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GLOBAL STABILITY ANALYSIS OF MALARIA TRANSMISSION
DYNAMICS WITH VIGILANT COMPARTMENT

OLAWALE S. OBABIYI, SAMSON OLANIYI

Abstract. A deterministic compartmental model for the transmission dy-
namics of malaria incorporating vigilant human compartment is studied. The

model is qualitatively analyzed to investigate its asymptotic behavior with re-
spect to the equilibria. It is shown, using a linear Lyapunov function, that the

disease-free equilibrium is globally asymptotically stable when the associated

basic reproduction number is less than the unity. When the basic reproduction
number is greater than the unity, under certain specifications on the model pa-

rameters, we prove the existence of a globally asymptotically stable endemic

equilibrium with the aid of a suitable nonlinear Lyapunov function.

1. Introduction

Malaria is one of the most common infectious diseases that are posing great
public health problem throughout the six World Health Organization regions today.
It has been reported that an estimated 3.3 billion people across the globe are at risk
of being infected with malaria while the burden is heaviest in the WHO African
Region accounting for an estimated 90% of all malaria deaths [20]. The disease is
caused by five species of parasites belonging to the genus Plasmodium, namely P.
falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi. Of these species, P.
falciparum and P. vivax pose the greatest public health challenge [21].

Malaria is spread between humans via the bite of female Anopheles mosquitoes
and it is characterized by symptoms which may include chills, illness, headaches,
body aches, anemia, nausea and vomiting among others. However, the disease can
be avoided and treated by adopting interventions such as vector control (which pre-
vents mosquito from acquiring or passing on an infection through use of insecticide-
treated mosquito nets (ITNs) or indoor residual spraying (IRS)); chemoprevention
(which inhibits infections establishing themselves in humans); and case manage-
ment (which includes prompt diagnosis and appropriate treatment) (see [11, 21]).

Deterministic compartmental models describing the transmission of malaria be-
tween human and mosquito populations have been developed with attempts to
facilitate the understanding of the mechanisms involved in the transmission dy-
namics of the disease (see, [5, 14] and the references therein). The impact of some
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of the intervention strategies mentioned earlier are investigated as control func-
tions using time dependent models (non-autonomous systems) (see, for instance,
[1, 2, 11]). The choice of compartments used in mathematical models varies and
largely depends on the observed features of the particular disease being modeled
[6]. Recently, an autonomous discrete-age-structured model proposed in [15] in-
corporated vigilant human compartment into the malaria transmission dynamics.
This vigilant compartment comprises individuals who adhere to the intervention
strategies with a view to preventing further spread of the disease in the population.

The behavior of a dynamical system as its solution approaches a given equi-
librium is an asymptotic stability property. In the literature of epidemic models,
establishing global (unlike local) asymptotic stability results is usually a nontriv-
ial and challenging mathematical problem [17]. Methods such as Dulac’s criterion
with Poincaré-Bendixson theorem (see [19, 22]); geometrical approach (see [3, 12]);
comparison theorem (see [5, 13]); technique used in [4]; and Lyapunov method (see,
for instance, [7, 16, 8, 9]) can be used to study global stability properties of disease
models. Lyapunov method, whose role cannot be overemphasized in this direction,
requires the construction of a suitable Lyapunov function which is positive defi-
nite and whose value never increases along the solution paths of the system. In
this paper, the method of Lyapunov function is sought to extend the analysis in
[15] beyond only a small region near the disease-free and endemic equilibria of the
system.

This article is organized as follows. In section 2, the description of the formulated
model is given. The global asymptotic stability of the disease-free equilibrium and
endemic equilibrium are explored in Sections 3 and 4 respectively. Also we provide
concluding remarks.

2. Model description

We consider the normalized form of the malaria transmission dynamics obtained
in [15] with the concept that humans may not have equal likelihood of being
infected with malaria parasites. The human population at discrete-age ai (for
i = 0, 1, 2, . . . , L and aL being the maximum age) and at time t is subdivided into
susceptible Sh(t, ai); exposed Eh(t, ai); infectious Ih(t, ai); and vigilant Vh(t, ai)
individuals. On the other hand, the mosquito population is subdivided into sus-
ceptible Sm(t); exposed Em(t); and infectious Im(t) mosquitoes.

It is assumed that susceptible humans are recruited into the population at a rate
λh(ai) whose fraction τλh(ai) are recruited vigilant. Susceptible humans acquire
malaria through contact with infectious mosquitoes and become exposed humans
at rate bβh(ai)σ, where b is the biting rate, βh(ai) is the probability that bite
produces infection in human and σ is the contact rate of mosquito per human per
unit time. The per capita rate of progression of exposed individuals is given by
α(ai) whose fraction θ can become vigilant upon treating malaria infection (e.g., P.
vivax) usually at the dormant liver stage [21] while the remaining fraction (1− θ)
progresses to the infectious compartment following the development of the disease
symptoms. Infectious humans become vigilant at per capita recovery rate γ(ai). It
is further assumed that individuals in the vigilant compartment firmly adhere to
the intervention strategies and cannot be re-infected.

The mosquito population is increased at recruitment rate λm assumed to be sus-
ceptible. Following effective contact with infectious humans, susceptible mosquitoes
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Figure 1. Schematic diagram of the malaria transmission dynam-
ics regardless of the discrete-age ai.

acquire infection and become exposed at rate bβm, where βm is the probability that
bite produces infection in the mosquito. Exposed mosquitoes progress to become
infectious at per capita rate αm. The per capita natural death rates of humans and
mosquitoes are, respectively, given by µh(ai) and µm. The diagrammatic represen-
tation of the foregoing assumptions can be seen in Figure 1 and the corresponding
model is governed by the following system of ordinary differential equations:

dSh(t, ai)
dt

= (1− τ)λh(ai)−
L∑
i=0

bβh(ai)σSh(t, ai)Im − µh(ai)Sh(t, ai),

dEh(t, ai)
dt

=
L∑
i=0

bβh(ai)σSh(t, ai)Im − (αh(ai) + µh(ai))Eh(t, ai),

dIh(t, ai)
dt

=
L∑
i=0

(1− θ)αh(ai)Eh(t, ai)− (γ(ai) + µh(ai)Ih(t, ai),

dVh(t, ai)
dt

= τλh(ai) + θαh(ai)Eh(t, ai) + γ(ai)Ih(t, ai)− µh(ai)Vh(t, ai),

dSm
dt

= λm − bβmSm(t)Ih(t, ai)− µmSm(t),

dEm
dt

= bβmSm(t)Ih(t, ai)− (αm + µm)Em(t),

dIm
dt

= αmEm(t)− µmIm(t)

(2.1)



4 O. S. OBABIYI, S. OLANIYI EJDE-2019/09

The parameters and variables of the formulated model (2.1) are nonnegative since
the model monitors human and mosquito populations. Further, it is supposed that
the recruitment terms for human and mosquito populations are balanced by the
natural deaths µh(ai) and µm respectively. So that system (2.1) can be analyzed
in a positively invariant region D = Dh ×Dm ⊂ R4

+ × R3
+ with

Dh =
{

(Sh, Eh, Ih, Vh) ∈ R4
+ : Sh + Eh + Ih + Vh = 1

}
,

Dm =
{

(Sm, Em, Im) ∈ R3
+ : Sm + Em + Im = 1

}
.

A key notion in the analysis of infectious disease models is the basic reproduction
number R0, an epidemiological threshold that determines whether disease dies out
or persists in the population. Following [18], R0 for system (2.1) is given by

R0 =
( L∑
i=0

b2βh(ai)σαh(ai)βmαm(1− θ)(1− τ)
(αh(ai) + µh(ai))(γ(ai) + µh(ai))(αm + µm)µm

)1/2

(2.2)

The basic reproduction number (2.2) represents the average number of secondary
cases (humans/mosquitoes) generated by one infectious case (mosquito/human)
during the period of infectiousness in a completely susceptible (humans/mosquitoes)
population.

3. Global stability of disease-free equilibrium

The steady-state solution of the model (2.1), the disease-free equilibrium, is given
by

E0 = (1− τ, 0, 0, τ, 1, 0, 0) (3.1)
The following result establishes the global asymptotic behavior of system (2.1)
around (3.1) determined by the basic reproduction number (2.2).

Theorem 3.1. The disease-free equilibrium (3.1) of model (2.1) is globally asymp-
totically stable in D whenever R0 ≤ 1.

Proof. Consider the linear Lyapunov function of the form

F = kEh +
Ih

γ(ai) + µh(ai)
+
Em
bβm

+
(αm + µm
bβmαm

)
Im, (3.2)

where

k =
αh(ai)(1− θ)

(αh(ai) + µh(ai))(γ(ai) + µh(ai))
.

The time derivative of (3.2) along the solutions of the system (2.1) is

Ḟ =
L∑
i=0

( αh(ai)(1− θ)
(αh(ai) + µh(ai))(γ(ai) + µh(ai))

)
× [bβh(ai)σSh(t, ai)Im − (αh(ai) + µh(ai))Eh(t, ai)]

+
L∑
i=0

( 1
γ(ai) + µh(ai)

)
× [(1− θ)αh(ai)Eh(t, ai)− (γ(ai) + µh(ai))Ih(t, ai)]

+
( 1
bβm

)
[bβmSmIh(t, ai)− (αm + µm)Em

]
+
(αm + µm
bβmαm

)
[αmEm − µmIm]

(3.3)



EJDE-2019/09 ANALYSIS OF MALARIA TRANSMISSION DYNAMICS 5

Algebraic expansion of (3.3) and further simplification yield

Ḟ =
L∑
i=0

( bβh(ai)σαh(ai)(1− θ)
(αh(ai) + µh(ai))(γ(ai) + µh(ai))

)
Sh(t, ai)Im

−
L∑
i=0

( αh(ai)(1− θ)
(γ(ai) + µh(ai))

)
Eh(t, ai)− Ih(t, ai) + SmIh(t, ai)

+
L∑
i=0

( αh(ai)(1− θ)
(γ(ai) + µh(ai))

)
Eh(t, ai)−

( (αm + µm)µm
bβmαm

)
Im

≤
L∑
i=0

( bβh(ai)σαh(ai)(1− θ)(1− τ)
(αh(ai) + µh(ai))(γ(ai) + µh(ai))

)
Im −

( (αm + µm)µm
bβmαm

)
Im

=
( L∑
i=0

bβh(ai)σαh(ai)(1− θ)(1− τ)
(αh(ai) + µh(ai))(γ(ai) + µh(ai))

− (αm + µm)µm
bβmαm

)
Im

=
( (αm + µm)µm

bβmαm

)
(R2

0 − 1)Im

It follows that Ḟ ≤ 0 whenever R0 ≤ 1 with Ḟ = 0 if and only if Im = 0.
Further, one sees that (Sh(t, ai), Eh(t, ai), Ih(t, ai), Vh(t, ai), Sm(t), Em(t)) tends to
((1− τ), 0, 0, 0, 1, 0) as t → ∞ since Im → 0 as t → ∞. By LaSalle’s invariance
principle [10], one concludes that every solution of the model (2.1) in D approaches
the disease-free equilibrium (3.1) as t → ∞. Hence E0 is globally asymptotically
stable. �

The epidemiological implication of Theorem 3.1 shows that malaria can be con-
trolled or eliminated from the community if the associated basic reproduction num-
ber of the model (2.1) is less than the unity.

4. Global stability of endemic equilibrium

The disease-present (endemic) equilibrium of the model (2.1) is referred to the
steady-state solution where at least one of the infected compartments is nonzero.
Let the arbitrary endemic equilibrium of the model (2.1) be represented by

E1 = (S∗∗h (ai), E∗∗
h (ai), I∗∗h (ai), V ∗∗

h (ai), S∗∗m , E
∗∗
m , I

∗∗
m ),

considering the fact that the method of Lyapunov function requires no knowledge
of solutions in establishing the global stability [19]. However, see [15], for possible
existence of the endemic equilibrium E1 of the model (2.1) at R0 > 1.

Here, the global asymptotic stability of the endemic equilibrium E1 is explored
for a special case of the model (2.1) where τ = θ = 0. Let

D0 =
{

(Sh, Eh, Ih, Vh, Sm, Em, Im) ∈ D : Eh = Ih = Vh = Em = Im = 0
}

be the stable manifold of the disease-free equilibrium E0. The following result is
claimed.

Theorem 4.1. The endemic equilibrium of the model (2.1) is globally asymptoti-
cally stable in D\D0 whenever R0|τ=θ=0 > 1
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Proof. Consider the Goh-Volterra nonlinear Lyapunov function

V = Sh(t, ai)− S∗h(ai)− S∗h(ai) ln
(Sh(t, ai)
S∗h(ai)

)
+ Eh(t, ai)− E∗

h(ai)− E∗
h(t, ai) ln

(Eh(t, ai)
E∗
h(ai)

)
+

L∑
i=0

αh(ai) + µh(ai)
αh(ai)

[
Ih(t, ai)− I∗h(ai)− I∗h(ai) ln

(Ih(t, ai)
I∗h(ai)

)]
+ Sm − S∗m − S∗m ln

(Sm
S∗m

)
+ Em − E∗

m − E∗
m ln

(Em
E∗
m

)
+
αm + µm
αm

[
Im − I∗m − I∗m ln

(Im
I∗m

)]
,

(4.1)

The time derivative of (4.1) along the solution of (2.1) gives

V̇ = Ṡh(t, ai)−
S∗h(ai)
Sh(t, ai)

Ṡh(t, ai) + Ėh(t, ai)−
E∗
h(ai)

Eh(t, ai)
Ėh(t, ai)

+
L∑
i=0

αh(ai) + µh(ai)
αh(ai)

(
İh(t, ai)−

I∗h(ai)
Ih(t, ai)

İh(t, ai)
)

+ Ṡm −
S∗m
Sm

Ṡm + Ėm −
E∗
m

Em
Ėm +

αm + µm
αm

(
İm −

I∗m
Im

İm
)
.

(4.2)

Substituting the appropriate equations of the model (2.1) into (4.2) gives

V̇ = (1− τ)µh(ai)−
L∑
i=0

bβh(ai)σSh(t, ai)Im − µh(ai)Sh(tai)

−
L∑
i=0

S∗h(ai)
Sh(t, ai)

((1− τ)µh(ai)− bβh(ai)σSh(t, ai)Im − µh(ai)Sh(t, ai))

+
L∑
i=0

bβh(ai)σSh(t, ai)Im − (αh(ai) + µh(ai))Eh(t, ai)

−
L∑
i=0

E∗
h(ai)

Eh(t, ai)
(bβh(ai)σSh(t, ai)Im − [αh(ai) + µh(ai)]Eh(t, ai))

+
L∑
i=0

αh(ai) + µh(ai)
αh(ai)

[(1− θ)αh(ai)Eh(t, ai)− (γ(ai) + µh(ai))Ih(t, ai)]

−
L∑
i=0

αh(ai) + µh(ai)
αh(ai)

( I∗h(ai)
Ih(t, ai)

)
× [(1− θ)αh(ai)Eh(t, ai)− (γ(ai) + µh(ai))Ih(t, ai)]

+ µm − bβh(ai)SmIh(t, ai)− µmSm −
S∗m
Sm

(µm − bβh(ai)SmIh(t, ai)− µmSm)

+ bβmSmIh(t, ai)− [αm + µm]Em −
E∗
m

Em
(bβmSmIh − [αm + µm]Em)

+
αm + µm
αm

[
αmEm − µmIm −

I∗m
Im

(αmEm − µmIm)
]
.
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Further simplification yields

V̇ =
L∑
i=0

µh(ai)
(

1− S∗h(ai)
Sh(t, ai)

)
− µh(ai)Sh(t, ai)

(
1− S∗h(ai)

Sh(t, ai)

)
+

L∑
i=0

bβh(ai)σS∗h(ai)Im −
E∗
h(ai)bβh(ai)σSh(t, ai)Im

Eh(t, ai)

+
L∑
i=0

(αh(ai) + µh(ai))E∗
h(ai)−

(αh(ai) + µh(ai))(γ(ai) + µh(ai))Ih(t, ai)
αh(ai)

−
L∑
i=0

(αh(ai) + µh(ai))I∗h(ai)Eh(t, ai)
Ih(t, ai)

+ µm

(
1− S∗m

Sm

)
(4.3)

+
(αh(ai) + µh(ai))(γ(ai) + µh(ai))I∗h(ai)

αh(ai)
− µmSm

(
1− S∗m

Sm

)
+ bβmS

∗
mIh(t, ai)−

E∗
mbβmSmIh(t, ai)

Em
+ (αm + µm)E∗

m −
(αm + µm)µmIm

αm

− (αm + µm)I∗mEm
Im

+
(αm + µm)µmIm

αm
.

One sees that the following equilibrium relations hold from model (2.1),

µh(ai) =
L∑
i=0

bβh(ai)σS∗h(ai)I∗m + µh(ai)S∗h(ai),

αh(ai) + µh(ai) =
L∑
i=0

bβh(ai)σS∗h(ai)I∗m
E∗
h(ai)

,

γ(ai) + µh(ai) =
L∑
i=0

αh(ai)E∗
h(ai)

I∗h(ai)
,

µm = bβmS
∗
mI

∗
h(t, ai) + µmS

∗
m,

αm + µm =
bβmS

∗
mI

∗
h(t, ai)

E∗
m

, µm =
αmE

∗
m

I∗m

(4.4)

Consequently, using (4.4) in (4.3) gives

V̇ =
L∑
i=0

µh(ai)S∗h(ai)
(

2− S∗h(ai)
Sh(t, ai)

− Sh(t, ai)
S∗h(ai)

)
+

L∑
i=0

bβh(ai)σS∗h(ai)I∗m −
bβh(ai)σ(S∗h(ai))2I∗m

Sh(t, ai)

+
L∑
i=0

bβh(ai)σS∗h(ai)Im −
E∗
h(ai)bβh(ai)σSh(t, ai)Im

Eh(t, ai)

+
L∑
i=0

bβh(ai)σS∗h(ai)I∗m −
bβh(ai)σS∗h(ai)Ih(t, ai)I∗m

I∗h(ai)
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−
L∑
i=0

bβh(ai)σS∗h(ai)I∗h(ai)Eh(t, ai)I∗m
E∗
h(ai)Ih(t, ai)

+ bβh(ai)σS∗h(ai)I∗m

+ µmS
∗
m

(
2− S∗m

Sm
− Sm
S∗m

)
+ bβmS

∗
mI

∗
h −

bβm(S∗m)2I∗h
Sm

+ bβmS
∗
mIh(t, ai)−

E∗
mbβmSmIh(t, ai)

Em
+ bβmS

∗
mI

∗
h(ai)

− bβmS
∗
mImI

∗
h(ai)

I∗m
− bβmS

∗
mI

∗
hEmI

∗
h

E∗
mIm

+ bβmS
∗
mI

∗
h(ai). (4.5)

Adding and subtracting bβh(ai)σS∗h(ai)I∗m,
L∑
i=0

bβh(ai)σS∗h(ai)Ih(t, ai)(I∗m)2

I∗h(ai)Im
,

bβmS
∗
mI

∗
h(ai) and

bβmS
∗
mIm(I∗h(ai))2

I∗mIh(t, ai)
in (4.5) systematically, gives

V̇ =
L∑
i=0

µh(ai)S∗h(ai)
(

2− S∗h(ai)
Sh(t, ai)

− Sh(t, ai)
S∗h(ai)

)
+

L∑
i=0

bβh(ai)σS∗h(ai)I∗m

×
[
4− S∗h(ai)

Sh(t, ai)
− E∗

h(ai)Sh(t, ai)Im
Eh(t, ai)S∗h(ai)I∗m

− I∗h(ai)Eh(t, ai)
Ih(t, ai)E∗

h(ai)
− Ih(t, ai)I∗m

I∗h(ai)Im

]
+

L∑
i=0

bβh(aI)σS∗h(aI)Im −
bβh(aI)σS∗h(aI)Ih(t, aI)I∗m

I∗h(t, aI)

+
L∑
i=0

bβh(ai)σS∗h(ai)Ih(t, ai)(I∗m)2

I∗h(ai)Im
− bβh(ai)σS∗h(ai)I∗m

+ µmS
∗
m

(
2− S∗m

Sm
− Sm
S∗m

)
+ bβmS

∗
mI

∗
h(ai)

×
[
4− S∗m

Sm
− E∗

mSmIh(t, ai)
EmS∗mI

∗
h(ai)

− I∗mEm
ImE∗

m

− ImI
∗
h(ai)

I∗mIh(t, ai)

]
+ bβmS

∗
mIh(t, ai)−

bβmS
∗
mImI

∗
h(ai)

I∗m
+
bβmS

∗
mIm(I∗h(ai))2

I∗mIh(t, ai)
− bβmS∗mI∗h(ai)

Further algebraic simplification yields

V̇ = −V1 − V2 −
L∑
i=0

bβh(ai)σS∗h(ai)I∗m
( Im
Ih(t, ai)

− I∗m
I∗h(ai)

)(
1− Im

I∗m

)
− V3 − V4 −

L∑
i=0

bβmS
∗
mI

∗
h(ai)

(Ih(t, ai)
Im

− I∗h(ai)
I∗m

)(
1− Ih(t, ai)

I∗h(ai)

)
,

(4.6)

where

V1 =
L∑
i=0

µh(ai)S∗h(ai)
( S∗h(ai)
Sh(t, ai)

+
Sh(t, ai)
S∗h(ai)

− 2
)
,
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V2 =
L∑
i=0

bβh(ai)σS∗h(ai)I∗m
[ S∗h(ai)
Sh(t, ai)

+
E∗
h(ai)Sh(t, ai)Im

Eh(t, ai)S∗h(ai)I∗m

+
I∗h(ai)Eh(t, ai)
Ih(t, ai)E∗

h(ai)
+
Ih(t, ai)I∗m
I∗h(ai)Im

− 4
]
,

V3 = µmS
∗
m

(S∗m
Sm

+
Sm
S∗m
− 2
)
,

V4 = bβmS
∗
mI

∗
h(ai)

[S∗m
Sm

+
E∗
mSmIh(t, ai)
EmS∗mI

∗
h(ai)

+
I∗mEm
ImE∗

m

+
ImI

∗
h(ai)

I∗mIh(t, ai)
− 4
]
.

Since arithmetic mean is greater than or equal to the geometric mean (AM–GM
inequality), one sees that V1 ≥ 0, V2 ≥ 0, V3 ≥ 0, V4 ≥ 0 and whenever the sign
conditions ( Im

Ih(t, ai)
− I∗m
I∗h(ai)

)(
1− Im

I∗m

)
≥ 0

with (Ih(t, ai)
Im

− I∗h(ai)
I∗m

)(
1− Ih(t, ai)

I∗h(ai)

)
≥ 0

hold, it follows from (4.6) that V̇ ≤ 0 with V̇ = 0 if and only if Sh(t, ai) = S∗∗h (ai),
Eh(t, ai) = E∗∗

h (ai), Ih(t, ai) = I∗∗h (ai), Sm = S∗∗m , Em = E∗∗
m , Im = I∗∗m . This

further implies that Vh(t, ai) → γ(ai)I∗h(ai)/µh(ai) = V ∗
h (ai) as t → ∞ since

(Sh, Eh, Ih, Sm, Em, Im) → (S∗∗h (ai), E∗∗
h (ai), I∗∗h (ai), S∗∗m , E

∗∗
m , I

∗∗
m ). Therefore, by

LaSalle’s principle [10], it follows that every solution of the model (2.1) starting in
D\D0 approaches the endemic equilibrium E1 as t→∞. �

The epidemiological implication of Theorem 4.1 is that malaria can persist in
the population whenever the intervention strategies are not adhered to and the
associated basic reproduction is greater than one.

Conclusion. In this article, a malaria transmission dynamics with vigilant com-
partment governed by system of differential equations has been theoretically ana-
lyzed. The analysis is centered on the global asymptotic behavior of solutions of the
system (2.1) around the disease-free and endemic (malaria-present) equilibria using
Lyapunov functions. The system has a globally asymptotically stable disease-free
equilibrium whenever the basic reproduction is less than the unity. Moreover, the
endemic equilibrium of the system, when it exists in the absence of the vigilant
fractions of susceptible and treated exposed human populations, is shown to be
globally asymptotically stable whenever the associated basic reproduction number
is greater than the unity.
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