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Abstract. We consider an initial-boundary-value problem for a class of p-
biharmonic parabolic equation with logarithmic nonlinearity in a bounded do-

main. We prove that if 2 < p < q < p(1 + 4
n

) and u0 ∈ W+, the problem has

a global weak solutions; if 2 < p < q < p(1 + 4
n

) and u0 ∈ W−
1 , the solutions

blow up at finite time. We also obtain the results of blow-up, extinction and

non-extinction of the solutions when max{1, 2n
n+4
} < p ≤ 2.

1. introduction

In this article, we consider the p-biharmonic parabolic equation with the loga-
rithmic nonlinearity,

ut + ∆(|∆u|p−2∆u) = |u|q−2u log(|u|), x ∈ Ω, t > 0,

u(x, t) = ∆u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, p, q are positive
constants, and u0 ∈ (W 1,p

0 (Ω) ∩W 2,p(Ω))\{0}. The term ∆(|∆u|p−2∆u) is called
a p-biharmonic operator.

In the past years, there have been many contributions devoted to the higher
order equation. Liu and Guo [10] considered the following p-biharmonic parabolic
initial-boundary value problem

∂u

∂t
+ ∆(|∆u|p−2∆u) + λ|u|p−2u = 0, x ∈ Ω, (1.2)

where p > 2 and λ > 0. By using the discrete-time method and uniform estimates,
they established the existence and uniqueness of weak solutions. Hao and Zhou [6]
considered a p-biharmonic parabolic equation

ut + ∆(|∆u|p−2∆u) = |u|q − 1
|Ω|

∫
Ω

|u|dx, (1.3)
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where max{1, 2n
n+4} < p ≤ 2, q > 0. Hao and Zhou obtained results on blowup,

extinction and non-extinction of the solutions. The relevant equations have also
been studied in [1, 9].

In this paper, we study the parabolic p-biharmonic equation with the logarithmic
nonlinearity. The second order parabolic equation with the logarithmic nonlinearity
is studied. Chen considered the semilinear heat equation with the logarithmic
nonlinearity [3] and the semilinear pseudo-parabolic equations with the logarithmic
nonlinearity [4]. Ji, Yin and Cao [8] established the existence of positive periodic
solutions and discussed the instability of such solutions for the semilinear pseudo-
parabolic equation with the logarithmic source. Nahn and Truong [12] studied the
nonlinear equation

ut −∆ut −∆pu = |u|p−2u log(|u|). (1.4)
It is a pseudoparabolic type equation, where ∆pu = div(|∇u|p−2∇u) and ∆p is the
p-Laplacian. By using the potential well method, Nahn and Truong obtained results
of existence or nonexistence of global weak solutions, and proved the large time
decay of global weak solutions and the finite time blow-up of weak solutions. Cao
and Liu [2] considered equation (1.4). They discussed two cases: global boundedness
and blowing-up at ∞. Moreover, they proved the asymptotic behavior of solutions
and gave some decay estimates and growth estimates. He, Gao and Wang [7]
considered the pseudo-parabolic p-Laplacian equation

ut −∆ut −∆pu = |u|q−2u log(|u|), (1.5)

where 2 < p < q < p(1 + 2
n ), they derived the decay and the finite time blow-up for

weak solutions.
We begin our work by introducing some notation that will be used in this paper,

u′ = ∂u
∂t = ut,

‖u‖s = ‖u‖Ls(Ω), ‖u‖2,s = ‖u‖W 2,s
0 (Ω) = (‖∆u‖ss + ‖∇u‖ss + ‖u‖ss)1/s,

for 1 < s < +∞. We also use notation X0 to denote (W 1,p
0 (Ω) ∩W 2,p(Ω))\{0}

and W−2,p′(Ω) to denote the dual space of W 2,s(Ω), where s′ is Hölder conjugate
exponent of s > 1.

For u ∈ (W 1,p
0 (Ω)∩W 2,p(Ω))\{0}, we define the energy functional J and Nehari

functional I as follows

J(u) =
1
p
‖∆u‖pp −

1
q

∫
Ω

|u|q log(|u|)dx+
1
q2
‖u‖qq, (1.6)

I(u) = ‖∆u‖pp −
∫

Ω

|u|q log(|u|)dx. (1.7)

Let
N = {u ∈ X0 : I(u) = 0}

be the Nehari manifold. In section 2, we will show that N is not empty. Thus, we
can define

d = inf
u∈N

J(u). (1.8)

In Section 2, we show that d is positive and is attained by some u ∈ N . Now as in
[12], we introduce the following sets

W1 = {u ∈ X0 : J(u) < d}, W2 = {u ∈ X0 : J(u) = d}, W = W1 ∪W2,

W+
1 = {u ∈W1 : I(u) > 0}, W+

2 = {u ∈W2 : I(u) > 0}, W+ = W+
1 ∪W

+
2 ,
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W−1 = {u ∈W1 : I(u) < 0}, W−2 = {u ∈W2 : I(u) < 0}, W− = W−1 ∪W
−
2 .

Clearly, W+ ∩W− = ∅ and W+ ∪W− = W . We refer to W as the potential well
and d as the depth of the well. The set W+ is regarded as the good part of the
well, as we will show that every weak solution exists globally in time, provided the
initial data are taken from W+. On the other hand, if the initial data are taken
from a part of W−, we will prove a blow-up result for weak solutions.

The plan of this paper is as follows. In Section 2, we collect some properties
of the energy functional J and the Nehari functional I. In Section 3, we proved
that the existence of the local weak solutions and the existence of the global weak
solutions. In Section 4, we establish some properties of the weak solutions, such as
the finite time blow-up, extinction and non-extinction of the solutions.

2. Preliminaries

In this section, we collect some properties of the energy functional J and the
Nehari functional I, which following lemmas will be used for our main results.

By the Gagliardo-Nirenberg multiplicative embedding inequality that J and I
are continuous. Moreover, we have

J(u) =
1
q
I(u) +

(1
p
− 1
q

)
‖∆u‖pp +

1
q2
‖u‖qq. (2.1)

Let u ∈ X0 and consider the real function j : λ 7→ J(λu) for λ > 0, defined as
follows

j(λ) = J(λu) =
λp

p
‖∆u‖pp −

λq

q

∫
Ω

|u|q log(|u|)dx− λq

q
log λ‖u‖qq +

λq

q2
‖u‖qq.

The following lemma shows that j(λ) has a unique positive critical point λ∗ = λ∗(u).

Lemma 2.1. Let u ∈ X0. Then
(1) limλ→0+ j(λ) = 0 and limλ→+∞ j(λ) = −∞;
(2) there exists a unique λ∗ = λ∗(u) > 0 such that j′(λ∗) = 0;
(3) j(λ) is increasing on (0, λ∗), decreasing on (λ∗,+∞) and attains its maxi-

mum at λ∗;
(4) I(λu) > 0 for 0 < λ < λ∗, I(λu) < 0 for λ > λ∗, and I(λ∗u) = 0.

Proof. For u ∈ X0, by the definition of j, we have

j(λ) =
λp

p
‖∆u‖pp −

λq

q

∫
Ω

|u|q log(|u|)dx− λq

q
log λ‖u‖qq +

λq

q2
‖u‖qq.

It is clearly that (1) holds because 2 < p < q and ‖u‖q 6= 0. Now, by straightforward
calculations, we obtain

j′(λ) = λp−1
(
‖∆u‖pp − λq−p

∫
Ω

|u|q log(|u|)dx− λq−p log λ‖u‖qq
)
. (2.2)

Since λ > 0, let k(λ) = λ1−pj′(λ), through direct calculation, we have

k′(λ) = −λq−p−1
(

(q − p)
∫

Ω

|u|q log(|u|)dx+ (q − p) log λ‖u‖qq + ‖u‖qq
)
.

Hence, there exists a

λ1 = exp
( (p− q)

∫
Ω
|u|q log(|u|)dx+ ‖u‖qq
(q − p)‖u‖qq

)
> 0,
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such that k′(λ) > 0 on (0, λ1), k′(λ) < 0 on (λ1,+∞) and k′(λ1) = 0. Therefore,
k(λ) is increasing on (0, λ1), decreasing on (λ1,+∞). Because of k(0) = ‖∆u‖pp > 0
and limλ→+∞ k(λ) = −∞, there exactly exists a λ∗ > 0, such that k(λ∗) = 0, i.e.
j′(λ∗) = 0. So (2) holds. Then j′(λ) = λp−1k(λ) is positive on (0, λ∗), and negative
on (λ∗,+∞). So (3) holds. The last property, (4), is only a simple corollary of the
fact that

I(λu) = λp‖∆u‖pp − λq
∫

Ω

|u|q log(|u|)dx− λq log λ‖u‖qq = λj′(λ).

The proof is complete. �

Consequently the Nehari manifold N is not empty, and the number d defined by
(1.8) is meaningful. The blow lemma gives us that d is positive and is attained by
some u ∈ N .

Lemma 2.2. d is positive and there is a positive function u ∈ N such that J(u) = d.

Proof. According to (2.1), we only need to prove that there exists a positive function
u ∈ N such that J(u) = d. Let {uk}∞k=1 ⊂ N be a minimizing sequence of J . i.e.

lim
k→∞

J(uk) = d.

It is clearly that {|uk|}∞k=1 ⊂ N is also a minimizing sequence of J . So, without
loss of generality, we assume that uk > 0 a.e. for all k ∈ N.

On the other hand, we have already observed that J is coercive on N which
implies that {uk}∞k=1 is bounded in W 1,p

0 (Ω) ∩W 2,p(Ω). Let µ > 0 is a sufficiently
small such that q + µ < np

n−2p , so the embedding W 2,p
0 ↪→ Lq+µ is compact, and

there exists a function u and a subsequence of {uk}∞k=1, still denoted by {uk}∞k=1,
such that

uk ⇀ u, weakly in W 1,p
0 (Ω) ∩W 2,p(Ω),

uk → u, strongly in Lq+µ(Ω),

uk(x)→ u, a.e. in Ω.

Thus, we have u ≥ 0 a.e. in Ω. By Lebesgue dominated convergence theorem, we
see that ∫

Ω

|u|q log(|u|)dx = lim
k→∞

∫
Ω

|uk|q log(|uk|)dx, (2.3)∫
Ω

|u|qdx = lim
k→∞

∫
Ω

|uk|qdx. (2.4)

The weak lower semicontinuity of ‖ · ‖W 2,p implies

‖∆u‖p ≤ lim inf
k→∞

‖∆uk‖p. (2.5)

Combining (1.6), (1.7), (2.3), (2.4) and (2.5), we deduce that

J(u) ≤ lim inf
k→∞

J(uk) = d, (2.6)

I(u) ≤ lim inf
k→∞

I(uk) = 0. (2.7)

Thanks to uk ∈ N one has uk ∈ X0 and I(uk) = 0. Thus, by using the fact
log x ≤ (eµ)−1xµ for x ≥ 1 and the Sobolev embedding inequality, we obtain

‖∆uk‖pp =
∫

Ω

|uk|q log(|uk|)dx
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=
∫
{x∈Ω:|uk(x)|≥1}

|uk|q log(|uk|)dx+
∫
{x∈Ω:|uk(x)|<1}

|uk|q log(|uk|)dx

≤
∫
{x∈Ω:|uk(x)|≥1}

|uk|q log(|uk|)dx

≤ (eµ)−1

∫
{x∈Ω:|uk(x)|≥1}

|uk|q+µdx

≤ (eµ)−1‖uk‖q+µq+µ ≤ C‖∆uk‖
q+µ
q+µ,

for some positive constant C, which implies∫
Ω

|uk|q log(|uk|)dx = ‖∆uk‖pp ≥ C.

From this inequality and (2.3), we derive∫
Ω

|u|q log(|u|)dx ≥ C.

Therefore, we have u ∈ X0. We easily obtain I(u) ≤ 0 by (2.7), now we show that
I(u) = 0. Indeed, if it is not true, we have I(u) < 0, then by Lemma 2.1, there
exists a λ∗ such that 0 < λ∗ < 1 and I(λ∗u) = 0. Thus, we conclude that

d ≤ J(λ∗u) =
(1
p
− 1
q

)
‖∆(λ∗u)‖pp +

1
q2
‖λ∗u‖qq

≤ (λ∗)p
((1
p
− 1
q

)
‖∆u‖pp +

1
q2
‖u‖qq

)
≤ (λ∗)p lim inf

k→∞

((1
p
− 1
q

)
‖∆uk‖pp +

1
q2
‖uk‖qq

)
≤ (λ∗)p lim inf

k→∞
J(uk) = (λ∗)pd < d.

This is impossible, so we derive I(u) = 0 and u ∈ N . From (2.6) and (1.8), we have
J(u) = d, and the proof is complete. �

3. Existence of weak solutions

In this section, we state our main results on the problem (1.1). To begin, we
give the definition of the weak solution to the problem (1.1).

Definition 3.1. A function u(t) is said to be a solution to problem (1.1) over
[0, T ] if u ∈ L∞(0, T ;X0) with u′ ∈ L2(0, T ;L2(Ω)), satisfying the initial condition
u(0) = u0(x) ∈ X0, and

〈ut, w〉+ 〈|∆u|p−2∆u,∆w〉 =
∫

Ω

|u|q−2u log(|u|)wdx, (3.1)

for all w ∈W 1,p
0 (Ω) ∩W 2,p(Ω), and for a.e. t ∈ [0, T ].

Then we are concerned with the existence and uniqueness of local weak solutions
to problem (1.1).

Theorem 3.2. Let u0 ∈ X0, 2 < p < q < p(1 + 4
n ). Then there exists a T > 0 and

a unique weak solution u(t) of (1.1) satisfying u(0) = u0. Moreover, u satisfies the
energy inequality ∫ t

0

‖u′(s)‖22ds+ J(u(t)) ≤ J(u0), 0 ≤ t ≤ T. (3.2)
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Proof. We shall employ the Galerkin’s method. The proof will be divided in 3
steps.
Step 1: Approximate problem. In the space W 1,p

0 (Ω)∩W 2,p(Ω), using a basis
{ωj}∞j=1 we define the finite dimensional space Vm = span{ω1, ω2, . . . , ωm}. Let
u0m be an element of Vm such that

u0m =
m∑
j=1

amj(t)ωj → u0, strongly in W 1,p
0 (Ω) ∩W 2,p(Ω), (3.3)

as m→∞. We find the approximate solution um(x, t) of problem (1.1) in the form

um(x, t) =
m∑
j=1

αmj(t)ωj(x), (3.4)

where the coefficients αmj(1 ≤ j ≤ m) satisfy the system of ordinary differential
equations

〈u′m, ωi〉+ 〈|∆um|p−2,∆ωi〉 =
∫

Ω

|um|q−2um log(|um|)ωidx, (3.5)

for i ∈ {1, 2, . . . ,m}, with the initial conditions

αmj(0) = amj , j ∈ {1, 2, . . . ,m}. (3.6)

The standard theory of ordinary differential equations, yields that there exists a
positive Tm such that αmj ∈ C1[0, Tm], and therefore um ∈ C1([0, Tm];W 1,p

0 (Ω) ∩
W 2,p(Ω)).
Step 2: A priori estimates. Multiplying (3.5) by αmi(t), summing for i =
1, . . . ,m, and then integrating with respect to time variable on [0, t], we know that

Sm(t) = Sm(0) +
∫ t

0

∫
Ω

|um(x, s)|q log(|um(x, s)|) dx ds, (3.7)

where

Sm(t) =
1
2
‖um‖22 +

∫ t

0

‖∆um(s)‖ppds. (3.8)

On the other hand, for any µ > 0, similarly we have∫
Ω

|um(t)|q log(|um(t)|)dx ≤ (eµ)−1‖um(t)‖q+µq+µ, (3.9)

where µ is chosen such that 0 < µ < p(1+ 4
n )−q. Then by the Nirenberg inequality

and Young’s inequality, we obtain∫
Ω

|um(t)|q log(|um(t)|)dx ≤ C‖∆um(s)‖q+µp ‖um‖(1−θ)(q+µ)
2 (3.10)

≤ ε‖∆um(s)‖pp + C(ε)‖um‖
p(1−θ)(q+µ)
p−θ(q+µ)

2 , (3.11)

where ε ∈ (0, 1), and

θ =
(1

2
− 1
q + µ

)( 2
n
− 1
p

+
1
2

)−1

.

Here, we choose µ > 0 such that 0 < µ < p(1 + 4
n )− q and θ(q + µ) < p hold. Let

α =
p(1− θ)(q + µ)
2[p− θ(q + µ)]

=
p(2q + 2µ+ n)− n(q + µ)

p(4 + n)− n(q + µ)
,
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then α > 1 because 2 < p < q < p(1 + 4
n ). Therefore, combining (3.3), (3.7), (3.8)

and (3.10), we have

Sm(t) ≤ C1 + C2

∫ t

0

Sαm(s)ds, (3.12)

where C1 and C2 are positive constants independent ofm. By the integral inequality
of Gronwall-Bellman-Bihari type, there exists a positive constant T <

C1−α
1

C2(α−1) such
that

Sm(t) ≤ CT , ∀t ∈ [0, T ]. (3.13)
Consequently, for any m, the solution of (3.5) exists on [0, T ].

Next, multiplying (3.5) by α′mi(t), summing for i = 1, . . . ,m, and then integrat-
ing with respect to time variable on [0, t], we derive∫ t

0

‖u′m(s)‖22ds+ J(um(t)) = J(um(0)) = J(u0m), ∀t ∈ [0, T ]. (3.14)

By the continuity of the functional J and (3.3), we deduce that there exists a
positive constant C such that

J(u0m) ≤ C, ∀m. (3.15)

From this, it follows from (1.6), (3.10), (3.13)-(3.15) and using Hölder’s inequality,
we obtain

C ≥ J(um(t)) =
1
p
‖∆um‖pp −

1
q

∫
Ω

|um|q log(|um|)dx+
1
q2
‖um‖qq

≥
(1
p
− ε

q

)
‖∆um‖pp −

C(ε)
q
‖um‖2α2 +

1
q2
‖um‖qq

≥
(1
p
− ε

q

)
‖∆um‖pp −

C(ε)
q

2αSαm(t) +
1
q2
‖um‖qq

≥
(1
p
− ε

q

)
‖∆um‖pp +

1
q2
‖um‖qq − C3.

(3.16)

Combining this inequality and (3.14), we obtain

‖um‖L∞(0,T ;W 2,p(Ω)) ≤ C, ∀m, (3.17)

‖u′m‖L2(0,T ;L2(Ω)) ≤ C, ∀m. (3.18)

It follows from (3.8) and (3.13) that

‖|∆um|p−2∆um‖L∞(0,T ;W−2,p′
0 (Ω))

≤ C, ∀m. (3.19)

Step 3: Passage to the limit. By the Kakutani and Banach-Alaoglu-Bourbaki
Theorem, combining (3.17)-(3.19), there exist functions u and X and a subsequence
of {um}∞m=1 which we still denoted by {um}∞m=1 such that

um ⇀ u weakly* in L∞(0, T ;W 1,p
0 (Ω) ∩W 2,p(Ω)), (3.20)

u′m → u′ weakly in L2(0, T ;L2(Ω)), (3.21)

|∆um|p−2∆um → X weakly* in L∞(0, T ;W−2,p′(Ω)). (3.22)

Because of (3.21) and (3.22), it follows from Aubin-Lions-Simon lemma (see [13,
Corollary 4]) that

um → u, strongly in C([0, T ];L2(Ω)), (3.23)
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so, um → u, a.e. (x, t) ∈ Ω× (0, T ). Clearly, this implies that

|um|q−2um log(|um|)→ |u|q−2u log(|u|), a.e. (x, t) ∈ Ω× (0, T ). (3.24)

On the other side, because 2 < p < q < p(1 + 4
n ) < np

n−2p , we can choose µ > 0
such that (q − 1 + µ)q′ < np

n−2p . Then by a direct calculation and using Sobolev’s
inequality, we have∫

Ω

|Φm(x, t)|q
′
dx

=
∫
{x∈Ω:|um(x,t)|≤1}

|Φm(x, t)|q
′
dx+

∫
{x∈Ω:|um(x,t)|>1}

|Φm(x, t)|q
′
dx

≤ (e(q − 1))−q
′
|Ω|+ (eµ)−q

′
∫
{x∈Ω:|um(x,t)|>1}

|um(t)|(q−1+µ)q′dx

≤ C1 + C2‖∆um(t)‖(q−1+µ)q′

p ≤ C,

(3.25)

where Φm(x, t) = |um(x, t)|q−1 log(|um(x, t)|), and we have used the fact that
|xq−1 log x| ≤ (e(q − 1))−1 for 0 < x < 1 while log x ≤ (eµ)−1xµ for x > 1, µ > 0.
Hence, by Lions’s lemma (see [13, Lemma 1.3]), it follows from (3.24) and (3.25)
that

|um|q−2um log(|um|)→ |u|q−2u log(|u|), weakly* in L∞(0, T ;Lq
′
(Ω)). (3.26)

Passing to the limit in (3.3) and (3.5) as m → ∞, by (3.20)-(3.22) and (3.24), we
can show that u satisfies the initial condition u(0) = u0 and∫

Ω

u′(t)ωdx+
∫

Ω

X (t)∆ωdx =
∫

Ω

|u(t)|q−2u(t) log(|u(t)|)ωdx, (3.27)

for all ω ∈ W 2,p
0 (Ω) and for almost every t ∈ [0, T ]. Finally, by the well known

arguments of the theory of monotone operators, we know that

X = |∆u|p−2∆u,

which implies

〈u′(t), ω〉+ 〈|∆u|p−2∆u,∆ω〉 =
∫

Ω

|u(t)|q−2u(t) log(|u(t)|)ωdx, (3.28)

for all ω ∈W 2,p
0 (Ω) and for almost every t ∈ [0, T ].

Step 4: Uniqueness. Firstly, as a result from (3.28), we derive that

〈u′(t), v(t)〉+ 〈|∆u|p−2∆u,∆v(t)〉 =
∫

Ω

|u(t)|q−2u(t) log(|u(t)|)v(t)dx, (3.29)

for all v ∈ L2(0, T ;W 2,p
0 (Ω)).

Now, assume there are two solutions u1 and u2 to the problem (1.1) with the
same initial condition u0 ∈ W 1,p

0 (Ω) ∩W 2,p(Ω). Let ω = u1 − u2, then ω(0) = 0
and

ω ∈ L2(0, T ;W 1,p
0 (Ω) ∩W 2,p(Ω)), ω′ ∈ L2(0, T ;L2(Ω)).

Let

v(s) =

{
u1(s)− u2(s), s ∈ [0, t],
0, s ∈ [t, T ],
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then, it follows from (3.29) and the monotonicity of the operator ∆(|∆u|p−2∆u)
that

1
2
‖ω(t)‖22 ≤

∫ t

0

〈F (u1(s))− F (u2(s)), u1(s)− u2(s)〉ds,

where F (s) = |s|q−2s log(|s|). As a consequence, the uniqueness is derived from the
locally Lipschitz continuity of F : R∗ → R and Gronwall’s inequality.

Step 5: Energy inequality. Now we show that the solution u satisfies the energy
inequality (3.2). For this, let δ ∈ C[0, T ] is a nonnegative function. Then, it follows
from (3.14) that∫ T

0

δ(t)
∫ t

0

‖u′m(s)‖22dsdt+
∫ T

0

J(um(t))δ(t)dt =
∫ T

0

J(um(0))δ(t)dt. (3.30)

The right hand side of (3.30) converges to
∫ T

0
J(u0)δ(t)dt as m → ∞. The sec-

ond term in the right hand side,
∫ T

0
J(um(t))δ(t)dt, is lower semi-continuous with

respect to the weak topology of L2(0, T ;W 1,p
0 (Ω) ∩W 2,p(Ω)). Hence∫ T

0

J(u(t))δ(t)dt ≤ lim inf
m→+∞

∫ T

0

J(um(t))δ(t)dt. (3.31)

Therefore, we obtain∫ T

0

δ(t)
∫ t

0

‖u′(s)‖22dsdt+
∫ T

0

J(u(t))δ(t)dt ≤
∫ T

0

J(u0)δ(t)dt.

Since δ is arbitrary nonnegative function, we obtain the energy inequality∫ t

0

‖u′(s)‖22ds+ J(u(t)) ≤ J(u0), 0 ≤ t ≤ T.

The proof is complete. �

Next, we state the sufficient conditions for the global existence of weak solutions
to the problem (1.1).

Theorem 3.3. Let u0 ∈W+, there exists a unique global weak solution u of (1.1)
satisfying the initial condition u(0) = u0. We have that u(t) ∈ W+ holds for all
0 ≤ t < +∞, and the energy estimate∫ t

0

‖u′(s)‖22ds+ J(u(t)) = J(u0), 0 ≤ t ≤ +∞. (3.32)

Moreover, the solution decays algebraically provided u0 ∈W+
1 .

To prove Theorem 3.3, we need the following lemma.

Lemma 3.4 ([11]). Let f : R+ → R+ be a nonincreasing function and σ is a
positive constant such that∫ +∞

0

f1+σ(s)ds ≤ 1
ω
f(t), ∀t ≥ 0.

Then f(t) ≤ f(0)( 1+σ
1+ωσt )

1
σ , for all t ≥ 0.
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Proof of Theorem 3.3. To prove the existence of a global solution to (1.1), we first
choose a sequence

{γm}∞m=1 ⊂ (0, 1)
such that limm→∞ γm = 1. Since I(u0) ≥ 0, by Lemma 2.1, we have I(γmu0) >
0 and J(γmu0) < J(u0) ≤ d. Then, for every m, we can take a sequence of
approximation solution umk ∈ C1([0, Tmk];W 1,p

0 (Ω) ∩W 2,p(Ω)) such that

umk(0)→ γmu0, strongly in W 1,p
0 (Ω) ∩W 2,p(Ω), (k →∞), (3.33)

and ∫ t

0

‖u′mk(s)‖22ds+ J(umk(t)) = J(umk(0)), 0 ≤ t ≤ Tmk, (3.34)

where Tmk is the maximal existence time of umk(t).
For eachm, by (3.32) and the continuity of I, J , we can choose k = km sufficiently

large such that ‖umkm (0)−γmu0‖W 2,p(Ω) <
1
m , I(umkm (0)) > 0, and J(umkm (0)) <

d. For simplicity, we denote umkm by um, umkm (0) by u0m, and Tmkm by T̄m,
respectively. Then, we conclude um ∈ C1(0, T̄m;W 1,p

0 (Ω) ∩W 2,p(Ω)), u0m ∈W+
1 ,

um(0) = u0m → u0, strongly in W 1,p
0 (Ω) ∩W 2,p(Ω), as m→∞, (3.35)

and ∫ t

0

‖u′m(s)‖22ds+ J(um(t)) = J(u0m), 0 ≤ t ≤ T̄m. (3.36)

Therefore, it follows from (2.1) that(1
p
− 1
q

)
‖∆um(t)‖pp +

1
q2
‖um(t)‖qq < d, ∀m. (3.37)

Combining (3.35) and (3.37), and by using Hölder’s inequality, we obtain∫ t

0

‖u′m(s)‖22ds+ ‖∆um(t)‖pp + ‖um(t)‖pp

≤
∫ t

0

‖u′m(s)‖22ds+ ‖∆um(t)‖pp + C‖um(t)‖pq ≤ C.
(3.38)

This implies that T̄m = +∞. Then we can conclude that there is a unique global
weak solution u(t) ∈ W+ of the problem (1.1) as in the prove of Theorem 3.2,
which satisfies the energy inequality∫ t

0

‖u′(s)‖22ds+ J(u(t)) ≤ J(u0), 0 ≤ t < +∞. (3.39)

Secondly, we show that the algebraic decay results. Since u0 ∈W+, i.e. I(u0) >
0 and J(u0) < d, we have u(t) ∈ W+ for each t by a standard contradiction
argument. It follows from (2.1) and (3.39) that(1

p
− 1
q

)
‖∆u(t)‖pp +

1
q2
‖u(t)‖qq ≤ J(u(t)) ≤ J(u0). (3.40)

Since I(u0) > 0, there exists a λ∗ > 1 such that I(λ∗u(t)) = 0. This implies that

d ≤ J(λ∗u(t)) =
(1
p
− 1
q

)
‖∆(λ∗u(t))‖pp +

1
q2
‖λ∗u(t)‖qq

≤ λq∗
{(1
p
− 1
q

)
‖∆u(t)‖pp +

1
q2
‖u(t)‖qq

}
.

(3.41)
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It follows from (3.40) and (3.41) that

λ∗ ≥
( d

J(u0)

)1/q

. (3.42)

On the one hand, we obtain

0 = I(λ∗u(t)) = λp∗‖∆u(t)‖pp − λq∗
∫

Ω

|u(t)|q log(|u(t)|)dx− λq∗ log λ∗‖u(t)‖qq

= λq∗I(u)− (λq∗ − λp∗)‖∆u(t)‖pp − λq∗ log λ∗‖u(t)‖qq.

From this inequality and (3.42), we deduce that

I(u) ≥
{

1−
( d

J(u0)

) p
q−1}

‖∆u(t)‖pp ≥ C‖u(t)‖p2,p. (3.43)

On the other hand, by the compact embedding W 2,p(Ω) ↪→ L2(Ω), we see that∫ T

t

I(u(s))ds = −
∫ T

t

〈u′(s), u(s)〉ds

=
1
2
‖u(t)‖22 −

1
2
‖u(T )‖22

≤ C‖u(t)‖22,p.

(3.44)

By (3.43) and (3.44), we obtain∫ T

t

I(u(s))ds ≤ 1
ω

(
I(u(t))

)2/p

≤ 1
ω
‖∆u(t)‖2p ≤

1
ω
‖u(t)‖22,p, (3.45)

for all t ∈ [0, T ], and where ω is a positive constant.
Let T → +∞ in (3.45), it follows that∫ +∞

t

‖u(s)‖p2,pds ≤ C
∫ +∞

t

I(u(s))ds ≤ 1
ω
‖u(t)‖22,p. (3.46)

Since p > 2, we can choose f(t) = ‖u(t)‖22,p and σ = p
2 − 1 in Lemma 3.4 to obtain

‖u(t)‖22,p ≤ ‖u0‖22,p
( 1 + σ

1 + ωσt

) 1
p−2

, ∀t ≥ 0.

The prove is complete. �

4. Blow-up and extinction of solutions

Firstly, we state the theorem for finite time blow-up for weak solution of problem
(1.1) in when 2 < p < q < p(1 + 4

n ).

Theorem 4.1. Let u0 ∈ W−1 , and u is the unique weak solution to (1.1). Then u
blows up in the finite time.

Proof. Since u0 ∈ W−1 , by Theorem 3.2, we obtain a unique local solution of (1.1)
satisfying the energy inequality∫ t

0

‖u′(s)‖22ds+ J(u(t)) ≤ J(u0), 0 ≤ t ≤ Tmax, (4.1)

where Tmax is the maximal existence time of u(t).
Next, by a contraction argument, we conclude that u(t) ∈ W−1 for t ∈ [0, Tmax].

We assume that u(t) leaves W−1 at time t = t0, then there exists a sequence {tn}
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such that tn → t0 as n → ∞ and I(u(tn)) ≤ 0. By the lower semicontinuity of
‖ · ‖2,p, we obtain

I(u(t0)) ≤ lim inf
n→∞

I(u(tn)) ≤ 0.

Because u(t0) leaves W−1 , we have I(u(t0)) = 0. Thus, by the variational definition
of d and the energy inequality, this leads to a contraction

d = inf
u∈N
≤ J(u(t0)) < d.

Hence, we derive u(t) ∈W−1 for t ∈ [0, Tmax].
At the last, we show that the solution u(t) is not global, that means, it blows

up at finite time. Assume by contraction that the solution u(t) is global. Then, for
any T > 0, we consider Γ : [0, T ]→ R+ defined by

Γ(t) =
∫ t

0

‖u(s)‖22ds. (4.2)

Then, by direct calculations, we have

Γ′(t)− Γ′(0) = ‖u(t)‖22 − ‖u0‖22 = 2
∫ t

0

〈u′(s), u(s)〉ds, (4.3)

Γ′′(t) = 2〈u′, u〉 = −2I(u). (4.4)

Combining (2.1) and (4.1), we obtain

Γ′′(t) =− 2I(u) = −2qJ(u) +
2
q
‖u‖qq +

(2q
p
− 2
)
‖∆u‖pp

≥ −2qJ(u0) + 2q
∫ t

0

‖u′(s)‖22ds+
2
q
‖u‖qq +

(2q
p
− 2
)
‖∆u‖pp.

(4.5)

Since u(t) ∈ W−1 for t ∈ [0, Tmax], so I(u) < 0, then there exist a λ∗ ∈ (0, 1) such
that I(λ∗u) = 0. Thus, by the definition of d, we have(1

p
− 1
q

)
‖∆u‖pp +

1
q2
‖u‖qq ≥ J(λ∗u) ≥ d. (4.6)

It follows from (4.5) and (4.6) that

Γ′′(t) ≥ 2q
∫ t

0

‖u′(s)‖22ds+ 2q(d− J(u0)). (4.7)

By (4.4) and I(u) < 0, we know Γ′′(t) > 0, so we obtain

Γ′(t) > Γ′(0) = ‖u0‖22 > 0, ∀t > 0. (4.8)

From (4.3) and Hölder’s inequality, we obtain

1
4

(Γ′(t)− Γ′(0))2 ≤
(∫ t

0

〈u′(s), u(s)〉ds
)2

≤
∫ t

0

‖u′(s)‖22ds
∫ t

0

‖u(s)‖22ds. (4.9)

Combining (4.2), (4.7) and (4.9), we have

Γ(t)Γ′′(t) ≥
∫ t

0

‖u(s)‖22ds
(

2q
∫ t

0

‖u′(s)‖22ds+ 2q(d− J(u0))
)

≥ q

2
(Γ′(t)− Γ′(0))2 + 2q(d− J(u0))Γ(t).
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Now, fix t0 > 0. The (4.8) implies

Γ(t) ≥ Γ(t0) =
∫ t0

0

‖u(s)‖22ds ≥ ‖u0‖22t0 > 0, ∀t ≥ t0. (4.10)

Hence,

Γ(t)Γ′′(t)− q

2
(Γ′(t)− Γ′(0))2 ≥ 2q(d− J(u0))‖u0‖22t0 > 0, ∀t ≥ t0. (4.11)

We choose T > t0 sufficiently large, and let

G(t) = Γ(t) + (T − t)‖u0‖22, ∀ t ∈ [0, T ].

Then G(t) > Γ(t) > 0, G′(t) = Γ′(t) − ‖u0‖22 = Γ′(t) − Γ′(0) > 0 and G′′(t) =
Γ′′(t) > 0. Thus, (4.11) implies

G(t)G′′(t)− q

2
(G′(t))2 ≥ 2q(d− J(u0))‖u0‖22t0 > 0, ∀t ≥ t0. (4.12)

By setting y(t) = (G(t))−(q−2)/2, inequality (4.12) becomes

y′′(t) ≤ −q(q − 2)(d− J(u0))‖u0‖22t0(G(t))−
q+2
2 < 0, ∀t ∈ [t0, T ].

This inequality implies that y is a concave function in [t0, T ], for each T > t0. Be-
cause of y(t0) > 0 and y′(t) = − q−2

2 (G(t))−
q
2G′(t) < 0, for all t, there exists a finite

time T∗ such that limt→T−∗ y(t) = 0 if we choose T sufficiently large. Consequently,

limt→T−∗ G(t) = +∞. This implies that limt→T−∗

∫ t
0
‖u(s)‖22ds = +∞. Hence, we

see that
lim
t→T−∗

‖u(t)‖22 = +∞

which contradicts the assumption of u(t) being global. The proof is complete. �

Next, we discuss the finite time blow-up, extinction and non-extinction of the
weak solution to the problem (1.1) in the case of max{1, 2n

n+4} < p ≤ 2, and q > 0.
Before showing these results, we claim that the local existence of the weak solu-

tion to the problem (1.1) can be obtained by using Galerkin approximation method.
Let u(x, t) be the weak solution to the problem (1.1). We introduce some function-
als and notations as follows:

E(t) =
1
p
‖∆u‖pp −

1
q

∫
Ω

|u|q log(|u|)dx+
1
q2
‖u‖qq, (4.13)

M(t) =
1
2

∫
Ω

u2dx, H(t) =
∫ t

0

M(s)ds. (4.14)

Since the embedding W 2,p(Ω) ↪→ L2(Ω) holds if max{1, 2n
n+4} < p ≤ 2, there exists

an optimal embedding constant B such that

‖u‖2 ≤ B‖∆u‖p. (4.15)

Furthermore, it is not difficult to obtain the inequality∫ t

0

∫
Ω

|us|2 dx ds+ E(t) ≤ E(0). (4.16)

Then E(t) is nonincreasing with respect t. Now, we show some lemmas, which will
be used later.
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Lemma 4.2. Assume that p < q and E(0) ≤ 0. Then

M ′(t) ≥ q
∫ t

0

∫
Ω

|us|2 dx ds. (4.17)

Proof. Through direct calculations, we have

M ′(t) =
∫

Ω

uutdx =
∫

Ω

u
(
−∆(|∆u|p−2∆u) + |u|q−2u log(|u|)

)
dx

= −
∫

Ω

|∆u|pdx+
∫

Ω

|u|q log(|u|)dx

= −qE(t) +
(q
p
− 1
) ∫

Ω

|∆u|pdx+
1
q

∫
Ω

|u|qdx

≥ −qE(t).

(4.18)

Then, by the assumption E(0) ≤ 0 and (4.16), we obtain

M ′(t) ≥ −qE(0) + q

∫ t

0

∫
Ω

|u(s)|2 dx ds ≥
∫ t

0

∫
Ω

|us|2 dx ds,

the proof is complete. �

Lemma 4.3. Assume that q > 2 and E(0) ≤ 0, then

q (H ′(t)−H ′(0))2 ≤ 2H(t)H ′′(t). (4.19)

Proof. By Hölder’s inequality and (4.17), we obtain

H ′(t)−H ′(0) = M(t)−M(0)

=
∫ t

0

M ′(s)ds =
∫ t

0

∫
Ω

uus dx ds

≤
(∫ t

0

∫
Ω

|u|2 dx ds
)1/2(∫ t

0

∫
Ω

|us|2 dx ds
)1/2

≤
(2
q

)1/2(H(t))1/2(M ′(t))1/2

=
(2
q

)1/2(H(t))1/2(H ′′(t))1/2.

Moreover, by (4.17) again, we have

H ′(t)−H ′(0) =
∫ t

0

M ′(s)ds ≥ q
∫ t

0

∫ s

0

∫
Ω

|uτ |2dxdτds ≥ 0.

Then the conclusion follows from the two inequalities above. The proof is complete.
�

Lemma 4.4 ([5, Lemma 1.2]). Suppose that θ > 0, α > 0, β > 0 and h(t) is a
nonnegative and absolutely continuous function satisfying h′(t) + αhθ(t) ≥ β, then
for 0 < t <∞, it holds

h(t) ≥ min
{
h(0),

(α
β

)1/θ}
.
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Lemma 4.5 ([6, Lemma 3.2]). Assume 0 < l < r ≤ 1, α ≥ 0, β ≥ 0 and ϕ(t) is a
nonnegative and absolutely continuous function, which satisfies

ϕ′(t) + αϕl(t) ≤ βϕr(t), t ≥ 0,

ϕ(0) > 0, βϕr−l(0) < α .
(4.20)

Then

ϕ(t) ≤ [−α0(1− l)t+ ϕ1−l(0)]
1

1−l , 0 < t < T0,

ϕ(t) ≡ 0, t ≥ T0,

where α0 = α− βϕr−l(0) > 0 and T0 = α−1
0 (1− l)−1ϕ1−l(0).

Theorem 4.6. Assume that p < q, q > 2, E(0) ≤ 0 and ‖u0‖2 > 0. Then the
solution to problem (1.1) blows up in the finite time.

Proof. We will give the proof by contradiction. Suppose that the solution u(x, t)
to the problem (1.1) exists for all t > 0. Then by the definition of weak solution,
we know that u ∈ C([0,+∞);L2(Ω)). For any t0 > 0, we claim that∫ t0

0

∫
Ω

|us|2 dx ds > 0. (4.21)

Otherwise, there exists a t̂0 > 0 such that
∫ t̂0

0

∫
Ω
|us|2 dx ds = 0, and hence

ut(x, t) = 0 for a.e. (x, t) ∈ Ω×(0, t̂0). Thus it follows from (4.18) that
∫

Ω
|∆u|pdx =∫

Ω
|u|q log(|u|)dx for a.e. t ∈ (0, t̂0), and then we obtain from (4.16) that

E(t) =
q − p
pq

∫
Ω

|∆u|pdx+
1
q2

∫
Ω

|u|qdx

for a.e. t ∈ (0, t̂0), which combines E(t) ≤ E(0) ≤ 0 and p < q implying∫
Ω
|∆u|pdx = 0 and

∫
Ω
|u|qdx = 0 for a.e. t ∈ (0, t̂0). By (4.15), we have ‖u(·, t)‖2 =

0 for a.e. t ∈ (0, t̂0). Furthermore, since u ∈ C([0,+∞);L2(Ω)), we obtain ‖u(·, t)‖2 =
0 for all t ∈ [0, t̂0], especially ‖u0‖2 = 0, which contradicts to the assumption
‖u0‖2 > 0. Then (4.21) holds.

Now, fix t0 > 0, and let ρ =
∫ t0

0

∫
Ω
|us|2 dx ds. By (4.21) we know that ρ is a

positive constant. Integrating (4.17) over (t0, t), we obtain

M(t) ≥M(t0) + q

∫ t

t0

∫ s

0

∫
Ω

|uτ |2dxdτds

≥
∫ t

t0

∫ t0

0

∫
Ω

|uτ |2dxdτds ≥ ρ(t− t0).
(4.22)

Hence,
lim

t→+∞
H ′(t) = lim

t→+∞
M(t) = +∞. (4.23)

Combining (4.23) and the fact that q > 2, we have

lim
t→+∞

(H ′(t))2

[H ′(t)−H ′(0)]2
= 1 <

4q
3q + 2

.

Therefore, there exists t∗ > t0 such that
3q + 2

4
(H ′(t))2 < q[H ′(t)−H ′(0)]2 ∀t ≥ t∗.
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Consequently, by (4.19), we obtain

3q + 2
4

(H ′(t))2 < 2H(t)H ′′(t) ∀t ≥ t∗.

Then we consider the function z(t) = (H(t))−
q−2
4 . By direct computations, we

obtain

z′(t) = −q − 2
4

(H(t))−
q−2
4 −1H ′(t) ≤ 0,

z′′(t) =
q − 2

4
(H(t))

−q−6
4

(q + 2
4

(H ′(t))2 −H(t)H ′′(t)
)

≤ − (q − 2)2

32
(H(t))

−q−6
4 (H ′(t))2 ≤ 0,

for all t ≥ t∗, which imply that z(t) is a decreasing concave function. Moreover,
since z(t) > 0, we obtain z(t) cannot converge to 0 as t → +∞. However, since
limt→+∞H(t) = +∞, we obtain from the definition of z(t) and that z(t) is conver-
gent to 0 as t→ +∞, which is a contraction. The proof is complete. �

Theorem 4.7. Assume that p > q and E(0) < 0. Then the solution to problem
(1.1) does not go extinct in finite time.

Proof. Recall the M(t) defined in (4.14). According to (4.14) and (4.16), we obtain

M ′(t)

= −
∫

Ω

|∆u|pdx+
∫

Ω

|u|q log(|u|)dx

=
∫

Ω

|u|q log(|u|)dx− pE(t)− p

q

∫
Ω

|u|q log(|u|)dx+
1
q2

∫
Ω

|u|qdx

=
q − p
q

∫
Ω

|u|q log(|u|)dx− pE(0) +
1
q2

∫
Ω

|u|qdx+ p

∫ t

0

∫
Ω

|us|2 dx ds

≥ q − p
q

∫
Ω

|u|q log(|u|)dx− pE(0).

(4.24)

Case 1: p > q. By p ≤ 2, we obtain q < 2. Then there exists µ > 0 such that
q + µ < 2, hence

q − p
q

∫
Ω

|u|q log(|u|)dx ≥ q − p
eµq

∫
Ω

|u|q+µdx

≥ q − p
eµq

(∫
Ω

|u|2dx
) q+µ

2 |Ω|
2−q−µ

2

= AM
q+µ

2 (t),

(4.25)

where A = q−p
eµq 2

q+µ
2 |Ω|

2−q−µ
2 > 0. So, by (4.24) and (4.25), we see that

M ′(t) ≥ −AM
q+µ

2 − pE(0).

By Lemma 4.4 and E(0) < 0, we have

M(t) ≥ min
{
M(0),

(−pE(0)
A

) 2
q+µ
}
, t > 0.

Since M(0) = 1
2‖u0‖22 > 0, A > 0 and E(0) < 0, we derive M(t) > 0 for all t > 0.
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Case 2: p = q. Since E(0) < 0, from (4.24) we obtain M ′(t) ≥ −pE(0) > 0.
Hence, we have

M(t) ≥M(0)− pE(0) > 0, t > 0.
Again as in Case 1, we obtain M(t) > 0 for all t > 0.

The two cases above imply ‖u(·, t)‖2 =
√

2M(t) > 0 for all t > 0. Then for any
s > 1, by the interpolation inequality, we have

‖u‖2 ≤ ‖u‖1/2s ‖u‖
1/2
s′ ,

where s′ = s/(s − 1) > 1. Combining the above inequality with ‖u(·, t)‖2 > 0, we
know that ∀s > 1, there does not exist T ∗ > 0 such that limt→T∗ ‖u‖s = 0. The
proof is complete. �

Theorem 4.8. Assume that p < q, q < 2 and 0 < ‖u0‖q+µ−p2 < B−p|Ω|
q+µ−2

2 .
Then the solution to problem (1.1) must become extinct in finite time. Furthermore,
we have the following estimates:

‖u(t)‖2 ≤
[
‖u0‖2−p2 − (2− p)

(
B−p − 1

eµ
|Ω|

2−q−µ
2 ‖u0‖q+µ−p2

)
t
] 1

2−p
, 0 < t < T∗,

‖u(t)‖2 = 0, t ≥ T∗,

where

T∗ =
[
(2− p)

(
B−p − 1

eµ
|Ω|

2−q−µ
2 ‖u0‖q+µ−p2

)]−1

‖u0‖2−p2 ,

and µ > 0 is sufficiently small such that q + µ < 2.

Proof. Multiplying the first equation of (1.1) by u and integrating over Ω, we have

1
2

∫
Ω

u2dx+
∫

Ω

|∆u|pdx =
∫

Ω

|u|q log(|u|)dx.

Recall the M(t) defined in (4.14), then the above equation is equivalent to the
inequality

M ′(t) +
∫

Ω

|∆u|pdx ≤
∫

Ω

|u|q log(|u|)dx. (4.26)

Then (4.15), (4.26) and Hölder’s inequality imply

M ′(t) + 2p/2B−pMp/2(t) ≤ 1
eµ

2
q+µ

2 |Ω|
2−q−µ

2 M
q+µ

2 (t);

that is,
M ′(t) + αMp/2(t) ≤ βM

q+µ
2 (t),

where α = 2p/2B−p > 0, β = 1
eµ2

q+µ
2 |Ω|

2−q−µ
2 > 0, and 0 < p

2 < q+µ
2 ≤ 1. By

Lemma 4.5 and the assumption 0 < ‖u0‖q+µ−p2 < B−p|Ω|
q+µ−2

2 , we obtain

M(t) ≤ [−α0(1− p

2
)t+M1− p2 (0)]

2
2−p , 0 < t < T∗,

M(t) ≡ 0, t ≥ T∗,

where α0 = α− βM
q+µ−p

2 (0) > 0 and T∗ = α−1
0

2
2−pM

2−p
2 (0). Then the conclusion

follows by ‖u(·, t)‖2 =
√

2M(t). The proof is complete. �
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