)| <∞, and (7)

u′(1) + u(1) ≥ m(1)µ ,

and a lower solution is defined similarly with the inequalities reversed. In our
proofs we will identify upper and lower solutions u and l, respectively, such
that l ≤ u, and then we will show that a sequence of approximate solutions,
starting with l, increases monotonically to a solution T such that l ≤ T ≤ u. In
many cases we can choose constant functions for u and l. In general it will be
important that we can choose u and l lying in Dε for some ε > 0.

Theorem 1 The boundary value problem (4) has at most one solution.

Proof: Suppose that T1 and T2 are distinct solutions. Without loss of gen-
erality, T1 > T2 on some interval (a, b), and we can assume that this interval
is maximal. By the monotonicity of f(r, ·) we have that L(T2) = rf(r, T2) <
rf(r, T1) = L(T1) in (a, b). We also know that T

′
1(1) + T1(1) = T

′
2(1) + T2(1).

In each of the cases 0 < a < b < 1, 0 < a < b = 1, or 0 = a < b < 1, the
comparison lemma, or a minor modification of it, is valid. Thus T1 ≤ T2, a
contradiction. ♦

Theorem 2 (4) has a solution for all µ ∈ R.

First, we assume that µ > 0. Let τ(r) describe the level set f−1(0) as in the
previous section. Let a and b be positive constants such that 0 < a ≤ τ(r) ≤ b
for all r, and such that a < m(1)µ < b. Choose δ > max[0,1]×[a,b] |hT (r, T )| . It
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follows that f(r, a) ≤ 0 ≤ f(r, b) for all r, and that rf(r, T ) − r3δT is strictly
decreasing as a function of T for a ≤ T ≤ b.
Consider the following iteration scheme. Let T0 ≡ a, and for integers n ≥ 0

let Tn+1 satisfy

LTn+1 − r3δTn+1 = rf(r, Tn)− δr3Tn in (0, 1),

|Tn+1(0)| <∞, and (8)

T ′n+1(1) + Tn+1(1) = m(1)µ .

We will show that this sequence is well-defined, is bounded between a and
b, and increases monotonically to a solution of (4).

Lemma 7 T1 exists and satisfies a ≤ T1 ≤ b.

Proof: Since T0 ≡ a > 0 we can write LT1 − δr3T1 = r3(h(r, a)− δa) and our
comments in the previous section guarantee the existence of T1. Moreover,

LT1 − r
3δT1 = rf(r, T0)− δr

3T0 < LT0 − δr
3T0 ,

and
T ′1(1) + T1(1) = m(1)µ > a = T

′
0(1) + T0(1) .

Hence, T1 ≥ T0 ≡ a by the comparison lemma. A similar comparison yields the
upper bound. ♦

Now we continue by induction

Lemma 8 Tn exists for all n,and a ≤ Tn−1 ≤ Tn ≤ b.

Proof: Assume the statement is true for T1, . . . , Tn. Since Tn ≥ a we know
that Tn+1 exists, just as in the previous proof. Moreover,

LTn+1− δr
3Tn+1 = rf(r, Tn)− δr

3Tn ≤ rf(r, Tn−1)− δr
3Tn−1 = LTn− δr

3Tn ,

where we have used the inductive hypothesis and the fact that rf(r, ·) − δr3·
is decreasing. We also have T ′n+1(1) + Tn+1(1) = T

′
n(1) + Tn(1), and thus

Tn+1 ≥ Tn. A similar comparison yields the upper bound Tn+1 ≤ b. ♦

Thus {Tn} is a bounded and monotonically increasing sequence in C[0, 1].
By regularity it follows that {Tn} is bounded in C2[0, 1]. By compactness we
know that Tn → T in C1[0, 1], and we can bootstrap to get Tn → T in C2[0, 1].
T is clearly a solution of (4).
We have established existence for µ > 0. Now we can extend this result

to µ ∈ R by repeating the iteration scheme with new choices of upper and
lower solutions. It is a nice property of this method that we can use previously
established solutions as upper or lower solutions that extend the results.
Let M = {µ ∈ R : (4) has a solution }. For µ ∈ M let Tµ represent the

corresponding solution. Our work so far has shown that (0,∞) ⊂ M . The
following lemmas establish that M = R.
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Lemma 9 If µ ∈M , then [µ,∞) ⊂M .

Proof: If µ1 > µ then Tµ can replace the constant a as the lower solution
in the iteration scheme, and the constant b can be chosen as before to be an
upper solution. The set J := {(r, T ) : Tµ(r) ≤ T ≤ b} is a compact subset of
Dε for some ε > 0, so we may choose δ > maxJ |hT (r, T )|, and conclude that
rf(r, T )− δr3T is decreasing as a function of T in J . The iteration scheme will
work precisely as before to yield a solution for µ1. ♦

Lemma 10 M is open.

Proof: Suppose that µ ∈ M . Consider l := Tµ −
1
2Tµ(0) and u := Tµ. These

will serve as lower and upper solutions, respectively, and the iteration scheme

implies the existence of solutions for µ0 ≥ µ−
Tµ(0)
2 ♦

Lemma 11 M = R.

Proof: Suppose that M = (µ,∞) with µ > −∞, and suppose that µn is a de-
creasing sequence converging to µ. By arguments similar to those above we can
show that the corresponding sequence of solutions is monotonically decreasing.
Each member of this sequence is positive at r = 0 and cannot attain a negative
interior minimum, so if Tµn(1) is bounded below, then the solution sequence is
also bounded below. If Tµn(1) < 0, then Tµn achieves its minimum at r = 1,
so T ′µn(1) ≤ 0 . Thus µ ≤

1
m(1) (T

′
µn(1) + Tµn(1)) ≤ Tµn(1). Hence the solu-

tion sequence is bounded below, and converges monotonically to a function Tµ.
Standard arguments can now be applied to show that Tµ ∈ C[0, 1], Tµ satisfies
the differential equation in (0, 1], and Tµ satisfies the boundary data at r = 1.
Thus µ ∈M , a contradiction. ♦

Thus Theorem 2 is proved. This theorem agrees in many respects with the
spherical cap results in the references. It remains to be seen how the problem
will behave for more general membranes and for ν > 0. We remark that an
application of the Implicit Function Theorem extends existence and uniqueness
to small ν > 0, but a thorough investigation of these matters is left for future
work.
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